1
|
Khuman SN, Lee HY, Cho IG, Chung D, Lee SY, Lee J, Oh JK, Choi SD. Monitoring of organochlorine pesticides using pine needle, pine bark, and soil samples across South Korea: Source apportionment and implications for atmospheric transport. CHEMOSPHERE 2025; 370:144043. [PMID: 39733949 DOI: 10.1016/j.chemosphere.2024.144043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/10/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Pine needle, pine bark, and soil samples were collected from various regions in South Korea, considering the suitability of vegetation samples as passive samplers. A total of 27 organochlorine pesticides (OCPs) were analyzed using a gas chromatograph/high-resolution mass spectrometer (GC/HRMS). The total concentrations of OCPs ranged between 650 and 3652 pg/g dw in soil, 215 and 1384 pg/g ww in pine needles, and 456 and 1723 pg/g ww in pine bark. Metabolites such as endosulfan sulfate, p,p'-DDE, and p,p'-DDD were dominant in the soil samples, whereas parent compounds were more prevalent in the pine needles. Diagnostic ratios and compositional profiles suggested that potential OCP sources were primarily related to historical use, atmospheric transport, and unintentional byproducts. OCPs that were never used or registered in South Korea were also detected in all sample types, indicating atmospheric transport from source regions. Sites closer to North Korea and China showed higher concentrations of OCPs, with levels gradually decreasing from west to east in the soil, suggesting long-range atmospheric transport from the source regions. Fugacity fractions indicated net volatilization for most compounds, while net deposition was observed for others, suggesting a dynamic equilibrium. This study concludes that atmospheric transport plays a predominant role in the distribution and fate of OCPs in the environment, with no evidence of current local sources.
Collapse
Affiliation(s)
- Sanjenbam Nirmala Khuman
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ho-Young Lee
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - In-Gyu Cho
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - David Chung
- Natural Environmental Research Division, National Institute of Environmental Research (NIER), Incheon, 22689, Republic of Korea
| | - Soo Yong Lee
- Natural Environmental Research Division, National Institute of Environmental Research (NIER), Incheon, 22689, Republic of Korea
| | - Jangho Lee
- Natural Environmental Research Division, National Institute of Environmental Research (NIER), Incheon, 22689, Republic of Korea
| | - Jung-Keun Oh
- Natural Environmental Research Division, National Institute of Environmental Research (NIER), Incheon, 22689, Republic of Korea
| | - Sung-Deuk Choi
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
2
|
Lv L, Cui S, Zhang H, Qi W, Liu X, Jiang J, Jiang J, Zhu Z, Gao H. Spatial pattern and compositional distribution of organochlorine pesticides in the black soil region of Shenyang. ENVIRONMENTAL RESEARCH 2024; 263:120228. [PMID: 39490546 DOI: 10.1016/j.envres.2024.120228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Organochlorine pesticides (OCPs) are persistent organic pollutants (POPs) prevalent in soils with carcinogenic, teratogenic and mutagenic hazards that are commonly found in soils and remain in the environment even though they have been banned. In order to fill the gap of fewer studies after the ban, soil samples were collected from 308 agricultural fields of cash crops and grain crops in the black soil area of Shenyang City (Liaozhong District, Faku County, Xinmin City and Kangping County) in this study. The aim was to determine, the use and distribution characteristics of OCPs in agricultural soils in the black soil region of Shenyang City. Compositional analysis showed that the detection rate of banned OCPs in agricultural soils was 71.75%, including contaminants such as technical dichloro-diphenyl-trichloroethane (DDT), chlordane and hexachlorobenzene (HCB), which were widely distributed in Liaozhong District, Faku County, Xinmin City and Kangping County, with 45.25% of the fields having compounded contamination of OCPs, and several areas were involved in the fresh inputs of contaminants such as technical DDT. Among them, Kangping County and Faku County are more seriously polluted, with 66.29% and 60.71% of OCPs exceeding the standard. Soil OCPs is more serious in cabbage and rice farmland among cash and food crop farmland. Based on Chinese policy on control, prevention and other pesticide management measures, it was concluded that the framework should be strengthened to prevent further illegal use of banned OCPs.
Collapse
Affiliation(s)
- Lianghe Lv
- Ministry of Education, Shenyang Ligong University, Shenyang, 110159, China.
| | - Shuang Cui
- Ministry of Education, Shenyang Ligong University, Shenyang, 110159, China.
| | - Hongling Zhang
- Key Laboratory of Eco-restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Weijun Qi
- Ministry of Education, Shenyang Ligong University, Shenyang, 110159, China
| | - Xinyue Liu
- Ministry of Education, Shenyang Ligong University, Shenyang, 110159, China
| | - Jianyu Jiang
- Ministry of Education, Shenyang Ligong University, Shenyang, 110159, China
| | - Jing Jiang
- Ministry of Education, Shenyang Ligong University, Shenyang, 110159, China
| | - Ziyue Zhu
- Ministry of Education, Shenyang Ligong University, Shenyang, 110159, China
| | - Hang Gao
- Ministry of Education, Shenyang Ligong University, Shenyang, 110159, China
| |
Collapse
|
3
|
Wang Z, Li Z, Lou Q, Pan J, Wang J, Men S, Yan Z. Ecological risk assessment of 50 emerging contaminants in surface water of the Greater Bay Area, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168105. [PMID: 37884156 DOI: 10.1016/j.scitotenv.2023.168105] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/30/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Ecological risk assessment of emerging contaminants (ECs) is an international research hotspot and is also the focus of China's "14th Five-Year Plan". The Greater Bay Area (GBA) is one of the four major bay areas in the world and the most dynamic region in China. However, there are few studies on the risk assessment of ECs in the GBA, and there needs to be a systematic and comprehensive assessment of the ecological risk of ECs. We selectively collected environmental concentration and toxicity data reported in the literature before 2022 for 50 representative ECs. We use risk quotient (RQ), semi-probability, Margin of Safety (MOS), and joint Probability curve (JPC) methods for multiple-level risk assessment. The RQ results showed that there were primary ecological risks in 20 ECs. Nine ECs were screened by the semi-probability, MOS, and JPC methods. The total risk probability of nonylphenol (NP) to the GBA was 12.11 %, and the risk to the aquatic ecological environment was the highest, followed by α-endosulfan (α-END) and erythromycin (ERY). At the same time, a comprehensive assessment method was adopted to screen the list of medium and high-risk priority pollutants in the GBA. According to the comprehensive evaluation results, although the risk is low, perfluorooctanoic acid (PFOA) still deserves widespread attention. The results showed that NP, α-END, ERY, and PFOA may be the most concerned ECs in the GBA. This research fills the gap on the ECs ecological risk assessment of the GBA and can provide a theoretical reference for managers in the follow-up of ECs regulatory governance.
