1
|
Hou S, Ding J, Zhou H, Cheng H, Shen Y, Zhang P, Zhang Y, Ma S, Zou H. Mechanism of nitrogen conversion and microbial communities controlling the acidification and storage of pig farm fecal water. ENVIRONMENTAL RESEARCH 2025; 276:121236. [PMID: 40090480 DOI: 10.1016/j.envres.2025.121236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/09/2025] [Accepted: 02/25/2025] [Indexed: 03/18/2025]
Abstract
The effect of acidifiers on nitrogen transformation during manure wastewater storage remains unclear. In this study, we investigate the effects of two types of acidifiers on nitrogen transformation, bacterial structure, and functional genes during manure wastewater storage. The results indicate that the internal reactions in manure wastewater storage could be divided into three stages, i.e., nitrification (first 35 days), denitrification (mainly from days 36-84), and the final stage during which the internal environment of the manure wastewater stabilized. The addition of acidifiers effectively reduced nitrogen loss, with the total nitrogen content increasing from 12.8 to 25.83 %, and ammonia emissions decreasing from 31.67 to 43.81 %. The optimal nitrogen retention effect was observed for sulfuric acid. Furthermore, acidifiers primarily inhibited microbial activity and the abundance of functional genes, without altering the dominant bacterial community structure or nitrogen transformation pathways. These results provide a foundation for the use of acidifiers to reduce nitrogen loss during manure wastewater storage.
Collapse
Affiliation(s)
- Shance Hou
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100091, China; China Agricultural University and College of Water Resources and Civil Engineering, Beijing 100125, China
| | - Jingtao Ding
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100091, China
| | - Haibin Zhou
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100091, China
| | - Hongsheng Cheng
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100091, China
| | - Yujun Shen
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100091, China.
| | - Pengyue Zhang
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100091, China
| | - Yun Zhang
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100091, China
| | - Shuangshuang Ma
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100091, China
| | - Hongyu Zou
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100091, China
| |
Collapse
|
2
|
Chu J, Ye Y, Wu YH. A glimpse of microbial potential in metal metabolism in the Clarion-Clipperton Fracture Zone in the eastern Pacific Ocean based on metagenomic analysis. Mar Genomics 2025; 79:101159. [PMID: 39536492 DOI: 10.1016/j.margen.2024.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The polymetallic nodules distributed in the abyssal ocean floor are full of economic value, rich in manganese, iron, copper and rare-earth elements. Little is currently known about the diversity and the metabolic potential of microorganisms inhabiting the Clarion-Clipperton Fracture Zone (CCFZ) in eastern Pacific Ocean. In this study, the surface sediments (0-8 cm), which were divided into eight parts at 1 cm intervals were collected from the CCFZ. The microbial diversity and the metabolic potential of metal were examined by metagenomic sequencing and binning. The metal redox genes and metal transporter genes also showed a certain trend at different depths, the highest in the surface layer, about the same at 0-6 cm, and greater changes after >6 cm. 58 high- and medium metagenome-assembled genomes (MAGs) were recovered and assigned to 14 bacterial phyla and 1 archaeal phylum after dereplication. Alphaproteobacteria mainly carried out the oxidation of Fe/Mn and the reduction of Hg, Gammaproteobacteria mainly for the oxidation of Mn/Cu and the reduction of Cr/Hg and Methylomirabilota mainly for the oxidation of Mn and the reduction of As/Cr/Hg. Among the five Thermoproteota MAGs identified, only one had genes annotated for Mn oxidation, suggesting a limited but potentially significant role in this process at the bottom layer. By identifying the microbial diversity and the metabolic potential of metal in different depth, our study strengthens the understanding of metal metabolism in CCFZ and provides the foundation for further analyses of metal metabolism in such ecosystems.
Collapse
Affiliation(s)
- Jiayi Chu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Yonglian Ye
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Yue-Hong Wu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China.
