1
|
Kathiresan N, Ramachandran S, Kulanthaivel L. Next-Generation Sequencing to Study the DNA Interaction. Methods Mol Biol 2024; 2719:249-264. [PMID: 37803122 DOI: 10.1007/978-1-0716-3461-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Next-generation sequencing (NGS) has transformed genomics by allowing researchers to sequence DNA and RNA at highest speed, accuracy, and cost-effectiveness. Researchers investigate DNA interactions with the help next-generation sequencing with a great deal of information. Over the last decade, NGS technologies have advanced significantly, with the development of several platforms, including Illumina, PacBio, and Oxford Nanopore, each offering distinct advantages and uses. The use of next-generation sequencing (NGS) has aided in the discovery of genetic variations, gene expression patterns, and epigenetic modifications connected with a variety of diseases, including cancer, neurological disorders, and infectious diseases. By identifying these regions, we can control the expression of genes, cellular signaling pathways, and other key biological processes. NGS is an effective method for researching DNA interactions that has completely transformed the area of genomics. NGS has also played an important part in personalized medicine, enabling the discovery of disease-causing mutations and the creation of targeted medicines. Finally, NGS has transformed the field of genomics, resulting in new discoveries and applications in medicine, environmental sciences, and other fields.
Collapse
Affiliation(s)
| | | | - Langeswaran Kulanthaivel
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
- Molecular Cancer Biology Laboratory, Department of Biomedical Science, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
2
|
He LX, He LY, Gao FZ, Wu DL, Ye P, Cheng YX, Chen ZY, Hu LX, Liu YS, Chen J, Ying GG. Antibiotics, antibiotic resistance genes and microbial community in grouper mariculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152042. [PMID: 34856250 DOI: 10.1016/j.scitotenv.2021.152042] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Increasing use of feed and medicine in mariculture could cause negative environmental impacts such as habitat modification, microbial disease development and antibiotic resistance. Here we investigated contamination of antibiotics and antibiotic resistance genes (ARGs), and composition of microbial community in grouper mariculture systems in Hainan province, China. Results showed detection of various antibiotic residues with the dominance of fluoroquinolones and tetracyclines in the six grouper cultivation systems. The concentrations of the detected antibiotics in the grouper mariculture water were significantly higher than those in the original seawater. Some of the detected antibiotics such as enrofloxacin, ciprofloxacin, ofloxacin, oxytetracycline and erythromycin in the mariculture water and/or sediment would pose high resistance selection risks. Sulfonamides resistance genes sul1 and sul2 were found to be predominant in water and sediment, while tetracycline resistance genes were prevalent in fish gill and gut. The dominant bacterial phyla in water and sediments were Bacteroides, Actinomycetes, and Proteobacteria, while the dominant ones in fish gill and gut were the Proteobacteria. Genera of Vibrio and Mycobacterium in the core microbiota were important zoonotic pathogens, and there was a significant positive correlation between Vibrio and ARGs. Phyla of Proteobacteria, Actinomyces, and Cyanobacteria were positively correlated to ARGs, indicating that these microorganisms are potential hosts of ARGs. The putative functions of microbiome related to antibiotic resistance and human diseases were significantly higher in fish than in the mariculture environment. This study suggests that mariculture system is a reservoir of ARGs, and the use of antibiotics in mariculture could induce the increase of antibiotic resistance and the prevalence of opportunistic pathogens.
Collapse
Affiliation(s)
- Lu-Xi He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dai-Ling Wu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Pu Ye
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yu-Xiao Cheng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zi-Yin Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jun Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Pearl River Hydraulic Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou 510611, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
3
|
Betiku OC, Sarjeant KC, Ngatia LW, Aghimien MO, Odewumi CO, Latinwo LM. Evaluation of microbial diversity of three recreational water bodies using 16S rRNA metagenomic approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144773. [PMID: 33548724 DOI: 10.1016/j.scitotenv.2020.144773] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Surface water plays a significant role in world development by promoting economic growth and health benefits to humans and animals whose lives depend on good water quality in the ecosystem. Thus, this study investigated the differences in physical and chemical properties of surface water from two lakes (Lakes Jackson and Talquin) and a pond (Pedrick Pond). Also, the influence of environmental factors on the microbial communities that live within the water environment was examined. Genomic DNA was extracted from the water samples collected and 16S rRNA sequencing method was employed to characterize the microbial community compositions across the three locations. The results obtained suggest that the water sources met the recommended recreational water quality criteria standard for clean water. Overall, Proteobacteria, Actinobacteria, Cyanobacteria, Bacteroidetes were the main bacterial phyla present in the communities, while Archaea was mainly dominated by Euryachaeota. Pressure, conductivity, temperature, dissolved oxygen (DO), and pH accounted for 74.2% of the variation in the distribution of the microbial community in the three locations (P < 0.05), while 58.2% of the variation in the microbial community distribution was accounted for by pressure and conductivity. The high temperature observed in the Pedrick Pond correlated with the distribution of genera hgcl_clades and Legionella. While in Lake Talquin, water conductivity was significantly associated with the abundance of Cyanobium_PCC_6307, Sediminibacterium, and Conexibacter. The results from this study indicate that the microbial communities in the two lakes are different from the pond and all the environmental variables accounted for a significant portion of the total variation, but pressure, conductivity, and temperature are more important factors due to significant correlation with the distribution of the microbial communities.