Collapse
Affiliation(s)
- Ziye Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhengyan Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Qi Lou
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jinfen Pan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jie Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shuhui Men
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
4
|
Khuman SN, Park MK, Kim HJ, Hwang SM, Lee CH, Choi SD. Nationwide assessment of atmospheric organochlorine pesticides over a decade during 2008-2017 in South Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162927. [PMID: 36934928 DOI: 10.1016/j.scitotenv.2023.162927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
Long-term nationwide atmospheric monitoring of organochlorine pesticides (OCPs) was performed in South Korea during 2008-2017. Their occurrences, seasonal and temporal variability, sources, and effect of ambient temperature were investigated. The OCPs are pronounced with a mean concentration of total OCPs ranging from 5.2 to 256 pg/Sm3. However, a decrease of 54 % was observed in the mean concentration of total OCPs from 2008 to 2017 associated with regulatory actions. OCP concentrations did not show any variations between the different site types, and OCPs were ubiquitously present at all site types. The mean concentration of total OCPs in summer was two-fold higher than in winter. The concentrations of DRINs, DDTs, ENDOs, and HCHs were significantly higher in summer, but the concentrations of chlordane and heptachlor were higher in winter. The diagnostic ratios identified major sources as ongoing sources, past use, and atmospheric transport. Clausius Clapeyron plots strongly suggested the re-emission of α-endosulfan, β-endosulfan, α-HCH, and β-HCH, and ΔHsa (enthalpy of surface air exchange) values suggested the influence of the transport and/or new sources on aldrin, dieldrin, and chlordane. The occurrence of OCPs due to re-emissions, ongoing sources, and long-range atmospheric transport could be a challenge towards the complete phase-out of OCPs in South Korea.
Collapse
Affiliation(s)
- Sanjenbam Nirmala Khuman
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Min-Kyu Park
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Ho-Joong Kim
- Department of Chemical Management, Korea Environment Corporation (K-eco), Incheon 22689, Republic of Korea.
| | - Seung-Man Hwang
- Department of Chemical Management, Korea Environment Corporation (K-eco), Incheon 22689, Republic of Korea.
| | - Chang-Ho Lee
- Department of Chemical Management, Korea Environment Corporation (K-eco), Incheon 22689, Republic of Korea.
| | - Sung-Deuk Choi
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
5
|
Hu C, Tao Y. Spatial-temporal occurrence and sources of organochlorine pesticides in the sediments of the largest deep lake (Lake Fuxian) in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:31157-31170. [PMID: 36443551 DOI: 10.1007/s11356-022-24394-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Compared with shallow lakes, less attention has been paid on pollutions in deep lakes. Lake Fuxian is the largest deep lake and an important water resource in China. The knowledge on organochlorine pesticides (OCPs) in sediments of Lake Fuxian was rare. Fifteen surface sediments and one sediment core were collected from Lake Fuxian. Sediment chronology was dated with the activities of 137Cs and 210Pb. Twenty-one OCPs in the surface sediments and sediment core were analyzed by a GC-MS. Spatial and temporal occurrences of OCPs in the sediments of this lake were studied. Correlations, isomer ratios, and principal component analysis (PCA) were applied to apportion the sources of OCPs in the sediments of this lake. The OCPs in the sediments of Lake Fuxian were dominated by p,p'-DDT (4,4'-dichlorodiphenyltrichloroethane) and HCHs (hexachlorocyclohexane). The concentration of ΣOCPs in the surface sediments ranged from 0.42 to 67.5 ng g-1, with an average of 42.3 ± 23.5 ng g-1 (mean ± SD, n = 15). The concentration of ΣOCPs in the sediment core varied from 3.5 to 707.9 ng g-1 in the period from 1950 to 2010, with an average of 167.7 ± 203.7 ng g-1 (n = 24). The highest concentrations and fluxes of α-HCH, γ-HCH, and p,p'-DDT were found in the years of 1964 and 1967, respectively. The fluxes of HCH isomers in the sediment core decreased in the orders as γ-HCH > β-HCH > α-HCH in the period from 1950 to 2010. The concentrations of HCHs and p,p'-DDT in the sediments of Lake Fuxian were higher than those of most shallow and deep lakes in the world. HCHs and p,p'-DDT were derived from both the technical HCH and DDT and the usage of lindane and dicofol. Technical DDT and technical HCH may be used simultaneously, but technical DDT and lindane were not applied simultaneously in the catchment. Lindane was used not only in the period from 2002 to 2010 but also in the period from 1950 to 1964 in the catchment.
Collapse
Affiliation(s)
- Chuanhai Hu
- College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Yuqiang Tao
- College of Oceanography, Hohai University, Nanjing, 210024, China.
| |
Collapse
|
6
|
Shah ZU, Parveen S. Distribution and risk assessment of pesticide residues in sediment samples from river Ganga, India. PLoS One 2023; 18:e0279993. [PMID: 36730256 PMCID: PMC9894440 DOI: 10.1371/journal.pone.0279993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/19/2022] [Indexed: 02/03/2023] Open
Abstract
Indiscriminate use of pesticides leads to their entry in to the bottom sediments, where they are absorbed in the sediment's particle and thus, may become the consistent source of aquatic pollution. The present work was carried out to evaluate pesticide residues in the sediment samples and associated human health risk of commonly used pesticides along the basin of river Ganga. Total of 16 pesticides were analyzed along three stretches of river Ganga. The concentration of pesticides in the upper stretch ranged from ND to 0.103 μg/kg, in the middle stretch ND to 0.112 μg/kg, and in the lower stretch ND to 0.105 μg/kg. Strong positive correlation was found between total organic carbon and total pesticide residues in sediment samples. Carcinogenic and non-carcinogenic values were estimated below the threshold limit suggesting no associated risk. Risks associated with the inhalation route of exposure were found to be higher than the dermal and ingestion routes. Children were found at higher risk at each site from multiple routes of exposure than adult population groups. Toxic unit values were found to be below the threshold value suggesting no risk associated with exposure of pesticides from sediments. However, long term effects on ecological quality due to consistent pesticide exposure must not be ignored. Therefore, the present study focuses on concrete efforts like lowering the irrational used of pesticides, tapping of agricultural and domestic drains, advice to farmers for appropriate use of pesticide doses, to reduce the threat of pesticide pollution in the river system and possible human health risk.
Collapse
Affiliation(s)
- Zeshan Umar Shah
- Department of Zoology, Limnology Research Laboratory, Aligarh Muslim University, Aligarh, India
- * E-mail:
| | - Saltanat Parveen
- Department of Zoology, Limnology Research Laboratory, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
7
|
Arisekar U, Shakila RJ, Shalini R, Jeyasekaran G, Arumugam N, Almansour AI, Keerthana M, Perumal K. Bioaccumulation of organochlorine pesticide residues (OCPs) at different growth stages of pacific white leg shrimp (Penaeus vannamei): First report on ecotoxicological and human health risk assessment. CHEMOSPHERE 2022; 308:136459. [PMID: 36150495 DOI: 10.1016/j.chemosphere.2022.136459] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Pesticide residues (PRs) in farmed shrimps are concerning food safety risks. Globally, India is a major exporter of pacific white leg shrimp (P. vannamei). This study was undertaken to analyze PRs in the water, sediments, shrimps, and feed at different growth stages to evaluate the ecotoxicological and human health risks. PRs in the seawater and sediments ranged from not detected (ND) to 0.027 μg/L and 0.006-12.39 μg/kg, and the concentrations were within the maximum residual limits (MRLs) and sediment quality guidelines prescribed by the World Health Organization and Canadian Environment Guidelines, respectively. PRs in shrimps at three growth stages viz. Postlarvae, juvenile, and adults, ranged from ND to 0.522 μg/kg, below the MRLs set by Codex Alimentarius Commission and European Commission. Most of the PRs in water, sediments, and shrimps did not vary significantly (p > 0.05) from days of culture (DOC-01) to DOC-90. The hazard quotient (HQ) and hazard ratio (HR) were found to be < 1, indicating that consumption of shrimps has no noncarcinogenic and carcinogenic risks. PRs in shrimp feed ranged from ND to 0.777 μg/kg and were found to be below the MRLs set by EC, which confirms that the feed fed is safe for aquaculture practices and does not biomagnify in animals. The risk quotient (RQ) and toxic unit (TU) ranged from insignificant level (ISL) to 0.509 and ISL to 0.022, indicating that PRs do not pose acute and chronic ecotoxicity to aquatic organisms. The study suggested no health risk due to PRs in shrimps cultured in India and exported to the USA, China, and Japan. However, regular monitoring of PRs is recommended to maintain a sustainable ecosystem.