| |
Collapse
|
3
|
Mu M, Li D, Lin S, Bi H, Liu X, Wang Z, Qian C, Ji J. Insights into the individual and combined effects of Cu(Ⅱ) and Ni(Ⅱ) on anammox: Nitrogen removal performance, enzyme activity and microbial community. CHEMOSPHERE 2024; 365:143308. [PMID: 39265735 DOI: 10.1016/j.chemosphere.2024.143308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Anaerobic ammonium oxidation (anammox) is an efficient and economical nitrogen removal process for treating ammonium-rich industrial wastewaters. However, Cu(Ⅱ) and Ni(Ⅱ) present in industrial wastewaters are toxic to anaerobic ammonium-oxidizing bacteria (AnAOB). Unfortunately, the effects of Cu(Ⅱ) and Ni(Ⅱ) on anammox have not been thoroughly investigated, especially when Cu(Ⅱ) and Ni(Ⅱ) coexist. This work comprehensively investigated the individual and combined effects of Cu(Ⅱ) and Ni(Ⅱ) on anammox and revealed the inhibitory mechanisms. With the influent NH4+-N and NO2--N concentration of 230 and 250 mg L-1, the inhibition thresholds on anammox are 2.00 mg L-1 Cu(Ⅱ), 1.00 mg L-1 Ni(Ⅱ) and 1.00 mg L-1 Cu(Ⅱ) + 1.00 mg L-1 Ni(Ⅱ), and higher Cu(Ⅱ) or Ni(Ⅱ) concentrations resulted in sharp deteriorations of nitrogen removal performance. The inhibition of Ni(Ⅱ) on anammox was mainly attributed to the adverse effect on NiR activity, while the inhibition mechanism of Cu(Ⅱ) seemed to be unrelated to the four functional enzymes, but associated with disruption of cellular and organellar membranes. The behavior of extracellular polymeric substances (EPS) contributed to the antagonistic effect between Cu(Ⅱ) and Ni(Ⅱ) on anammox. In addition, the niche of Candidatus Brocadia and Candidatus Jettenia shifted under the Cu(II) and Ni(II) stress, and Candidatus Jettenia displayed greater tolerance to Cu(II) and Ni(II) stress. In conclusion, this research clarified the combined effect and the inhibitory mechanism of multiple heavy metals on anammox, and provide the guidances for anammox process application in treating high-ammonium industrial wastewaters containing heavy metals.
Collapse
Affiliation(s)
- Minghao Mu
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Dengzhi Li
- Key Lab of Marine Environment and Ecology of Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Shilin Lin
- Key Lab of Marine Environment and Ecology of Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Haisong Bi
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Xinqiang Liu
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Zheng Wang
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Chengduo Qian
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Junyuan Ji
- Key Lab of Marine Environment and Ecology of Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
4
|
Baig MIR, Kadu P, Bawane P, Nakhate KT, Yele S, Ojha S, Goyal SN. Mechanisms of emerging resistance associated with non-antibiotic antimicrobial agents: a state-of-the-art review. J Antibiot (Tokyo) 2023; 76:629-641. [PMID: 37605076 DOI: 10.1038/s41429-023-00649-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 08/23/2023]
Abstract
Although the development of resistance by microorganisms to antimicrobial drugs has been recognized as a global public health concern, the contribution of various non-antibiotic antimicrobial agents to the development of antimicrobial resistance (AMR) remains largely neglected. The present review discusses various chemical substances and factors other than typical antibiotics, such as preservatives, disinfectants, biocides, heavy metals and improper chemical sterilization that contribute to the development of AMR. Furthermore, it encompasses the mechanisms like co-resistance and co-selection, horizontal gene transfer, changes in the composition and permeability of cell membrane, efflux pumps, transposons, biofilm formation and enzymatic degradation of antimicrobial chemicals which underlie the development of resistance to various non-antibiotic antimicrobial agents. In addition, the review addresses the resistance-associated changes that develops in microorganisms due to these agents, which ultimately contribute to the development of resistance to antibiotics. In order to prevent the indiscriminate use of chemical substances and create novel therapeutic agents to halt resistance development, a more holistic scientific approach might provide diversified views on crucial factors contributing to the persistence and spread of AMR. The review illustrates the common and less explored mechanisms contributing directly or indirectly to the development of AMR by non-antimicrobial agents that are commonly used.
Collapse
Affiliation(s)
- Mirza Ilyas Rahim Baig
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, 400056, India
| | - Pramod Kadu
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, 400056, India.
