1
|
Hu F, Wang P, Li Y, Ling J, Ruan Y, Yu J, Zhang L. Bioremediation of environmental organic pollutants by Pseudomonas aeruginosa: Mechanisms, methods and challenges. ENVIRONMENTAL RESEARCH 2023; 239:117211. [PMID: 37778604 DOI: 10.1016/j.envres.2023.117211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
The development of the chemical industry has led to a boom in daily consumption and convenience, but has also led to the release of large amounts of organic pollutants, such as petroleum hydrocarbons, plastics, pesticides, and dyes. These pollutants are often recalcitrant to degradation in the environment, whereby the most problematic compounds may even lead to carcinogenesis, teratogenesis and mutagenesis in animals and humans after accumulation in the food chain. Microbial degradation of organic pollutants is efficient and environmentally friendly, which is why it is considered an ideal method. Numerous studies have shown that Pseudomonas aeruginosa is a powerful platform for the remediation of environmental pollution with organic chemicals due to its diverse metabolic networks and its ability to secrete biosurfactants to make hydrophobic substrates more bioavailable, thereby facilitating degradation. In this paper, the mechanisms and methods of the bioremediation of environmental organic pollutants (EOPs) by P. aeruginosa are reviewed. The challenges of current studies are highlighted, and new strategies for future research are prospected. Metabolic pathways and critical enzymes must be further deciphered, which is significant for the construction of a bioremediation platform based on this powerful organism.
Collapse
Affiliation(s)
- Fanghui Hu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Jiangsu, Nanjing, 210023, China
| | - Panlin Wang
- School of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yunhan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Jiangsu, Nanjing, 210023, China
| | - Jiahuan Ling
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Jiangsu, Nanjing, 210023, China
| | - Yongqiang Ruan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Jiangsu, Nanjing, 210023, China
| | - Jiaojiao Yu
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China.
| | - Lihui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Jiangsu, Nanjing, 210023, China.
| |
Collapse
|
2
|
Ivanova AA, Sazonova OI, Zvonarev AN, Delegan YA, Streletskii RA, Shishkina LA, Bogun AG, Vetrova AA. Genome Analysis and Physiology of Pseudomonas sp. Strain OVF7 Degrading Naphthalene and n-Dodecane. Microorganisms 2023; 11:2058. [PMID: 37630618 PMCID: PMC10458186 DOI: 10.3390/microorganisms11082058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The complete genome of the naphthalene- and n-alkane-degrading strain Pseudomonas sp. strain OVF7 was collected and analyzed. Clusters of genes encoding enzymes for the degradation of naphthalene and n-alkanes are localized on the chromosome. Based on the Average Nucleotide Identity and digital DNA-DNA Hybridization compared with type strains of the group of fluorescent pseudomonads, the bacterium studied probably belongs to a new species. Using light, fluorescent, and scanning electron microscopy, the ability of the studied bacterium to form biofilms of different architectures when cultured in liquid mineral medium with different carbon sources, including naphthalene and n-dodecane, was demonstrated. When grown on a mixture of naphthalene and n-dodecane, the strain first consumed naphthalene and then n-dodecane. Cultivation of the strain on n-dodecane was characterized by a long adaptation phase, in contrast to cultivation on naphthalene and a mixture of naphthalene and n-dodecane.
Collapse
Affiliation(s)
- Anastasia A. Ivanova
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (O.I.S.); (A.N.Z.); (Y.A.D.)
| | - Olesya I. Sazonova
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (O.I.S.); (A.N.Z.); (Y.A.D.)
| | - Anton N. Zvonarev
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (O.I.S.); (A.N.Z.); (Y.A.D.)
| | - Yanina A. Delegan
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (O.I.S.); (A.N.Z.); (Y.A.D.)
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (L.A.S.); (A.G.B.)
| | - Rostislav A. Streletskii
- Laboratory of Ecological Soil Science, Faculty of Soil Science, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Lidia A. Shishkina
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (L.A.S.); (A.G.B.)
| | - Alexander G. Bogun
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia; (L.A.S.); (A.G.B.)
| | - Anna A. Vetrova
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (O.I.S.); (A.N.Z.); (Y.A.D.)
