1
|
Li Y, Ling Ma N, Chen H, Zhong J, Zhang D, Peng W, Shiung Lam S, Yang Y, Yue X, Yan L, Wang T, Styrishave B, Maciej Ciesielski T, Sonne C. High-throughput screening of ancient forest plant extracts shows cytotoxicity towards triple-negative breast cancer. ENVIRONMENT INTERNATIONAL 2023; 181:108279. [PMID: 37924601 DOI: 10.1016/j.envint.2023.108279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023]
Abstract
According to the World Health Organization, women's breast cancer is among the most common cancers with 7.8 million diagnosed cases during 2016-2020 and encompasses 15 % of all female cancer-related mortalities. These mortality events from triple-negative breast cancer are a significant health issue worldwide calling for a continuous search of bioactive compounds for better cancer treatments. Historically, plants are important sources for identifying such new bioactive chemicals for treatments. Here we use high-throughput screening and mass spectrometry analyses of extracts from 100 plant species collected in Chinese ancient forests to detect novel bioactive breast cancer phytochemicals. First, to study the effects on viability of the plant extracts, we used a MTT and CCK-8 cytotoxicity assay employing triple-negative breast cancer (TNBC) MDA-MB-231 and normal epithelial MCF-10A cell lines and cell cycle arrest to estimate apoptosis using flow cytometry for the most potent three speices. Based on these analyses, the final most potent extracts were from the Amur honeysuckle (Lonicera maackii) wood/root bark and Nigaki (Picrasma quassioides) wood/root bark. Then, 5 × 106 MDA-MB-231 cells were injected subcutaneously into the right hind leg of nude mice and a tumour was allowed to grow before treatment for seven days. Subsequently, the four exposed groups received gavage extracts from Amur honeysuckle and Nigaki (Amur honeysuckle wood distilled water, Amur honeysuckle root bark ethanol, Nigaki wood ethanol or Nigaki root bark distilled water/ethanol (1:1) extracts) in phosphate-buffered saline (PBS), while the control group received only PBS. The tumour weight of treated nude mice was reduced significantly by 60.5 % within 2 weeks, while on average killing 70 % of the MDA-MB-231 breast cancer cells after 48 h treatment (MTT test). In addition, screening of target genes using the Swiss Target Prediction, STITCH, STRING and NCBI-gene database showed that the four plant extracts possess desirable activity towards several known breast cancer genes. This reflects that the extracts may kill MBD-MB-231 breast cancer cells. This is the first screening of plant extracts with high efficiency in 2 decades, showing promising results for future development of novel cancer treatments.
Collapse
Affiliation(s)
- Yiyang Li
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Nyuk Ling Ma
- BIOSES Research Interest Group, Faculty of Science & Marine Environment, 21030 Universiti Malaysia Terengganu, Malaysia; Center for Global Health Research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Huiling Chen
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiateng Zhong
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Dangquan Zhang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Wanxi Peng
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Yafeng Yang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaochen Yue
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Lijun Yan
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Ting Wang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Bjarne Styrishave
- Toxicology and Drug Metabolism Group, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 3, DK-2100 Copenhagen, Denmark
| | - Tomasz Maciej Ciesielski
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
2
|
Badr AM. Organophosphate toxicity: updates of malathion potential toxic effects in mammals and potential treatments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26036-26057. [PMID: 32399888 DOI: 10.1007/s11356-020-08937-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Organophosphorus insecticides toxicity is still considered a major global health problem. Malathion is one of the most commonly used organophosphates nowadays, as being considered to possess relatively low toxicity compared with other organophosphates. However, widespread use may lead to excessive exposure from multiple sources. Mechanisms of MAL toxicity include inhibition of acetylcholinesterase enzyme, change of oxidants/antioxidants balance, DNA damage, and facilitation of apoptotic cell damage. Exposure to malathion has been associated with different toxicities that nearly affect every single organ in our bodies, with CNS toxicity being the most well documented. Malathion toxic effects on liver, kidney, testis, ovaries, lung, pancreas, and blood were also reported. Moreover, malathion was considered as a genotoxic and carcinogenic chemical compound. Evidence exists for adverse effects associated with prenatal and postnatal exposure in both animals and humans. This review summarizes the toxic data available about malathion in mammals and discusses new potential therapeutic modalities, with the aim to highlight the importance of increasing awareness about its potential risk and reevaluation of the allowed daily exposure level.
Collapse
Affiliation(s)
- Amira M Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh, 11459, Saudi Arabia.