| | - Pradip Bawane
- Department of Pharmacognosy, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, 424001, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, 424001, India
| | - Santosh Yele
- Department of Pharmacognosy, SVKM's NMIMS, School of Pharmacy & Technology Management, Hyderabad, 509301, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Sameer N Goyal
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, 424001, India
| |
Collapse
|
5
|
Zhang D, Li X, Wu Y, Xu X, Liu Y, Shi B, Peng Y, Dai D, Sha Z, Zheng J. Microbe-driven elemental cycling enables microbial adaptation to deep-sea ferromanganese nodule sediment fields. MICROBIOME 2023; 11:160. [PMID: 37491386 PMCID: PMC10367259 DOI: 10.1186/s40168-023-01601-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/17/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Ferromanganese nodule-bearing deep-sea sediments cover vast areas of the ocean floor, representing a distinctive habitat in the abyss. These sediments harbor unique conditions characterized by high iron concentration and low degradable nutrient levels, which pose challenges to the survival and growth of most microorganisms. While the microbial diversity in ferromanganese nodule-associated sediments has been surveyed several times, little is known about the functional capacities of the communities adapted to these unique habitats. RESULTS Seven sediment samples collected adjacent to ferromanganese nodules from the Clarion-Clipperton Fracture Zone (CCFZ) in the eastern Pacific Ocean were subjected to metagenomic analysis. As a result, 179 high-quality metagenome-assembled genomes (MAGs) were reconstructed and assigned to 21 bacterial phyla and 1 archaeal phylum, with 88.8% of the MAGs remaining unclassified at the species level. The main mechanisms of resistance to heavy metals for microorganisms in sediments included oxidation (Mn), reduction (Cr and Hg), efflux (Pb), synergy of reduction and efflux (As), and synergy of oxidation and efflux (Cu). Iron, which had the highest content among all metallic elements, may occur mainly as Fe(III) that potentially functioned as an electron acceptor. We found that microorganisms with a diverse array of CAZymes did not exhibit higher community abundance. Instead, microorganisms mainly obtained energy from oxidation of metal (e.g., Mn(II)) and sulfur compounds using oxygen or nitrate as an electron acceptor. Chemolithoautotrophic organisms (Thaumarchaeota and Nitrospirota phyla) were found to be potential manganese oxidizers. The functional profile analysis of the dominant microorganisms further indicated that utilization of inorganic nutrients by redox reactions (rather than organic nutrient metabolism) is a major adaptive strategy used by microorganisms to support their survival in the ferromanganese nodule sediments. CONCLUSIONS This study provides a comprehensive metagenomic analysis of microbes inhabiting metal-rich ferromanganese nodule sediments. Our results reveal extensive redundancy across taxa for pathways of metal resistance and transformation, the highly diverse mechanisms used by microbes to obtain nutrition, and their participation in various element cycles in these unique environments. Video Abstract.
Collapse
Affiliation(s)
- Dechao Zhang
- Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Geology, Laoshan Laboratory, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xudong Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuehong Wu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, 310012, Hangzhou, China
| | - Xuewei Xu
- Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources & Second Institute of Oceanography, Ministry of Natural Resources, 310012, Hangzhou, China
| | - Yanxia Liu
- Laboratory for Marine Geology, Laoshan Laboratory, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Benze Shi
- Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Geology, Laoshan Laboratory, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujie Peng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dadong Dai
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongli Sha
- Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Geology, Laoshan Laboratory, Qingdao, 266237, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jinshui Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
6
|
Kergoat L, Dabrin A, Masson M, Datry T, Bonnineau C. Clogging modulates the copper effects on microbial communities of streambed sediments. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:321-335. [PMID: 36930439 DOI: 10.1007/s10646-023-02641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The hyporheic zone, i.e. the water-saturated sediment beneath and alongside the riverbed, is exposed to multiple stressors. Agricultural-watershed rivers are frequently exposed to two concomitant stressors: clogging and copper contamination. However, one stressor exposure can increase sensitivity to a second stressor. The aim of this study was to experimentally test the cumulative effects of these two stressors on copper distribution and structural and functional microbial communities responses in the hyporheic zone. A slow filtration column experiment was conducted to compare the effects of 3 treatments of increasing complexity: 'Reference', 'Copper-contaminated' (dissolved copper added at 191 µg L-1), and 'Clogging+Copper' (dissolved copper + addition of 2 cm of fine sediment). Microbial community structure and activities were studied at 4 column sediment depths. The results showed that clogging did not modify the distribution of copper, which remained fixed in the first few centimetres. In the first few centimetres, clogging had a stimulating effect on microbial activities whereas copper had limited effects mainly on leucine aminopeptidase activity and microbial community tolerance to copper. The subsurface zone thus hosts significant different microbial communities from the communities in the deeper zones that were protected from surface stressors. This experiment confirms the valuable filtering role played by the hyporheic zone and shows that microbial responses are strongly correlated to microhabitat-scale physicochemical conditions in sediment.