| |
Collapse
|
3
|
Yesankar PJ, Patil A, Kapley A, Qureshi A. Catalytic resilience of multicomponent aromatic ring-hydroxylating dioxygenases in Pseudomonas for degradation of polycyclic aromatic hydrocarbons. World J Microbiol Biotechnol 2023; 39:166. [PMID: 37076735 DOI: 10.1007/s11274-023-03617-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Hydrophobic organic compounds, either natural or introduced through anthropogenic activities, pose a serious threat to all spheres of life, including humankind. These hydrophobic compounds are recalcitrant and difficult to degrade by the microbial system; however, microbes have also evolved their metabolic and degradative potential. Pseudomonas species have been reported to have a multipotential role in the biodegradation of aromatic hydrocarbons through aromatic ring-hydroxylating dioxygenases (ARHDs). The structural complexity of different hydrophobic substrates and their chemically inert nature demands the explicit role of evolutionary conserved multicomponent enzyme ARHDs. These enzymes catalyze ring activation and subsequent oxidation by adding two molecular oxygen atoms onto the vicinal carbon of the aromatic nucleus. This critical metabolic step in the aerobic mode of degradation of polycyclic aromatic hydrocarbons (PAHs) catalyzed by ARHDs can also be explored through protein molecular docking studies. Protein data analysis enables an understanding of molecular processes and monitoring complex biodegradation reactions. This review summarizes the molecular characterization of five ARHDs from Pseudomonas species already reported for PAH degradation. Homology modeling for the amino acid sequences encoding the catalytic α-subunit of ARHDs and their docking analyses with PAHs suggested that the enzyme active sites show flexibility around the catalytic pocket for binding of low molecular weight (LMW) and high molecular weight (HMW) PAH substrates (naphthalene, phenanthrene, pyrene, benzo[α]pyrene). The alpha subunit harbours variable catalytic pockets and broader channels, allowing relaxed enzyme specificity toward PAHs. ARHD's ability to accommodate different LMW and HMW PAHs demonstrates its 'plasticity', meeting the catabolic demand of the PAH degraders.
Collapse
Affiliation(s)
- Prerna J Yesankar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Ayurshi Patil
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Atya Kapley
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Asifa Qureshi
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
4
|
You XY, Liu JH, Tian H, Ding Y, Bu QY, Zhang KX, Ren GY, Duan X. Mucilaginibacter Phenanthrenivorans sp. nov., a Novel Phenanthrene Degradation Bacterium Isolated from Wetland Soil. Curr Microbiol 2022; 79:382. [DOI: 10.1007/s00284-022-03085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
|
5
|
Xue SW, Tian YX, Pan JC, Liu YN, Ma YL. Binding interaction of a ring-hydroxylating dioxygenase with fluoranthene in Pseudomonas aeruginosa DN1. Sci Rep 2021; 11:21317. [PMID: 34716364 PMCID: PMC8556375 DOI: 10.1038/s41598-021-00783-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/18/2021] [Indexed: 11/11/2022] Open
Abstract
Pseudomonas aeruginosa DN1 can efficiently utilize fluoranthene as its sole carbon source, and the initial reaction in the biodegradation process is catalyzed by a ring-hydroxylating dioxygenase (RHD). To clarify the binding interaction of RHD with fluoranthene in the strain DN1, the genes encoding alpha subunit (RS30940) and beta subunit (RS05115) of RHD were functionally characterized through multi-technique combination such as gene knockout and homology modeling as well as molecular docking analysis. The results showed that the mutants lacking the characteristic alpha subunit and/or beta subunit failed to degrade fluoranthene effectively. Based on the translated protein sequence and Ramachandran plot, 96.5% of the primary amino-acid sequences of the alpha subunit in the modeled structure of the RHD were in the permitted region, 2.3% in the allowed region, but 1.2% in the disallowed area. The catalytic mechanism mediated by key residues was proposed by the simulations of molecular docking, wherein the active site of alpha subunit constituted a triangle structure of the mononuclear iron atom and the two oxygen atoms coupled with the predicted catalytic ternary of His217-His222-Asp372 for the dihydroxylation reaction with fluoranthene. Those amino acid residues adjacent to fluoranthene were nonpolar groups, and the C7-C8 positions on the fluoranthene ring were estimated to be the best oxidation sites. The distance of C7-O and C8-O was 3.77 Å and 3.04 Å respectively, and both of them were parallel. The results of synchronous fluorescence and site-directed mutagenesis confirmed the roles of the predicted residues during catalysis. This binding interaction could enhance our understanding of the catalytic mechanism of RHDs and provide a solid foundation for further enzymatic modification.