Collapse
Affiliation(s)
- Ulaganathan Arisekar
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin, 628 008, Tamil Nadu, India.
| | - Robinson Jeya Shakila
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin, 628 008, Tamil Nadu, India.
| | - Rajendran Shalini
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin, 628 008, Tamil Nadu, India
| | | | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Muruganantham Keerthana
- Department of Fisheries and Fishermen Welfare, Department of Fisheries (AD Office), Thoothukudi, 628 008, Tamil Nadu, India
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151W. Woodruff Ave, Columbus, OH, 43210, USA
| |
Collapse
|
8
|
Khuman SN, Park MK, Kim HJ, Hwang SM, Lee CH, Choi SD. Organochlorine pesticides in the urban, suburban, agricultural, and industrial soil in South Korea after three decades of ban: Spatial distribution, sources, time trend, and implicated risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119938. [PMID: 35970351 DOI: 10.1016/j.envpol.2022.119938] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Organochlorine pesticides in soil samples across urban, suburban, agricultural, and industrial sites were analyzed every year between 2013 and 2016 in South Korea. The study aims to understand the residual status, diminution of occurrence from the South Korean environment, and its risk to humans after three decades of the ban. A general decreasing trend of OCPs has been observed over the years. The OCP concentrations were below the guideline values prescribed for soil pollution. Metabolites like p,p'-DDD and endosulfan sulfate contributed a major portion to the total OCP concentration over the years. The agricultural sites showed higher OCP levels than other site types. Compositional profile and diagnostic ratios suggested that the occurrence of DDT and endosulfan residues were due to historical inputs, but those of HCH and chlordane reflect recent usage in some pockets. The calculated incremental lifetime cancer risk was within the safety limit for all age groups across the genders in the majority of the sites. It is evident that the OCP load on soil is decreasing since the ban on usage. However, regular monitoring with a special focus on metabolites can be an effective control measure to regulate and eliminate the contamination of OCPs.
Collapse
Affiliation(s)
- Sanjenbam Nirmala Khuman
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Min-Kyu Park
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ho-Joong Kim
- Department of Chemical Management, Korea Environment Corporation (K-eco), Incheon, 22689, Republic of Korea
| | - Seung-Man Hwang
- Department of Chemical Management, Korea Environment Corporation (K-eco), Incheon, 22689, Republic of Korea
| | - Chang-Ho Lee
- Department of Chemical Management, Korea Environment Corporation (K-eco), Incheon, 22689, Republic of Korea
| | - Sung-Deuk Choi
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
9
|
Alshemmari H. Past, present and future trends of selected pesticidal and industrial POPs in Kuwait. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3191-3214. [PMID: 34661833 DOI: 10.1007/s10653-021-01113-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Given the background of current global initiatives for controlling persistent organic pollutants (POPs), an overview of the scientific knowledge about the POPs issues in Kuwait is presented in this study. Both acute and chronic exposure to POPs can be associated with a wide range of deleterious health effects, including illness and death. POPs have drawn significant political and scientific interest in their fate and actions, particularly where local releases have resulted in dispersed contamination far from the source regions. These concerns inevitably led to the establishment of the Stockholm Convention (SC) on POPs. In recent years, Kuwait has carried out a wide variety of environmental research, in particular, on the monitoring of POPs in different matrices. The technological development facilitated to achieve the opposite monitoring of pesticidal and industrial POPs. The majority of these POPs are from a point source. Kuwait does not have pesticide manufacturing facilities and has not produced pesticides for POPs in the past. In the agriculture sector, Kuwait primarily imports pesticides for pest and disease control. This review encompasses the historical presence and current status of (pesticidal) organochlorine pesticides (OCPs) and (industrial POPs) PCBs and PBDEs in Kuwait based on the export, import, consumption and usage. This research also contrasts pesticide and industrial POP data from various Kuwaiti environmental matrices with data from other parts of Asia, the EU, the USA and Africa.
Collapse
Affiliation(s)
- Hassan Alshemmari
- Environmental and Climate Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box: 24885, Safat, 13109, State of Kuwait.
- Stockholm Convention Regional Center for Capacity-Building and the Transfer of Technology for West Asia (SCRC-Kuwait), Kuwait Institute for Scientific Research, P.O. Box: 24885, Safat, 13109, State of Kuwait.
| |
Collapse
|
10
|
Taufeeq A, Baqar M, Sharif F, Mumtaz M, Ullah S, Aslam S, Qadir A, Majid M, Jun H. Assessment of organochlorine pesticides and health risk in tobacco farming associated with River Barandu of Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38774-38791. [PMID: 33742378 DOI: 10.1007/s11356-021-13142-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Diffuse pesticide pollution through tobacco fields is a serious threat to both natural integrities and living beings because tobacco is known as a pesticide-intensive crop. Upsurge in the knowledge of detrimental impacts caused by organochlorine pesticides (OCPs) has made them a burning issue particularly in developing countries. Pakistan is a country famous for its agro-based economy and simultaneously is the second most significant pesticide consumer in South Asian countries. The studied area is tobacco hub of the country. Thus, the present work is aimed to investigate the contamination profile that highlights the ecological and health risk posed by OCPs in River Barandu, located in the proximity of tobacco farming region. ΣOCP levels in sediments ranged between 32.918 and 98.810 ng/g and in water between 0.340 and 0.935 μg/L. Hexachlorocyclohexanes (HCHs) and heptachlor were the most prevailing pesticides in both matrices of the river. Isomeric composition of DDTs and HCHs highlighted that the β-HCH and p,p'-DDT were dominant isomers in water, while α-HCH and p,p'-DDT in sediment compartment. Enantiomeric compositions of HCH and DDT indicate both recent and historic uses of these compounds in the area. Indirect contamination through nearby tobacco clusters has been depicted through spatial analysis. Ecological risk assessment based upon the risk quotient (RQ) method revealed that α-endosulfan, dieldrin, heptachlor, and ∑HCHs represent a very high level of ecological risks. The OCPs' lifetime carcinogenic and non-carcinogenic health risks associated with dermal exposure to river's water were considered nominal for surrounding populations. However, detailed ecological and health risk studies are recommended considering the bio-accumulating nature of these contaminants in the food chain.