Collapse
|
7
|
Dong Z, Wang J, Wang L, Zhu L, Wang J, Zhao X, Kim YM. Distribution of quinolone and macrolide resistance genes and their co-occurrence with heavy metal resistance genes in vegetable soils with long-term application of manure. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3343-3358. [PMID: 34559332 DOI: 10.1007/s10653-021-01102-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
The spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) has become an increasingly serious global public health issue. This study investigated the distribution characteristics and influencing factors of ARB and ARGs in greenhouse vegetable soils with long-term application of manure. Five typical ARGs, four heavy metal resistance genes (MRGs), and two mobile genetic elements (MGEs) were quantified by real-time quantitative polymerase chain reaction (qPCR). The amount of ARB in manure-improved soil greatly exceeded that in control soil, and the bacterial resistance rate decreased significantly with increases in antibiotic concentrations. In addition, the resistance rate of ARB to enrofloxacin (ENR) was lower than that of tylosin (TYL). Real-time qPCR results showed that long-term application of manure enhanced the relative abundance of ARGs in vegetable soils, and the content and proportion of quinolone resistance genes were higher than those of macrolide resistance genes. Redundancy analysis (RDA) showed that qepA and qnrS significantly correlated with total and available amounts of Cu and Zn, highlighting that certain heavy metals can influence persistence of ARGs. Integrase gene intI1 correlated significantly with the relative abundance of qepA, qnrS, and ermF, suggesting that intI1 played an important role in the horizontal transfer of ARGs. Furthermore, there was a weakly but not significantly positive correlation between specific detected MRGs and ARGs and MGEs. The results of this study enhance understanding the potential for increasing ARGs in manure-applied soil, assessing ecological risk and reducing the spread of ARGs.
Collapse
Affiliation(s)
- Zikun Dong
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, People's Republic of China
| | - Jinhua Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, People's Republic of China.
| | - Lanjun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, People's Republic of China
| | - Lusheng Zhu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, People's Republic of China
| | - Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, People's Republic of China
| | - Xiang Zhao
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an, 271018, People's Republic of China
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
8
|
Wei Y, Gu J, Wang X, Song Z, Sun W, Hu T, Guo H, Xie J, Lei L, Xu L, Li Y. Elucidating the beneficial effects of diatomite for reducing abundances of antibiotic resistance genes during swine manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153199. [PMID: 35063512 DOI: 10.1016/j.scitotenv.2022.153199] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Diatomite (DE) has been used for nitrogen conservation during the composting of feces but its effects on antibiotic resistance genes (ARGs) and the associated mechanisms are still unclear. In this study, DE was added at three different proportions (0%, 4%, and 8%) to swine manure during composting. The results showed that adding DE helped to reduce the abundances of ARGs and the maximum decrease (88.99%) occurred with the highest dose. DE amendment promoted the transformation of reducible copper into a more stable form, i.e., the residual fraction, which reduced the selective pressure imposed by copper and further decreased the abundances of ARGs. Tn916/1545 and intI1 were critical genetic components related to ARGs, and thus the reductions in the abundances of ARGs may be attributed to the suppression of horizontal transfer due to the decreased abundances of mobile genetic elements (MGEs). The microbial community structure (bacterial abundance and diversity) played key role in the evolution of ARGs. DE could enhance the competition between hosts and non-hosts of ARGs by increasing the bacterial community diversity. Compared with CK, DE amendment optimized the bacterial community by reducing the abundances of the potential hosts of ARGs and pathogens such as Corynebacterium, thereby improving the safety of the compost product. In addition, KEGG function predictions revealed that adding DE inhibited the metabolic pathway and genes related to ARGs. Thus, composting with 8% DE can reduce the risk of ARG transmission and improve the practical value for agronomic applications.