Collapse
Affiliation(s)
- Shu-Wen Xue
- grid.412262.10000 0004 1761 5538Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an, 710069 Shaanxi China ,grid.412262.10000 0004 1761 5538College of Life Science, Northwest University, 229 Taibai North Rd, Xi’an, 710069 Shaanxi China
| | - Yue-Xin Tian
- grid.412262.10000 0004 1761 5538Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an, 710069 Shaanxi China ,grid.412262.10000 0004 1761 5538College of Life Science, Northwest University, 229 Taibai North Rd, Xi’an, 710069 Shaanxi China
| | - Jin-Cheng Pan
- grid.412262.10000 0004 1761 5538Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an, 710069 Shaanxi China ,grid.412262.10000 0004 1761 5538College of Life Science, Northwest University, 229 Taibai North Rd, Xi’an, 710069 Shaanxi China
| | - Ya-Ni Liu
- grid.412262.10000 0004 1761 5538Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an, 710069 Shaanxi China ,grid.412262.10000 0004 1761 5538College of Life Science, Northwest University, 229 Taibai North Rd, Xi’an, 710069 Shaanxi China
| | - Yan-Ling Ma
- grid.412262.10000 0004 1761 5538Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an, 710069 Shaanxi China ,grid.412262.10000 0004 1761 5538College of Life Science, Northwest University, 229 Taibai North Rd, Xi’an, 710069 Shaanxi China
| |
Collapse
|
6
|
Shen L, Gao L, Yang M, Zhang J, Wang Y, Feng Y, Wang L, Wang S. Deletion of the PA4427-PA4431 Operon of Pseudomonas aeruginosa PAO1 Increased Antibiotics Resistance and Reduced Virulence and Pathogenicity by Affecting Quorum Sensing and Iron Uptake. Microorganisms 2021; 9:microorganisms9051065. [PMID: 34069209 PMCID: PMC8156433 DOI: 10.3390/microorganisms9051065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/06/2022] Open
Abstract
The respiratory chain is very important for bacterial survival and pathogenicity, yet the roles of the respiratory chain in P. aeruginosa remain to be fully elucidated. Here, we not only proved experimentally that the operon PA4427-PA4431 of Pseudomonas aeruginosa PAO1 encodes respiratory chain complex III (cytobc1), but also found that it played important roles in virulence and pathogenicity. PA4429–31 deletion reduced the production of the virulence factors, including pyocyanin, rhamnolipids, elastase, and extracellular polysaccharides, and it resulted in a remarkable decrease in pathogenicity, as demonstrated in the cabbage and Drosophila melanogaster infection models. Furthermore, RNA-seq analysis showed that PA4429–31 deletion affected the expression levels of the genes related to quorum-sensing systems and the transport of iron ions, and the iron content was also reduced in the mutant strain. Taken together, we comprehensively illustrated the function of the operon PA4427–31 and its application potential as a treatment target in P. aeruginosa infection.
Collapse
|
7
|
PA0335, a Gene Encoding Histidinol Phosphate Phosphatase, Mediates Histidine Auxotrophy in Pseudomonas aeruginosa. Appl Environ Microbiol 2020; 86:AEM.02593-19. [PMID: 31862725 DOI: 10.1128/aem.02593-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 11/24/2019] [Indexed: 11/20/2022] Open
Abstract
The biosynthesis of histidine, a proteinogenic amino acid, has been extensively studied due to its importance in bacterial growth and survival. Histidinol-phosphate phosphatase (Hol-Pase), which is responsible for the penultimate step of histidine biosynthesis, is generally the last enzyme to be characterized in many bacteria because its origin and evolution are more complex compared to other enzymes in histidine biosynthesis. However, none of the enzymes in histidine biosynthesis, including Hol-Pase, have been characterized in Pseudomonas aeruginosa, which is an important opportunistic Gram-negative pathogen that can cause serious human infections. In our previous work, a transposon mutant of P. aeruginosa was found to display a growth defect on glucose-containing minimal solid medium. In this study, we found that the growth defect was due to incomplete histidine auxotrophy caused by PA0335 inactivation. Subsequently, PA0335 was shown to encode Hol-Pase, and its function and enzymatic activity were investigated using genetic and biochemical methods. In addition to PA0335, the roles of 12 other predicted genes involved in histidine biosynthesis in P. aeruginosa were examined. Among them, hisC2 (PA3165), hisH2 (PA3152), and hisF2 (PA3151) were found to be dispensable for histidine synthesis, whereas hisG (PA4449), hisE (PA5067), hisF1 (PA5140), hisB (PA5143), hisI (PA5066), hisC1 (PA4447), and hisA (PA5141) were essential because deletion of each resulted in complete histidine auxotrophy; similar to the case for PA0335, hisH1 (PA5142) or hisD (PA4448) deletion caused incomplete histidine auxotrophy. Taken together, our results outline the histidine synthesis pathway of P. aeruginosa IMPORTANCE Histidine is a common amino acid in proteins. Because it plays critical roles in bacterial metabolism, its biosynthetic pathway in many bacteria has been elucidated. However, the pathway remains unclear in Pseudomonas aeruginosa, an important opportunistic pathogen in clinical settings; in particular, there is scant knowledge about histidinol-phosphate phosphatase (Hol-Pase), which has a complex origin and evolution. In this study, P. aeruginosa Hol-Pase was identified and characterized. Furthermore, the roles of all other predicted genes involved in histidine biosynthesis were examined. Our results illustrate the histidine synthesis pathway of P. aeruginosa The knowledge obtained from this study may help in developing strategies to control P. aeruginosa-related infections. In addition, some enzymes of the histidine synthesis pathway from P. aeruginosa might be used as elements of histidine synthetic biology in other industrial microorganisms.