Collapse
Affiliation(s)
- Ammara Taufeeq
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Mujtaba Baqar
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan.
| | - Faiza Sharif
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan.
| | - Mehvish Mumtaz
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Sami Ullah
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Sadia Aslam
- Allama Iqbal Medical College, Jinnah Hospital, Lahore, 54550, Pakistan
| | - Abdul Qadir
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Muzaffar Majid
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Huang Jun
- School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
11
|
Gong X, Ding Q, Jin M, Zhao Z, Zhang L, Yao S, Xue B. Recording and response of persistent toxic substances (PTSs) in urban lake sediments to anthropogenic activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:145977. [PMID: 33676204 DOI: 10.1016/j.scitotenv.2021.145977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Owing to the intensification of human activities, urban lakes serving as important freshwater resources are becoming seriously deteriorated, especially due to persistent toxic substance (PTS) pollution. Therefore, the spatial distribution and sediment record of PTS in urban lake sediments in the middle Yangtze River Basin were investigated to indicate its response to anthropogenic emission and pollution reduction actions. Spatial distribution of typical PTSs (polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) included) showed that pollutants were concentrated in the southeast and center of the urban lake due to riverine inputs suffering from both petrochemical and municipal wastewaters. The sedimentary record of PAH concentrations indicated an increase from the 1960s to a peak level in the 2000s, which was induced mainly by increased PAH emissions, with PAH levels decreasing subsequently due to craft improvement of wastewater treatment plants (WWTPs). Source apportionment results revealed that historical PAH emissions transferred from petrogenic sources to a mixture of energy combustion and petrochemical industry. Furthermore, OCP and PCB pollutions reached peak levels in 1980s, which is consistent with their historical usage for agricultural and industrial production. From the synthetic sediment quality index (SeQI) analysis, sediment quality in nearly half of sites was poor, while the sediment record suggested that sediment quality had turned better since 2000s maybe due to the WWTP improvement. Furthermore, significant correlations (p < 0.05) between PTS levels and the ratio of PAH emissions to the number of WWTPs documented the PTS levels in response to the surrounding anthropogenic pollution and WWTPs in urban lakes.
Collapse
Affiliation(s)
- Xionghu Gong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qiqi Ding
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Miao Jin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Zhonghua Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China.
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Shuchun Yao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Bin Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| |
Collapse
|
12
|
Basu S, Chanda A, Gogoi P, Bhattacharyya S. Organochlorine pesticides and heavy metals in the zooplankton, fishes, and shrimps of tropical shallow tidal creeks and the associated human health risk. MARINE POLLUTION BULLETIN 2021; 165:112170. [PMID: 33621901 DOI: 10.1016/j.marpolbul.2021.112170] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Studies on organochlorine pesticides (OCPs) and heavy metals (HMs) from tidal creeks are scarce. Sixteen OCPs and seven HMs were measured in the surface water, zooplankton, two fishes (Harpadon nehereus and Pampus argenteus), and one shrimp (Penaeus indicus) collected from three tidal creeks of the Indian Sundarban. The surface water was polluted by hexachlorocyclohexane isomers (ΣHCH: 525-1581 ng l-1), dichlorodiphenyltrichloroethane congeners (ΣDDT: 188-377 ng l-1), endosulfan congeners (ΣEND: 687-1474 ng l-1), and other OCPs (512-1334 ng l-1). However, the mean HM concentrations in the surface water were <1 μg l-1. The zooplankton community exhibited bioaccumulation of both OCPs and HMs. Aldrin, Heptachlor, and α-HCH levels in the edible biotas could lead to cancer. Co and Cd levels could lead to non-cancerous risks, and Pb levels could pose a cancerous risk. This study showed that creeks could be potential sites of both OCP and HM pollution.
Collapse
Affiliation(s)
- Sanghamitra Basu
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Abhra Chanda
- School of Oceanographic Studies, Jadavpur University, Kolkata, West Bengal 700032, India.
| | - Pranab Gogoi
- Central Inland Fisheries Research Institute, CGO Complex, DF Block, Kolkata 700064, West Bengal, India
| | - Subarna Bhattacharyya
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal 700032, India.
| |
Collapse
|
13
|
Jebara A, Lo Turco V, Potortì AG, Bartolomeo G, Ben Mansour H, Di Bella G. Organic pollutants in marine samples from Tunisian coast: Occurrence and associated human health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116266. [PMID: 33370609 DOI: 10.1016/j.envpol.2020.116266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/30/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
140 contaminants belonging to various classes (organochlorine and organophosphorus pesticides, pyrethroid insecticides, carbamates, fungicides, acaricides, herbicides, synergists, insect growth regulators, polychlorobiphenyls, polycyclic aromatic hydrocarbons) were simultaneously analysed by GC-MS/MS in marine sediments, aquatic plant leaves and fish tissues samples. A total of 260 samples from five stations along the coast of Tunisia were evaluated. The results highlight that only 28 residues (12 polychlorobiphenyls, 8 organochlorine pesticides, 7 polycyclic aromatic hydrocarbons and triphenyl phosphate) were detected at levels higher than relative LOQ values. The amounts in sediment samples were compared with Sediment Quality Guidelines (SQGs) showing that the values are acceptable and no toxic effect is expected on aquatic organisms. A little variation of contaminant residues in sediment samples among coastal stations was recorded. Namely, with respect to almost all polychlorobiphenyls and organochlorine pesticides, higher values were recorder in summer. With respect to almost all polycyclic aromatic hydrocarbons, higher values were recorder in autumn. Aquatic plant leaves showed a residue accumulation higher than that of other compartments of marine system. The data about fish samples (Sparus aurata and Sarpa salpa, the two most frequently caught fish species at five sites on the central coast of Tunisia) do not pose direct hazard to human health because values were lower than protection limits.
Collapse
Affiliation(s)
- Amel Jebara
- APAE Higher Institute of Applied Sciences and Technology, University of Monastir, Mahdia, Tunisia
| | - Vincenzo Lo Turco
- BioMorf Department, University of Messina, Viale Annunziata, Polo Universitario, 98168, Messina, Italy
| | - Angela Giorgia Potortì
- BioMorf Department, University of Messina, Viale Annunziata, Polo Universitario, 98168, Messina, Italy.
| | - Giovanni Bartolomeo
- BioMorf Department, University of Messina, Viale Annunziata, Polo Universitario, 98168, Messina, Italy
| | - Hedi Ben Mansour
- APAE Higher Institute of Applied Sciences and Technology, University of Monastir, Mahdia, Tunisia
| | - Giuseppa Di Bella
- BioMorf Department, University of Messina, Viale Annunziata, Polo Universitario, 98168, Messina, Italy
| |
Collapse
|
14
|
Khuman SN, Vinod PG, Bharat G, Kumar YSM, Chakraborty P. Spatial distribution and compositional profiles of organochlorine pesticides in the surface soil from the agricultural, coastal and backwater transects along the south-west coast of India. CHEMOSPHERE 2020; 254:126699. [PMID: 32361015 DOI: 10.1016/j.chemosphere.2020.126699] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
South-west coast of India has a history of using pesticidal persistent organic pollutants (POPs) particularly endosulfan until aerial spraying was banned during early 2000. Since soil acts as a repository for such pesticidal persistent organic contaminants, we have monitored residues of seventeen organochlorine pesticides (OCPs) in the surface soil samples from the agricultural, coastal, and backwater transects along the south-west coast of India. OCPs concentration in soil were in the order agricultural > coastal > backwaters transects. Endrins, hexachlorocyclohexane (HCH) and heptachlors were among the dominant OCPs quantified in this study. Dominance of metabolites such as dichlorodiphenyldichloroethylene (DDE), dichlorodiphenyldichloroethane (DDD) and endosulfan sulfate indicates past usage. All the OCPs were dominant in the agricultural transect where plantations/agricultural activities are prevalent. In some specific sites, traces of HCH isomers showed ongoing usage of technical HCH in those sites contradicting the ban in agricultural sector. Backwater sites which are background locations showed positive correlation between soil organic carbon and soil borne OCPs thereby indicating an aged source possibly due to the short/long atmospheric transport from the site of application. Based on the policies regarding control, prevention and other measures for the management of pesticides in Kerala, it was concluded that the implementation on the ground level and the legal framework should be strengthened to prevent further illegal use of the banned pesticides.