Collapse
Affiliation(s)
- Yuan Wei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Xie
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liusheng Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuexuan Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
9
|
Yusuf A, O'Flynn D, White B, Holland L, Parle-McDermott A, Lawler J, McCloughlin T, Harold D, Huerta B, Regan F. Monitoring of emerging contaminants of concern in the aquatic environment: a review of studies showing the application of effect-based measures. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5120-5143. [PMID: 34726207 DOI: 10.1039/d1ay01184g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Water scarcity is increasingly a global cause of concern mainly due to widespread changes in climate conditions and increased consumptive water use driven by the exponential increase in population growth. In addition, increased pollution of fresh water sources due to rising production and consumption of pharmaceuticals and organic chemicals will further exacerbate this concern. Although surface water contamination by individual chemicals is often at very low concentration, pharmaceuticals for instance are designed to be efficacious at low concentrations, creating genuine concern for their presence in freshwater sources. Furthermore, the additive impact of multiple compounds may result in toxic or other biological effects that otherwise will not be induced by individual chemicals. Globally, different legislative frameworks have led to pre-emptive efforts which aim to ensure good water ecological status. Reports detailing the use and types of effect-based measures covering specific bioassay batteries that can identify specific mode of actions of chemical pollutants in the aquatic ecosystem to evaluate the real threat of pollutants to aquatic lives and ultimately human lives have recently emerged from monitoring networks such as the NORMAN network. In this review, we critically evaluate some studies within the last decade that have implemented effect-based monitoring of pharmaceuticals and organic chemicals in aquatic fauna, evaluating the occurrence of different chemical pollutants and the impact of these pollutants on aquatic fauna with special focus on pollutants that are contaminants of emerging concern (CEC) in urban wastewater. A critical discussion on studies that have used effect-based measures to assess biological impact of pharmaceutical/organic compound in the aquatic ecosystem and the endpoints measurements employed is presented. The application of effect-based monitoring of chemicals other than assessment of water quality status is also discussed.
Collapse
Affiliation(s)
- Azeez Yusuf
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
- Water Institute, Dublin City University, Dublin, Ireland
| | - Dylan O'Flynn
- School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland
- Water Institute, Dublin City University, Dublin, Ireland
| | - Blanaid White
- School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland
- Water Institute, Dublin City University, Dublin, Ireland
| | - Linda Holland
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
- Water Institute, Dublin City University, Dublin, Ireland
| | - Anne Parle-McDermott
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
- Water Institute, Dublin City University, Dublin, Ireland
| | - Jenny Lawler
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
- Water Institute, Dublin City University, Dublin, Ireland
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Doha, Qatar
| | - Thomas McCloughlin
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
- Water Institute, Dublin City University, Dublin, Ireland
| | - Denise Harold
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
| | - Belinda Huerta
- School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland
- Water Institute, Dublin City University, Dublin, Ireland
| | - Fiona Regan
- School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland
- Water Institute, Dublin City University, Dublin, Ireland
| |
Collapse
|
10
|
Catao ECP, Gallois N, Fay F, Misson B, Briand JF. Metal resistance genes enrichment in marine biofilm communities selected by biocide-containing surfaces in temperate and tropical coastal environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115835. [PMID: 33099201 DOI: 10.1016/j.envpol.2020.115835] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/28/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Microorganisms able to form biofilms in marine ecosystems are selected depending on immersed surfaces and environmental conditions. Cell attachment directly on toxic surfaces like antifouling coatings suggests a selection of tolerant (or resistant) organisms with characteristics conferring adaptive advantages. We investigated if environment would drive metal resistance gene abundance in biofilms on artificial surfaces. Biofilms were sampled from three surfaces (a PVC reference and two antifouling coatings) deployed in three coastal waters with dissimilar characteristics: The Mediterranean Sea (Toulon) and Atlantic (Lorient) and Indian (Reunion) Oceans. The two coatings differed in metals composition, either Cu thiocyanate and Zn pyrithione (A3) or Cu2O (Hy). Metal resistance genes (MRG) specific to copper (cusA, copA, cueO) or other metals (czcA and pbrT) were monitored with qPCR in parallel to the microbial community using 16S rRNA gene metabarcoding. A lower α-diversity on A3 or Hy than on PVC was observed independent on the site. Weighted Unifrac suggested segregation of communities primarily by surface, with lower site effect. Metacoder log2 fold change ratio and LeFSe discrimination suggested Marinobacter to be specific of Hy and Altererythrobacter, Erythrobacter and Sphingorhabdus of A3. Likewise, the relative abundance of MRG (MRG/bacterial 16S rRNA) varied between surfaces and sites. A3 presented the greatest relative abundances for cusA, cueO and czcA. The latter could only be amplified from A3 communities, except at Toulon. Hy surface presented the highest relative abundance for copA, specifically at Lorient. These relative abundances were correlated with LeFSe discriminant taxa. Dasania correlated positively with all MRG except cueO. Marinobacter found in greater abundance in Hy biofilm communities correlated with the highest abundances of copA and Roseovarius with czcA. These results prove the selection of specific communities with abilities to tolerate metallic biocides forming biofilms over antifouling surfaces, and the secondary but significant influence of local environmental factors.