Collapse
|
8
|
Mucilaginibacter xinganensis sp. nov., a phenanthrene-degrading bacterium isolated from wetland soil. Antonie van Leeuwenhoek 2018; 112:641-649. [DOI: 10.1007/s10482-018-1194-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/20/2018] [Indexed: 10/28/2022]
|
9
|
Dutta K, Shityakov S, Das PP, Ghosh C. Enhanced biodegradation of mixed PAHs by mutated naphthalene 1,2-dioxygenase encoded by Pseudomonas putida strain KD6 isolated from petroleum refinery waste. 3 Biotech 2017; 7:365. [PMID: 29051846 PMCID: PMC5630526 DOI: 10.1007/s13205-017-0940-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/04/2017] [Indexed: 02/02/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of environmental pollutant that are given top priority to maintain water and soil quality to the most amenable standard. Biodegradation of PAHs by bacteria is the convenient option for decontamination on site or off site. The aim of the present study was to isolate and identify naturally occurring bacteria having mixed PAHs biodegradation ability. The newly isolated Pseudomonas putida strain KD6 was found to efficiently degrade 97.729% of 1500 mg L-1 mixed PAHs within 12 days in carbon-deficient minimal medium (CSM). The half-life (t1/2) and degradation rate constant (k) were estimated to be 3.2 and 0.2165 days, respectively. The first-order kinetic parameters in soil by strain KD6 had shown efficient biodegradation potency with the higher concentration of total PAHs (1500 mg kg-1 soil), t1/2 = 10.44 days-1. However, the biodegradation by un-inoculated control soil was found slower (t1/2 = 140 days-1) than the soil inoculated with P. putida strain KD6. The enzyme kinetic constants are also in agreement with chemical data obtained from the HPLC analysis. In addition, the sequence analysis and molecular docking studies showed that the strain KD6 encodes a mutant version of naphthalene 1,2-dioxygenase which have better Benzpyrene binding energy (-9.90 kcal mol-1) than wild type (-8.18 kcal mol-1) enzyme (chain A, 1NDO), respectively, with 0.00 and 0.08 RMSD values. The mutated naphthalene 1,2-dioxygenase nahAc has six altered amino acid residues near to the ligand binding site. The strain KD6 could be a good bioresource for in situ or ex situ biodegradation of polycyclic aromatic hydrocarbon.