Collapse
Affiliation(s)
- Sanjenbam Nirmala Khuman
- Department of Civil Engineering, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - P G Vinod
- GeoVin Solutions (P) Ltd, Kerala, India
| | | | | | - Paromita Chakraborty
- Department of Civil Engineering, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
15
|
Khuman SN, Bharat G, Chakraborty P. Spatial distribution and sources of pesticidal persistent organic pollutants in the Hooghly riverine sediment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:4137-4147. [PMID: 31828711 DOI: 10.1007/s11356-019-06973-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Given the extensive indiscriminate usage in the past and limited ongoing use, organochlorine pesticides (OCPs) have been widely reported in the Hooghly riverine environment. Hence, surface riverine sediment samples were collected along the urban and suburban transects of the Hooghly River and OCPs were quantified in gas chromatography mass spectrometry (GC-MS). Mean concentration of HCH, DDT, and endosulfan was 5 ng g-1, 10 ng g-1, and 4 ng g-1 respectively. DDT was dominant among all the OCPs and contributed nearly 40% to the total OCPs possibly due to the ongoing use of DDT for vector control programs. Diagnostic ratios suggest recent source of lindane, DDT, and endosulfan. Using OCP concentration from previously published data in surface water during the same time frame, sediment-water partitioning of OCPs was estimated. Excluding α-HCH and γ-HCH in few pockets, majority of the OCPs tend to partition more on to sediment. Comparing the sediment concentration with the sediment quality guideline values, risk on ecological integrities was indicated due to DDT and HCH contamination. Suburban sites indicated higher risk than urban sites according to the calculated sediment quality guideline quotient (SQGQ). A brief review on the approach to pesticidal POP pollution management in India revealed that older management approaches should be replaced with a unique, integrated, and holistic system.
Collapse
Affiliation(s)
- Sanjenbam Nirmala Khuman
- Department of Civil Engineering, SRM Research Institute, SRM Institute of Science of Technology, Kattankulathur, Tamil Nadu, India
| | | | - Paromita Chakraborty
- Department of Civil Engineering, SRM Research Institute, SRM Institute of Science of Technology, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
16
|
He W, Ye M, He H, Zhu M, Li Y. The decomposition and ecological risk of DDTs and HCHs in the soil-water system of the Meijiang River. ENVIRONMENTAL RESEARCH 2020; 180:108897. [PMID: 31733727 DOI: 10.1016/j.envres.2019.108897] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
This research project was designed to study the residues of OCPs (organochlorine pesticides) in the sediments of the Meijiang River Basin. Samples from the Meijiang River Basin were analyzed by gas chromatography-mass spectrometry after being pretreated by Soxhlet extraction, and their compositions, distributions and sources were evaluated. The current study presents the distribution of OCPs in the soils and sediments of the Meijiang River Basin. The results demonstrate that OCPs contamination is an important environmental concern due to the excessive use of these compounds in the agricultural and industrial sectors. The ratios of α-HCH/γ-HCH, (DDE + DDD)/∑DDTs, p,p-DDT/o,p-DDT, and DDD/DDE were used as indices for identifying the possible pollution sources and assessing the decomposition of the parent compounds and the recent γ-HCH and DDT inputs. At the XY (Xiyang) and DSGYY (Dongshenggongyeyan) sites, the pollutants had industrial origins. At other sites (QTH (Qutianhu), LXC (Longxichun), ZJC (Zhenjiaochun), HKC (Hekouchun), GS (Guangshan) and RGQ (Raogongqiao)), the pollution was caused by dissolved organic matter. The SHB site was polluted by transportation and upstream pollutants. At the SXC (Shixichun), YZX (Youzhihe), DSH (Dongshihe) and ZGG (Zhegupai) sites, the metabolite was p,p'-DDD and was produced in an environment with anaerobic conditions. At the FJC (Fujiangkou), QTH (Qiutianhu), GS (Guangshang) and MX (Meixi) sites, the metabolite was DDE and was produced under aerobic conditions. In view of the health risks, the risk quotients for these contaminants were evaluated, and all risk quotients were less than 1 under the best-case scenario. This result suggests that the investigated pollutants may pose little hazard to the local ecosystem. The sediments containing toxic pesticides had a less than 55% ecological risk, indicating that the ecological risk of HCHs in the soils from the Meijiang River Basin is low.
Collapse
Affiliation(s)
- Wenming He
- School of Chemistry and Environment, Jiaying University, Meizhou, Guangdong, 514015, China; World Standardization Certification & Testing Group, Shenzhen, Guangdong, 518108, China; State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest of Agriculture & Forestry University and Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling, Shaanxi, 712100, China.
| | - Mengling Ye
- World Standardization Certification & Testing Group, Shenzhen, Guangdong, 518108, China
| | - Hongming He
- School of Geographic Sciences, East China Normal University, Shanghai, China; State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest of Agriculture & Forestry University and Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling, Shaanxi, 712100, China
| | - Mingyong Zhu
- School of Chemistry and Environment, Jiaying University, Meizhou, Guangdong, 514015, China
| | - Yu Li
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China.
| |
Collapse
|
17
|
Wei L, Tadesse AW, Wang J. Organohalogenated Contaminants (OHCs) in Surface Sediments and Water of East Dongting Lake and Hong Lake, China. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 76:157-170. [PMID: 30244305 DOI: 10.1007/s00244-018-0564-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
East Dongting Lake and Hong Lake are two typical lakes in the middle watershed of the Yangtze River, China. The differences in the hydrological condition and human activities of the region may result in the differences in concentrations, distribution, and sources of contaminants. The levels, sources, distribution, and ecological risk of OHCs, including 15 OCPs, 7 PCBs, and 7 PBDEs in surface sediments and water from this region, were investigated. OCPs and PCBs were the predominant pollutants in water and sediments samples, respectively. Source analysis showed that HCHs, PBDEs, and PCBs were mainly from the historical input of commercial products, but there were recent discharges of DDT into the water. The spatial distribution of OHCs showed that higher levels of OHCs in sediments and water were found in the sampling sites far away from the estuary of Hong Lake, but such obvious distribution characteristic was not found in East Dongting Lake. TOC played a crucial role in the retention of OCPs in the sediments of Hong Lake, but significant correlation between TOC and OCPs for East Dongting Lake, TOC and PCBs or PBDEs for both lakes were not found. The possible adverse biological effects could be caused by OCPs residues in sediments of both lakes, and it was worse for Hong Lake. The noncarcinogenic and carcinogenic risk assessment of HCHs and DDTs indicated the water quality of both lakes was safe for bathing and drinking. The potential ecotoxicological risks of PBDEs and PCBs of both lakes were rather low.