Collapse
Affiliation(s)
- Elisa C P Catao
- Laboratoire MAPIEM, EA 4323, Université de Toulon, 83041, Toulon, France
| | - Nicolas Gallois
- Univ Toulon, Aix Marseille Univ., CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde, France
| | - Fabienne Fay
- Institut Européen de la Mer, Université de Bretagne-Sud, EA 3884, LBCM, Lorient, France
| | - Benjamin Misson
- Univ Toulon, Aix Marseille Univ., CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, La Garde, France
| | | |
Collapse
|
11
|
Yang S, Wen Q, Chen Z. Impacts of Cu and Zn on the performance, microbial community dynamics and resistance genes variations during mesophilic and thermophilic anaerobic digestion of swine manure. BIORESOURCE TECHNOLOGY 2020; 312:123554. [PMID: 32460007 DOI: 10.1016/j.biortech.2020.123554] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
In this work, fate of antibiotic resistance genes (ARGs), heavy metal resistance genes (MRGs) and intI1 were investigated during mesophilic (mAD) and thermophilic anaerobic digestion (tAD) of swine manure with presence of Cu and Zn. Results showed that metal reduced the lag phase time. Cu showed stronger inhibition than Zn on archaea community and metals inhibited the growth of acetoclastic methanogens during mAD. Although total concentration of metals increased after AD, they were transformed into stable state. The abundance of qnrS, sul1, sul2 and drfA7 increased 1.2-5.7 times after mAD, while reduced after tAD, showed that tAD was effective in ARGs removal. Structural equation model analysis suggested that intI1 had the most standardized direct effects on ARGs variation in mAD (R = 0.85, p < 0.01), while the co-occurrence of MRGs with ARGs showed significantly positive influences on ARGs variation in tAD (R = 0.82, p < 0.01).
Collapse
Affiliation(s)
- Shuo Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
12
|
Guo H, Gu J, Wang X, Nasir M, Yu J, Lei L, Wang Q. Elucidating the effect of microbial inoculum and ferric chloride as additives on the removal of antibiotic resistance genes from chicken manure during aerobic composting. BIORESOURCE TECHNOLOGY 2020; 309:122802. [PMID: 32361615 DOI: 10.1016/j.biortech.2020.122802] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 06/11/2023]
Abstract
This experiment investigated the effect of adding a microbial inoculum (M) and ferric chloride (F) on the fate of antibiotic resistance genes (ARGs) during chicken manure composting. Adding M and F improved the microbial activity in the compost and facilitated the removal of ARGs, whereas the combined treatment achieved the best results, especially in reducing the enrichment of sul resistance genes. Tn916/1545 and intI1 were important genetic elements that affected the transfer of ARGs, and Tn916/1545 was closely related to the transfer of tetM, tetW, and ermQ in Firmicutes. Kyoto Encyclopedia of Genes and Genomes functional predictions indicated that M and F could reduce the abundance of membrane transport and signal transduction molecules in the compost products. Thus, these findings suggest that the combined application of M and F is a promising strategy that could potentially inhibit the transfer of ARGs during composting.