Collapse
Affiliation(s)
- Kunal Dutta
- Microbiology and Immunology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University, Midnapore-721 102, Midnapore, West Bengal India
| | - Sergey Shityakov
- Department of Anaesthesia and Critical Care, University of Würzburg, Würzburg, Germany
| | - Prangya P. Das
- Microbiology and Immunology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University, Midnapore-721 102, Midnapore, West Bengal India
| | - Chandradipa Ghosh
- Microbiology and Immunology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University, Midnapore-721 102, Midnapore, West Bengal India
| |
Collapse
|
10
|
Biodegradation of fluoranthene by Paenibacillus sp. strain PRNK-6: a pathway for complete mineralization. Arch Microbiol 2017; 200:171-182. [DOI: 10.1007/s00203-017-1431-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/04/2017] [Accepted: 09/13/2017] [Indexed: 10/18/2022]
|
11
|
Bello-Akinosho M, Adeleke R, Thantsha MS, Maila M. Pseudomonassp. (Strain 10-1B): A potential inoculum candidate for green and sustainable remediation. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/rem.21521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maryam Bello-Akinosho
- New Agricultural Sciences Building, University of Pretoria, Lunnon Road, Pretoria 0083, South Africa
| | - Rasheed Adeleke
- Agricultural Research Council-Institute for Soil, Climate and Water, 600 Belvedere Street, Arcadia, Pretoria 0001, South Africa
| | - Mapitsi S. Thantsha
- New Agricultural Sciences Building, University of Pretoria, Lunnon Road, Pretoria 0083, South Africa
| | - Mphekgo Maila
- Agricultural Research Council-Institute for Soil, Climate and Water, 600 Belvedere Street, Arcadia, Pretoria 0001, South Africa
| |
Collapse
|
12
|
Reddy MV, Yajima Y, Choi D, Chang YC. Biodegradation of toxic organic compounds using a newly isolated Bacillus sp. CYR2. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-017-0117-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Jin J, Yao J, Liu W, Zhang Q, Liu J. Fluoranthene degradation and binding mechanism study based on the active-site structure of ring-hydroxylating dioxygenase in Microbacterium paraoxydans JPM1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:363-371. [PMID: 27722881 DOI: 10.1007/s11356-016-7809-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
In this study, a gram-positive fluoranthene-degrading bacterial strain was isolated from crude oil in Dagang Oilfield and identified as Microbacterium paraoxydans JPM1 by the analysis of 16S rDNA sequence. After 25 days of incubation, the strain JPM1 could degrade 91.78 % of the initial amount of fluoranthene. Moreover, four metabolites 9-fluorenone-1-carboxylic acid, 9-fluorenone, phthalic acid, and benzoic acid were detected in the culture solution. The gene sequence encoding the aromatic-ring-hydroxylating dioxygenase was amplified in the strain JPM1 by PCR. Based on the translated protein sequence, a homology modeling method was applied to build the crystal structure of dioxygenase. Subsequently, the interaction mechanism between fluoranthene and the active site of dioxygenase was simulated and analyzed by molecular docking. Consequently, a feasible degrading pathway of fluoranthene in the strain JPM1 was proposed based on the metabolites and the interaction analyses. Additionally, the thermodynamic analysis showed that the strain JPM1 had high tolerance for fluoranthene, and the influence of fluoranthene for the bacterial growth activity was negligible under 100 to 400 mg L-1 concentrations. Taken together, this study indicates that the strain JPM1 has high potential for further study in bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated sites.
Collapse
Affiliation(s)
- Jingnan Jin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Jun Yao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Wenjuan Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Qingye Zhang
- College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianli Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| |
Collapse
|
14
|
Biswas B, Sarkar B, Rusmin R, Naidu R. Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction. ENVIRONMENT INTERNATIONAL 2015; 85:168-181. [PMID: 26408945 DOI: 10.1016/j.envint.2015.09.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/29/2015] [Accepted: 09/11/2015] [Indexed: 06/05/2023]
Abstract
Bioremediation is an effective strategy for cleaning up organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Advanced bioremediation implies that biotic agents are more efficient in degrading the contaminants completely. Bioremediation by microbial degradation is often employed and to make this process efficient, natural and cost-effective materials can serve as supportive matrices. Clay/modified clay minerals are effective adsorbents of PAHs/VOCs, and readily available substrate and habitat for microorganisms in the natural soil and sediment. However, the mechanism underpinning clay-mediated biodegradation of organic compounds is often unclear, and this requires critical investigation. This review describes the role of clay/modified clay minerals in hydrocarbon bioremediation through interaction with microbial agents in specific scenarios. The vision is on a faster, more efficient and cost-effective bioremediation technique using clay-based products. This review also proposes future research directions in the field of clay modulated microbial degradation of hydrocarbons.
Collapse
Affiliation(s)
- Bhabananda Biswas
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ATC Building, University of Newcastle, Callaghan, NSW, Australia.
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ATC Building, University of Newcastle, Callaghan, NSW, Australia.
| | - Ruhaida Rusmin
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, SA 5095, Australia; Faculty of Applied Science, Universiti Teknologi MARA Negeri Sembilan, Kuala Pilah 72000, Malaysia
| | - Ravi Naidu
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ATC Building, University of Newcastle, Callaghan, NSW, Australia; Global Centre for Environmental Remediation, ATC Building, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|