Collapse
Affiliation(s)
- Liangfu Wei
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ababo Workineh Tadesse
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
18
|
Gereslassie T, Workineh A, Atieno OJ, Wang J. Determination of Occurrences, Distribution, Health Impacts of Organochlorine Pesticides in Soils of Central China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16010146. [PMID: 30621114 PMCID: PMC6338902 DOI: 10.3390/ijerph16010146] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 11/16/2022]
Abstract
Organochlorine pesticides are groups of chemicals applied to prevent pest and insect infestation. This study was aimed at investigating the concentration, potential sources, cancer risk and ecological toxicity of organochlorine pesticides (OCPs) in Huangpi district, Wuhan, China. Eight OCPs in soil samples collected from four land-use types at depths of 0–10 and 10–20 cm were examined. Sample extraction was carried out by solid phase matrix extraction method and analyzed using Agilent gas chromatograph 7890B equipped with electron capture detectors (ECD). The total concentration of OCPs ranged from 0.00–32.7 ng g−1 in the surface and 0.01–100.45 ng g−1 in the subsurface soil layer. Beta hexachlorocyclohexanes (β-HCH) with 2.20 and 7.71 ng g−1 in the surface and subsurface soil layers, respectively, was the dominant compound. The mean concentrations of OCPs in all samples were less than the threshold values for hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethane (DDTs) in China soil. Concentration of OCPs in the four land-use types were in the order of: paddy field > barren land > farmland > plastic greenhouse. Results of composition analysis revealed recent application of lindane as a major and historical use of new technical HCHs as a minor source of HCHs. On the other hand, application of new technical p,p’-DDT is the main source of DDTs in the study area. The estimated lifetime average daily dose, incremental lifetime cancer risks and hazard quotient values revealed that there is less likelihood of carcinogenic and noncarcinogenic health risks on the local residents.
Collapse
Affiliation(s)
- Tekleweini Gereslassie
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
- Department of Pollution Ecology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ababo Workineh
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
- Department of Pollution Ecology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Onyango Janet Atieno
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
- Department of Pollution Ecology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jun Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
19
|
Baqar M, Sadef Y, Ahmad SR, Mahmood A, Li J, Zhang G. Organochlorine pesticides across the tributaries of River Ravi, Pakistan: Human health risk assessment through dermal exposure, ecological risks, source fingerprints and spatio-temporal distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:291-305. [PMID: 29131997 DOI: 10.1016/j.scitotenv.2017.10.234] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/27/2017] [Accepted: 10/22/2017] [Indexed: 05/19/2023]
Abstract
This study monitored the human health risks through dermal exposure, hazardous risks to ecological integrity, contamination levels, spatio-temporal distribution, and congener specific analysis of organochlorine pesticides (OCPs) across River Ravi and its three northern tributaries (Nullah Bein, Nullah Basanter and Nullah Deg). The residual levels of OCPs isomers were screened for water (n=54) and surface sediment (n=54) samples from twenty seven sampling sites in two alternate seasons (pre-monsoon and post-monsoon). The ∑OCPs concentrations ranged from 13.61 to 1992.18ng/g dry weight and 12.89 to 128.16ng/L with predominance of β-endosulfan and p,p'-DDT in sediment and water matrixes, respectively. Distribution pattern revealed significantly higher concentrations in upstream and midstream, suggesting considerable transboundary OCPs pollution. Calculated ratios of α-HCH/γ-HCH, o,p'-DDT/p,p'-DDT, (DDE+DDD)/∑DDTs and cis/trans-chlordane for water and sediments identified the fresh addition of lindane, technical DDTs and chlordane in the study area. Risk quotient (RQ) based ecological risk was found to be >1 at all studied streams during both seasons and elucidates higher risks for endosulfan (α-endosulfan) and endrin. Human health risk assessment indicated absence of hazardous (non-carcinogenic) risk through bathing in studied streams; as the hazard index values ranged from 1.09E-05 to 2.48E-02 (acceptable limit; <1). However, the calculated carcinogenic risk possessed by OCPs through dermal exposure ranged from 1.39E-10 to 1.98E-05 that highlighted the considerable carcinogenic risk associated to aldrin, dieldrin, p,p'-DDT and β-endosulfan at certain studied sites. Therefore, the high levels of ecological risk and carcinogenic human health risk had emphasized an immediate elimination of ongoing OCPs addition in the studied area.
Collapse
Affiliation(s)
- Mujtaba Baqar
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan; College of Earth and Environmental Sciences, University of the Punjab, Lahore (54590), Pakistan.
| | - Yumna Sadef
- College of Earth and Environmental Sciences, University of the Punjab, Lahore (54590), Pakistan
| | - Sajid Rashid Ahmad
- College of Earth and Environmental Sciences, University of the Punjab, Lahore (54590), Pakistan
| | - Adeel Mahmood
- Department of Environmental Sciences, Government College Women University, Sialkot (51310), Pakistan; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
20
|
Fang L, Liu R, Li J, Xu C, Huang LZ, Wang D. Magnetite/Lanthanum hydroxide for phosphate sequestration and recovery from lake and the attenuation effects of sediment particles. WATER RESEARCH 2018; 130:243-254. [PMID: 29232636 DOI: 10.1016/j.watres.2017.12.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 05/12/2023]
Abstract
An effective approach for eutrophication control and phosphate recovery remains a longstanding challenge. Herein, we present a new technique for phosphate sequestration in lake and phosphate recovery using novel magnetically recoverable magnetite/lanthanum hydroxide [M-La(OH)3] hybrids that can be prepared using a simple one-pot synthesis method. Batch studies show that M-La(OH)3 exhibits a strong sorption towards phosphate with sorption capacities of up to 52.7 mg-P/g at pH 7.0 in water. A simple model indicates that the efficiency of M-La(OH)3 for phosphate sequestration in lake is significantly attenuated by 34-45% compared to that in water, due to interference from sediment particles. However, our results demonstrate that sediments suspensions mixed with a M-La(OH)3 content of 1-3% exhibit a capability of up to 1.2 mg-P/g for sequestering external phosphate compared with that of 0.2 mg-P/g for pristine sediment at pH 7.3. M-La(OH)3-mixed sediment suspensions appear to effectively sequester phosphate over an environmentally relevant pH range from 4 to 8.5. Phosphorus (P) fractionation experiments indicate that the enhanced phosphate sorption by M-La(OH)3-mixed sediment suspensions is mainly due to the increased fractions of NaOH-P and inorganic P. This work indicates that the M-La(OH)3 has the potential for phosphate sequestration and recovery from lake.