Collapse
Affiliation(s)
- Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mubasher Nasir
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liusheng Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qianzhi Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
13
|
Zhang X, Chen Z, Ma Y, Zhang N, Wei D, Zhang H, Zhang H. Response of partial nitrification sludge to the single and combined stress of CuO nanoparticles and sulfamethoxazole antibiotic on microbial activity, community and resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:135759. [PMID: 32050397 DOI: 10.1016/j.scitotenv.2019.135759] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/23/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Considering the inevitable release of antibiotics and nanoparticles (NPs) into the nitrogen containing wastewater, the combined impact of CuO NPs and sulfamethoxazole (SMX) antibiotic on partial nitrification (PN) process was investigated in four identical reactors. Results showed that the bioactivity of the aerobic ammonia-oxidizing bacteria (AOB) decreased by half after they were exposed to the combination of CuO NPs and SMX for short-term; however, there was no obvious variation in the bioactivity of AOB when they were exposed to either CuO NPs or SMX. During long-term exposure, the ammonia removal efficiency (ARE) of CuO NPs improved whereas that of SMX decreased, while the combination of CuO NPs and SMX significantly decreased ARE from 62.9% (in control) to 38.2% and had an unsatisfactory self-recovery performance. The combination of CuO NPs and SMX significantly changed the composition of microbial community, decreased the abundance of AOB, and significantly suppressed PN process. Reegarding the resistance genes, the CuO NPs-SMX combination did not improve the expression of copA, cusA, sul1 and sul2; however, it significantly induced the expression of sul3 and sulA.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| | - Zhao Chen
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yongpeng Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Nan Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Denghui Wei
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Hongli Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
14
|
Zhang X, Chen Z, Zhou Y, Ma Y, Zhang H, Zhou L, Fang S. Comparisons of Nitrogen Removal and Microbial Communities in Anammox Systems upon Addition of Copper-Based Nanoparticles and Copper Ion. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00182] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaojing Zhang
- Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China 450001
| | - Zhao Chen
- Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China 450001
| | - Yue Zhou
- Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China 450001
| | - Yongpeng Ma
- Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China 450001
| | - Hongzhong Zhang
- Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China 450001
| | - Liming Zhou
- Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China 450001
| | - Shaoming Fang
- Henan Engineering Research Center of Chemical Engineering Separation Process Intensification, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China 450001
| |
Collapse
|
15
|
Kang W, Zhang YJ, Shi X, He JZ, Hu HW. Short-term copper exposure as a selection pressure for antibiotic resistance and metal resistance in an agricultural soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:29314-29324. [PMID: 30121762 DOI: 10.1007/s11356-018-2978-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
Owing to the similar mechanisms of antibiotic and metal resistance, there is a growing concern that metal contamination may select for antibiotic resistance genes (ARGs) in the environment. Here, we constructed short-term laboratory microcosms to investigate the dynamics of a wide range of ARGs and two copper (Cu) resistance genes in an agricultural soil amended with a gradient of Cu concentrations (0~1000 mg kg-1). Mobile genetic elements (MGEs) were also quantified as a proxy for the horizontal gene transfer potential of ARGs. We detected 126 unique ARGs across all the soil samples using the high-capacity quantitative PCR array, and multidrug and β-lactam resistance were the most abundant ARG categories. The copper amendments significantly enhanced the absolute and relative abundances of ARGs and MGEs, which gradually increased along the gradient of increasing Cu concentrations. The two Cu resistance genes (copA and pcoR) were highly enriched in low-level Cu treatment (50 and 100 mg kg-1), and their abundances decreased with the increasing Cu concentrations. The level of metal and antibiotic resistance gradually declined over time in all Cu-amended treatments but was still considerably higher in contaminated soils than untreated soils after 56 days' incubation. Significant associations among ARGs and MGEs were revealed by the network analysis, suggesting the mobility potential of antibiotic resistance in Cu-amended soils. No significant positive correlations were found between ARGs and copper resistance genes, suggesting that these genes are not located in the same bacterial hosts. Taken together, our results provide empirical evidence that short-term copper stress can cause evolution of high-level antibiotic and metal resistance and significantly change the diversity, abundance, and horizontal transfer potential of soil ARGs.
Collapse
Affiliation(s)
- Wei Kang
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC, 3010, Australia
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Yu-Jing Zhang
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Xiuzhen Shi
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hang-Wei Hu
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
16
|
Yin Y, Gu J, Wang X, Song W, Zhang K, Sun W, Zhang X, Zhang Y, Li H. Effects of Copper Addition on Copper Resistance, Antibiotic Resistance Genes, and intl1 during Swine Manure Composting. Front Microbiol 2017; 8:344. [PMID: 28316595 PMCID: PMC5335643 DOI: 10.3389/fmicb.2017.00344] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 02/20/2017] [Indexed: 12/01/2022] Open
Abstract
Copper is one of the most abundant heavy metals present in swine manure. In this study, a laboratory-scale aerobic composting system was amended with Cu at three levels (0, 200, and 2000 mg kg-1, i.e., control, Cu200, and Cu2000 treatments, respectively) to determine its effect on the fate of copper resistance genes [copper resistance genes (CRGs): pcoA, cusA, copA, and tcrB], antibiotic resistance genes [antibiotic resistance genes (ARGs): erm(A) and erm(B)], and intl1. The results showed that the absolute abundances of pcoA, tcrB, erm(A), erm(B), and intl1 were reduced, whereas those of copA and cusA increased after swine manure composting. Redundancy analysis showed that temperature significantly affected the variations in CRGs, ARGs, and intl1. The decreases in CRGs, ARGs, and intI1 were positively correlated with the exchangeable Cu levels. The bacterial community could be grouped according to the composting time under different treatments, where the high concentration of copper had a more persistent effect on the bacterial community. Network analysis determined that the co-occurrence of CRGs, ARGs, and intI1, and the bacterial community were the main contributors to the changes in CRGs, ARG, and intl1. Thus, temperature, copper, and changes in the bacterial community composition had important effects on the variations in CRGs, ARGs, and intl1 during manure composting in the presence of added copper.