- Department of Pharmacology and Toxicology, College of Pharmacy, Ain Shams University, Heliopolis, Cairo, Egypt.
| |
Collapse
|
3
|
Yang FW, Zhao GP, Ren FZ, Pang GF, Li YX. Assessment of the endocrine-disrupting effects of diethyl phosphate, a nonspecific metabolite of organophosphorus pesticides, by in vivo and in silico approaches. ENVIRONMENT INTERNATIONAL 2020; 135:105383. [PMID: 31835022 DOI: 10.1016/j.envint.2019.105383] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/13/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Organophosphorus pesticides (OPs) remain one of the most commonly used pesticides, and their detection rates and residues in agricultural products, foods and environmental samples have been underestimated. Humans and environmental organisms are at high risk of exposure to OPs. Most OPs can be degraded and metabolized into dialkyl phosphates (DAPs) in organisms and the environment, and can be present in urine as biomarkers for exposure to OPs, of which diethyl phosphate (DEP) is a high-exposure metabolite. Epidemiological and cohort studies have found that DAPs are associated with endocrine hormone disorders, especially sex hormone disorders and thyroid hormone disorders, but there has been no direct causal evidence to support these findings. Our study explored the effects of chronic exposure to DEP on endocrine hormones and related metabolic indicators in adult male rats at actual doses that can be reached in the human body. The results showed that chronic exposure to DEP could cause thyroid-related hormone disorders in the serum of rats, causing symptoms of hyperthyroidism in rats, and could also lead to abnormal expression of thyroid hormone-related genes in the rat liver. However, DEP exposure did not seem to affect serum sex hormone levels, spermatogenesis or sperm quality in rats. The molecular interactions between DEP and thyroid hormone-related enzymes/proteins were investigated by molecular docking and molecular dynamics methods in silico. It was found that DEP could strongly interact with thyroid hormone biosynthesis, blood transport, receptor binding and metabolism-related enzymes/proteins, interfering with the production and signal regulation of thyroid hormones. In vivo and in silico experiments showed that DEP might be a potential thyroid hormone-disrupting chemical, and therefore, we need to be more cautious and rigorous regarding organophosphorus chemical exposure.
Collapse
Affiliation(s)
- Fang-Wei Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Guo-Ping Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fa-Zheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, and Beijing Laboratory of Food Quality and Safety, China Agricultural University, Beijing 100083, China
| | - Guo-Fang Pang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| | - Yi-Xuan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
4
|
Coman V, Vodnar DC. Hydroxycinnamic acids and human health: recent advances. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:483-499. [PMID: 31472019 DOI: 10.1002/jsfa.10010] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/25/2019] [Accepted: 08/27/2019] [Indexed: 05/15/2023]
Abstract
There is an urgent need to improve human diet globally. Compelling evidence gathered over the past several decades suggests that a suboptimal diet is associated with many chronic diseases and may be responsible for more deaths than any other risks worldwide. The main components in our diet that need higher intake are whole grains, fruit and vegetables, and nuts and seeds; all of these are important sources of dietary fiber and polyphenols. The health benefits of dietary fiber and polyphenols are also supported by several decades of valuable research. However, the conclusions drawn from interventional human trials are not straightforward and the action mechanisms in improving human health are not fully understood. Moreover, there is a great inter-individual variation caused by different individual capabilities of processing, absorbing and using these compounds effectively. Data on the bioavailability and bioefficacy of hydroxycinnamic acids (HCAs) are limited when compared to other classes of polyphenols (e.g. anthocyanins). This review aims to summarize the latest research advances related to HCA bioavailability and their biological effects revealed by epidemiological data, pre-clinical and clinical studies. Moreover, we aim to review the effects of HCAs on gut microbiota diversity and function and its respective influence on host health. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Vasile Coman
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan C Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
5
|
Hosseini SA, Saidijam M, Karimi J, Yadegar Azari R, Hosseini V, Ranjbar A. Cerium Oxide Nanoparticle Effects on Paraoxonase-1 Activity and Oxidative Toxic Stress Induced by Malathion: A Potential Antioxidant Compound, Yes or No? Indian J Clin Biochem 2018; 34:336-341. [PMID: 31391725 DOI: 10.1007/s12291-018-0760-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/25/2018] [Indexed: 12/19/2022]
Abstract
Cerium oxide nanoparticles (CeNPs) are one of the most widely used and important nanoparticles in addition to possessing strong antioxidative properties and inhibiting free radicals. Paraoxonase-1 (PON1) is one of the enzymes that protect the body against damage caused by oxidative stress. The purpose of this study was to investigate the effect of CeNPs on the activity of PON1 as well as biomarkers of oxidative stress in the toxicity of malathion. 48 Albino Wistar male rats with weight range of 180-250 g were randomly divided into 8 groups, Group 1: healthy control, injection of normal saline, Group 2: administration by the malathion 100 mg/kg/day, Group 3: treated with CeNPs 15 mg/kg/day, Group 4: treated with CeNPs 30 mg/kg/day, Group 5: combination of malathion with dose of 100 mg/kg/day and CeNPs 15 mg/kg, Group 6: combination of malathion with dose of 100 mg/kg/day and CeNPs 30 mg/kg for 14 days and 24 h after termination of treatment period, serum and liver tissue samples were collected from all rats. Biochemical test of PON1 activity, oxidative stress biomarkers including total antioxidant capacity (TAC), lipid peroxidation (LPO), total thiol groups (TTG), were carried out. Malathion reduced plasma TTG levels, TAC and increased LPO in malathion group. However, CeNPs increased TTG, TAC and reduced PON1 activity. Results showed that CeNPs alone had antioxidant properties while with malathion it shows different properties.
Collapse
Affiliation(s)
| | - Masoud Saidijam
- 1Molecular Medicine Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jamshid Karimi
- 2Department of Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Yadegar Azari
- 1Molecular Medicine Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Vahede Hosseini
- 3Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Akram Ranjbar
- 4Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6517838678 Iran
| |
Collapse
|