Collapse
Affiliation(s)
- Liping Fang
- Faculty of Material Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Wuhan, 430074, China.
| | - Ru Liu
- Faculty of Material Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Wuhan, 430074, China
| | - Ji Li
- Faculty of Material Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Wuhan, 430074, China
| | - Cuihong Xu
- Faculty of Material Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Wuhan, 430074, China
| | - Li-Zhi Huang
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan, China; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000, Aarhus C, Denmark.
| | - Dongsheng Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
21
|
Riaz G, Tabinda AB, Baqar M, Mahmood A, Mumtaz M, Qadir A, Yasar A, Safaei Khorram M. Human Health Risk Surveillance Through the Determination of Organochlorine Pesticides by High-Performance Liquid Chromatography in Water, Sediments, and Fish from the Chenab River, Pakistan. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1372467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ghazala Riaz
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - Amtul Bari Tabinda
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - Mujtaba Baqar
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - Adeel Mahmood
- Department of Environmental Sciences, Government College Women University, Sialkot, Pakistan
- State Key Laboratory of Organic Geochemistry, Chinese Academy of Sciences, Guangzhou Institute of Geochemistry, Guangzhou, China
| | - Mehvish Mumtaz
- School of Environment, Tsinghua University, Beijing, China
| | - Abdul Qadir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Abdullah Yasar
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - Mahdi Safaei Khorram
- State Key Laboratory of Organic Geochemistry, Chinese Academy of Sciences, Guangzhou Institute of Geochemistry, Guangzhou, China
- NTT Institute of High-Technology, Nhuyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
22
|
Cui L, Wei L, Wang J. Residues of organochlorine pesticides in surface water of a megacity in central China: seasonal-spatial distribution and fate in Wuhan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:1975-1986. [PMID: 27798806 DOI: 10.1007/s11356-016-7956-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/20/2016] [Indexed: 06/06/2023]
Abstract
Surface water quality closely correlating with human health suffered increasing organochlorine pesticide (OCP) pollution due to the intensive anthropogenic activities in megacities. In the present study, 112 water samples collected from 14 lakes and 11 drinking water source sites in Wuhan were detected for the residues of OCPs in November 2013 and July 2014, respectively. The ΣOCPs ranged from 5.61 to 13.62 ng L-1 in summer with the maximum value in Yezhi Lake and 3.18 to 7.73 ng L-1 in winter with the highest concentration in Yandong Lake. Except dichlorodiphenyltrichloroethanes (DDTs), OCP concentrations in summer were significantly higher than those in winter mostly due to the non-point source pollution including land runoff in summer. Source apportionment of hexachlorocyclohexanes (HCHs) and DDTs revealed the historical use of technical HCH and lindane and the new input of DDT, respectively. The spatial distribution of OCPs was not uniform in the surface water of Wuhan because of the significant influence of land development and fishery. The risk assessments showed the heptachlor, and heptachlor epoxide in most sampling sites exceeded the threshold set by the European Union, indicating the possible adverse effects for aquatic lives. Negligible non-carcinogenic risks for drinking and bathing as well as carcinogenic risks for bathing were found in the surface water. However, the total carcinogenic risks of all OCPs (∑Rs) caused by drinking in summer were higher than the safe level of 10-7 in all sampling sites. It was implied that the surface water in Wuhan was not safe for directly drinking without effective purification.
Collapse
Affiliation(s)
- Lili Cui
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangfu Wei
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
23
|
Zhou Y, Tao Y, Li H, Zhou T, Jing T, Zhou Y, Mei S. Occurrence investigation of perfluorinated compounds in surface water from East Lake (Wuhan, China) upon rapid and selective magnetic solid-phase extraction. Sci Rep 2016; 6:38633. [PMID: 27966658 PMCID: PMC5155229 DOI: 10.1038/srep38633] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 11/11/2016] [Indexed: 01/24/2023] Open
Abstract
Using a novel magnetic nanocomposite as adsorbent, a convenient and effective magnetic solid-phase extraction (MSPE) procedure was established for selective separation and concentration of nine perfluorinated compounds (PFCs) in surface water sample. Then an ultra high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) system was employed for detection of PFCs. Good linearity of the developed analytical method was in the range of 0.5-100 ng L-1 with R2 > 0.9917, and the limits of detection (LODs) ranged from 0.029 to 0.099 ng L-1. At three fortified concentrations of 0.5, 5 and 50 ng L-1, the spiked recoveries of PFCs were in the range of 90.05-106.67% with RSDs < 12.62% (n = 3). The proposed analytical method was applied for determination of PFCs in surface water from East Lake (Wuhan, China). The total concentrations of nine PFCs ranged from 30.12 to 125.35 ng L-1, with perfluorooctane sulfonate and perfluoroctanoic acid as the most prevalent PFCs, and the greatest concentrations of PFCs were observed in Niuchao lakelet. The concentrations of the PFCs (C ≥ 11) were mostly less than the limits of quantification (LOQs), attributed to the possibility that the more hydrophobic long-chain PFCs are potential to accumulate in sediment and aquatic biota.
Collapse
Affiliation(s)
- Yusun Zhou
- Key Laboratory of Environment and Health, Ministry of Education &Ministry of Environmental Protection, and State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China
| | - Yun Tao
- Key Laboratory of Environment and Health, Ministry of Education &Ministry of Environmental Protection, and State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Huarong Li
- Department of Pharmacy, Jingzhou Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jingzhou 434020, Hubei, China
| | - Tingting Zhou
- Key Laboratory of Environment and Health, Ministry of Education &Ministry of Environmental Protection, and State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Tao Jing
- Key Laboratory of Environment and Health, Ministry of Education &Ministry of Environmental Protection, and State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yikai Zhou
- Key Laboratory of Environment and Health, Ministry of Education &Ministry of Environmental Protection, and State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Surong Mei
- Key Laboratory of Environment and Health, Ministry of Education &Ministry of Environmental Protection, and State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
24
|
Kang L, He QS, He W, Kong XZ, Liu WX, Wu WJ, Li YL, Lan XY, Xu FL. Current status and historical variations of DDT-related contaminants in the sediments of Lake Chaohu in China and their influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:883-896. [PMID: 27613328 DOI: 10.1016/j.envpol.2016.08.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/18/2016] [Accepted: 08/26/2016] [Indexed: 06/06/2023]
Abstract
The temporal-spatial distributions of DDT-related contaminants (DDXs), including DDT (dichlorodiphenyltrichloroethane), DDE (dichlorodiphenyldichloroethylene) and DDD (dichlorodiphenyldichloroethane), in the sediments of Lake Chaohu and their influencing factors were studied. p,p-DDE and p,p-DDD were found to be the two dominant components of DDXs in both surface and core sediments. The parent DDT compounds were still detectable in sediment cores after the late 1930s. Historical usage of technical DDT was identified as the primary source of DDXs in sediments, as indicated by DDT/(DDD + DDE) ratios of less than one. The residual levels of DDXs were higher in the surface and core sediments in the western lake area than in other lake areas, which might be due to the combined inflow effects of municipal sewage, industrial wastewater and agricultural runoff. The DDX residues in the sediment cores reached peak values in the late 1970s or early 1980s. There were significant positive relationships between DDX residues in sediment cores with annual DDT production and with fine particulate sizes (<4.5 μm). The relationship between the DDXs and TOC in sediment was complex, as indicated by the significant differences among the surface and core sediments. The algae-derived organic matter significantly influenced the amount of residue, composition and distribution of DDXs in the sediments. The DDD/DDE ratios responded well to the anaerobic conditions in the sediments that were caused by algal blooms after the late 1970s in the western lake area. This suggests that the algae-derived organic matter was an important factor and served as a biomarker of eutrophication and also affected the DDX residues and lifecycle in the lake ecosystem.