Collapse
Affiliation(s)
- Yanan Yin
- College of Resources and Environmental Sciences, Northwest A&F University Yangling, China
| | - Jie Gu
- College of Resources and Environmental Sciences, Northwest A&F University Yangling, China
| | - Xiaojuan Wang
- College of Resources and Environmental Sciences, Northwest A&F University Yangling, China
| | - Wen Song
- College of Science, Northwest A&F University Yangling, China
| | - Kaiyu Zhang
- College of Resources and Environmental Sciences, Northwest A&F University Yangling, China
| | - Wei Sun
- College of Resources and Environmental Sciences, Northwest A&F University Yangling, China
| | - Xin Zhang
- College of Science, Northwest A&F University Yangling, China
| | - Yajun Zhang
- College of Resources and Environmental Sciences, Northwest A&F University Yangling, China
| | - Haichao Li
- College of Resources and Environmental Sciences, Northwest A&F University Yangling, China
| |
Collapse
|
17
|
Zhang C, Sun S, Liu X, Wan C, Lee DJ. Influence of operational conditions on the stability of aerobic granules from the perspective of quorum sensing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:7640-7649. [PMID: 28124264 DOI: 10.1007/s11356-017-8417-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/05/2017] [Indexed: 06/06/2023]
Abstract
Integrated aerobic granules were first cultivated in two sequencing batch reactors (SBRs) (A1 and A2). Then, A1's influent organic loading rate (OLR) was changed from alternating to constant (cycling time was still 6 h), while A2's cycling time varied from 6 to 4 h (influent OLR strategy remained alternating). After 30-day operation since the manipulative alternations, granule breakage happened in two reactors at different operational stages, along with the decrease of granule intensity. Granule diameter in A1 declined from the original 0.84 to 0.32 cm during the whole operation, while granules in A2 dwindled to 0.31 cm on day 22 with similar size to A1. Both the amount of total extracellular polymeric substances (EPSs) and the protein were declining throughout the operation, and the large molecular weight of protein was considered closely related to the stability of aerobic granules. The relative AI-2 level decreased at the same time, and influent OLR strategy might had more evident impact on quorum sensing (QS) ability of sludge compared with starvation period. Combined with microbial results, the decline of total EPS amount in two reactors could be concluded as follows: During the reactor operation, some functional bacteria gradually lost their dominance and were eliminated from the reactors, which finally caused granule disintegration. In summary, the results further confirmed that alternating OLR and proper starvation period were two major factors in effective cultivation and stability of aerobic granules from the perspective of QS.
Collapse
Affiliation(s)
- Chen Zhang
- Shanghai Municipal Engineering Design General Institute, Shanghai, 200092, China
| | - Supu Sun
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
18
|
Assessing the genetic diversity of Cu resistance in mine tailings through high-throughput recovery of full-length copA genes. Sci Rep 2015; 5:13258. [PMID: 26286020 PMCID: PMC4541151 DOI: 10.1038/srep13258] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/16/2015] [Indexed: 11/17/2022] Open
Abstract
Characterizing the genetic diversity of microbial copper (Cu) resistance at the community level remains challenging, mainly due to the polymorphism of the core functional gene copA. In this study, a local BLASTN method using a copA database built in this study was developed to recover full-length putative copA sequences from an assembled tailings metagenome; these sequences were then screened for potentially functioning CopA using conserved metal-binding motifs, inferred by evolutionary trace analysis of CopA sequences from known Cu resistant microorganisms. In total, 99 putative copA sequences were recovered from the tailings metagenome, out of which 70 were found with high potential to be functioning in Cu resistance. Phylogenetic analysis of selected copA sequences detected in the tailings metagenome showed that topology of the copA phylogeny is largely congruent with that of the 16S-based phylogeny of the tailings microbial community obtained in our previous study, indicating that the development of copA diversity in the tailings might be mainly through vertical descent with few lateral gene transfer events. The method established here can be used to explore copA (and potentially other metal resistance genes) diversity in any metagenome and has the potential to exhaust the full-length gene sequences for downstream analyses.
Collapse
|