Collapse
Affiliation(s)
- Lei Kang
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Qi-Shuang He
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Wei He
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China.
| | - Xiang-Zhen Kong
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Wen-Xiu Liu
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Wen-Jing Wu
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi-Long Li
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Xin-Yu Lan
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Fu-Liu Xu
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
25
|
Quan C, Shi Y, Wang C, Wang C, Yang K. p,p'-DDE damages spermatogenesis via phospholipid hydroperoxide glutathione peroxidase depletion and mitochondria apoptosis pathway. ENVIRONMENTAL TOXICOLOGY 2016; 31:593-600. [PMID: 25410718 DOI: 10.1002/tox.22072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 10/21/2014] [Accepted: 10/31/2014] [Indexed: 06/04/2023]
Abstract
One, 1-dichloro-2,2-bis(p-chlorophenyl) ethylene (p,p'-DDE), the major metabolite of 2,2-bis(4-chlorophenyl)-1,1,1-trichloroethane (DDT), is a known persistent organic pollutant (POPs) and male reproductive toxicant. However, the mechanism by which p,p'-DDE exposure causes male reproductive toxicity remains unknown. The objective of this study was to elucidate some mechanisms involved in this process, including the mitochondria apoptosis pathway and the role of phospholipid hydroperoxide glutathione peroxidase (PHGPx). Puberty male SD rats were given different doses of p,p'-DDE (0, 20, 60, 100 mg/kg body weight), after the treatment, the semen quality was evaluated. Western blotting was used to detect the PHGPx protein expression. Furthermore, real-time PCR was used to analyze the genetic expression of PHGPx, Bax, Cytochrom C (Cyt C), Apaf-1, and caspase-3 in the testis. Results indicated that after the exposure, sperm malformation rate showed a significant rise compared with the control group, and meanwhile, the sperm density and sperm motility parameters were reduced to some extent in different treated groups. The mitochondria apoptosis pathway was activated. And remarkably, the expression of PHGPx protein was greatly reduced by the exposure. We conclude that p,p'-DDE can damage spermatogenesis via PHGPx depletion and mitochondria apoptosis pathway.
Collapse
Affiliation(s)
- Chao Quan
- Department of Occupational and Environmental Health, MOE Key Lab of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuqin Shi
- Department of Occupational and Environmental Health, MOE Key Lab of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of epidemiology and health statistics, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Can Wang
- Department of Occupational and Environmental Health, MOE Key Lab of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hanyang Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Chengmin Wang
- Department of Occupational and Environmental Health, MOE Key Lab of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kedi Yang
- Department of Occupational and Environmental Health, MOE Key Lab of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
26
|
Sun H, Qi Y, Zhang D, Li QX, Wang J. Concentrations, distribution, sources and risk assessment of organohalogenated contaminants in soils from Kenya, Eastern Africa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 209:177-185. [PMID: 26686059 DOI: 10.1016/j.envpol.2015.11.040] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/21/2015] [Accepted: 11/23/2015] [Indexed: 06/05/2023]
Abstract
The organohalogenated contaminants (OCs) including 12 organochlorine pesticides (OCPs), 7 indicator polychlorinated biphenyls (PCBs) and 7 polybrominated diphenyl ethers (PBDEs) were determined in soils collected from Kenya, Eastern Africa. The total OCPs fell in the range of n.d-49.74 μg kg(-1) dry weight (dw), which was dominated by DDTs and endosulfan. Identification of pollution sources indicated new input of DDTs for malaria control in Kenya. The total PCBs ranged from n.d. to 55.49 μg kg(-1) dw, dominated by penta- and hexa-PCBs, probably associated with the leakage of obsolete transformer oil. The soils were less contaminated by PBDEs, ranging from 0.19 to 35.64 μg kg(-1) dw. The predominant PBDE congeners were penta-, tri- or tetra-BDEs, varying among different sampling sites. Risk assessment indicated potential human health risks posed by OCs in soils from Kenya, with PCBs as the most contributing pollutants. The local authorities are recommended to make best efforts on management of OC pollution, particularly from DDTs and PCBs to meet the requirement of Stockholm Convention.
Collapse
Affiliation(s)
- Hongwei Sun
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yueling Qi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Di Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Jun Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
27
|
Zhu Y, Huang B, Li QX, Wang J. Organochlorine pesticides in follicular fluid of women undergoing assisted reproductive technologies from central China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 207:266-272. [PMID: 26412266 DOI: 10.1016/j.envpol.2015.09.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 06/05/2023]
Abstract
Female infertility rates have increased by approximately 4% since the 1980s. There is evidence of adverse effects on female fertility in relation to exposure of chemical pollution in recent years. Follicular fluid samples were collected from 127 woman patients (aged 20-35) who underwent assisted reproductive technologies (ART) and had no records indicating occupational exposure to OCPs. Seventeen OCPs were analyzed in this study. The results showed that methoxychlor was dominant, accounted for 13.4% of total OCPs with a mean concentration of 167.9 ± 33.9 ng/g lipid weight (lw), followed by heptachlor-epoxide, hexachlorocyclohexanes, endrin and DDT. The concentrations of OCPs in the follicular fluid samples in the present study were moderate in comparison with those reported from developed or industrialized countries. All these pollutants can accumulate in different tissues of human body through diet, drinking water and respiration. No correlation between patient age and OCP concentrations was observed in this study.
Collapse
Affiliation(s)
- Yindi Zhu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Huang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | - Jun Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
28
|
Cui L, Ge J, Zhu Y, Yang Y, Wang J. Concentrations, bioaccumulation, and human health risk assessment of organochlorine pesticides and heavy metals in edible fish from Wuhan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15866-15879. [PMID: 26040264 DOI: 10.1007/s11356-015-4752-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 05/18/2015] [Indexed: 06/04/2023]
Abstract
The objective of this study was to determine concentration and bioaccumulation of organochlorine pesticides and heavy metals in edible fish from Wuhan, China, in order to assess health risk to the human via fish consumption. Two edible fish species (Aristichthys nobilis and Hypophthalmichthys molitrix) were collected and analyzed for 11 organochlorine pesticides (OCPs) and eight heavy metals (HMs). Concentrations of ∑HCHs, ∑DDTs, and ∑OCPs in fish samples were in the range of 0.37-111.20, not detected (nd)-123.61, and 2.04-189.04 ng g(-1) (wet weight), respectively. Bioaccumulation factors (BAFs) of OCPs in bighead carp (A. nobilis) were higher than those in silver carp (H. molitrix). Concentrations of ∑HMs in bighead carp and silver carp were 352.48 and 345.20 mg kg(-1) (dw), respectively. Daily exposure of OCPs and HMs for consumers was estimated by comparing estimated daily intake (EDI) with different criteria. The results revealed that the EDIs in our study were all lower than those criteria. Target hazard quotient (THQ) and risk ratio (R) were used to evaluate non-carcinogenic and carcinogenic risks, respectively. As regard to non-carcinogenic effects of the contaminants, hazard quotients (THQ) of OCPs and HMs were both lower than 1.0, implying negligible non-carcinogenic risk via fish consumption in study area. Nevertheless, in view of carcinogenic effects of the contaminants, the total value of risk ratio (R) of OCPs was lower than the threshold of tolerable risk while the total value of risk ratio (R) of HMs was higher than the threshold of tolerable risk due to the high carcinogenic risk ratios of As and Cr, indicating high carcinogenic risks via fish consumption. The results demonstrated that HMs in edible fish from Wuhan, China, especially As and Cr required more attention than OCPs.
Collapse
Affiliation(s)
- Lili Cui
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Ge
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yindi Zhu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Jun Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|