Collapse
Affiliation(s)
- Omolola C Betiku
- Center for Water Resources, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32307, USA; Division of Agriculture Science, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32307, USA.
| | - Keawin C Sarjeant
- Division of Agriculture Science, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Lucy W Ngatia
- Center for Water Resources, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Monica O Aghimien
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Caroline O Odewumi
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Lekan M Latinwo
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
4
|
Lastauskienė E, Valskys V, Stankevičiūtė J, Kalcienė V, Gėgžna V, Kavoliūnas J, Ružauskas M, Armalytė J. The Impact of Intensive Fish Farming on Pond Sediment Microbiome and Antibiotic Resistance Gene Composition. Front Vet Sci 2021; 8:673756. [PMID: 34113676 PMCID: PMC8186532 DOI: 10.3389/fvets.2021.673756] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/16/2021] [Indexed: 01/04/2023] Open
Abstract
Aquaculture is a fast-growing animal food sector, and freshwater fish farming is particularly common in Central and Eastern Europe. As the biodiversity of fishery ponds is changed toward fulfilling the industrial needs, precautions should be taken to keep the system sustainable and protect the adjacent environment from possible damage. Due to risk of infectious diseases, antibiotics are used in aquaculture production systems. The constant exposure to antimicrobials can contribute to the rise of antibiotic resistance in aquaculture products and the adjacent ecosystems, with possibility of dissemination to the wider environment as well as between animals and humans. Even though previous studies have found antibiotic resistance genes in the sediments and water of farming ponds, the tendency and direction of spreading is not clear yet. The objective of this project was to evaluate the influence of intensive fish farming on the condition of water bodies used for the aquaculture and the environment, concentrating on the impact of the aquaculture on the surrounding water ecosystems as well as the possibility of transferring the pollutants and antibiotic resistance genes to both environment and the human hosts. Combined measurement of antibiotic and heavy metal contamination, toxicity assessment, microorganism diversity, and the detection of common antibiotic resistance genes was performed in the sediments of one fishery farm ponds as well as sampling points upstream and downstream. All the tested sediment samples did not show significantly elevated heavy metal concentrations and no substantial veterinary antibiotic pollution. From the antibiotic resistance genes tested, the presence of aminoglycoside and β-lactam resistance determinants as well as the presence of integrons could be of concern for the possibility of transfer to humans. However, despite the lack of heavy metal and antibiotic pollution, the sediments showed toxicity, the cause of which should be explored more.
Collapse
Affiliation(s)
- Eglė Lastauskienė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vaidotas Valskys
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Jonita Stankevičiūtė
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Virginija Kalcienė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vilmantas Gėgžna
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Justinas Kavoliūnas
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Modestas Ružauskas
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Julija Armalytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
5
|
Verburg I, van Veelen HPJ, Waar K, Rossen JWA, Friedrich AW, Hernández Leal L, García-Cobos S, Schmitt H. Effects of Clinical Wastewater on the Bacterial Community Structure from Sewage to the Environment. Microorganisms 2021; 9:718. [PMID: 33807193 PMCID: PMC8065902 DOI: 10.3390/microorganisms9040718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/21/2021] [Accepted: 03/26/2021] [Indexed: 12/30/2022] Open
Abstract
This study pertains to measure differences in bacterial communities along the wastewater pathway, from sewage sources through the environment. Our main focus was on taxa which include pathogenic genera, and genera harboring antibiotic resistance (henceforth referred to as "target taxa"). Our objective was to measure the relative abundance of these taxa in clinical wastewaters compared to non-clinical wastewaters, and to investigate what changes can be detected along the wastewater pathway. The study entailed a monthly sampling campaign along a wastewater pathway, and taxa identification through 16S rRNA amplicon sequencing. Results indicated that clinical and non-clinical wastewaters differed in their overall bacterial composition, but that target taxa were not enriched in clinical wastewater. This suggests that treatment of clinical wastewater before release into the wastewater system would only remove a minor part of the potential total pathogen load in wastewater treatment plants. Additional findings were that the relative abundance of most target taxa was decreased after wastewater treatment, yet all investigated taxa were detected in 68% of the treated effluent samples-meaning that these bacteria are continuously released into the receiving surface water. Temporal variation was only observed for specific taxa in surface water, but not in wastewater samples.
Collapse
Affiliation(s)
- Ilse Verburg
- Wetsus, European Centre of Excellence for Sustainable Water Technology, 8900 CC Leeuwarden, The Netherlands; (I.V.); (H.P.J.v.V.); (L.H.L.)
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (J.W.A.R.); (A.W.F.); (S.G.-C.)
| | - H. Pieter J. van Veelen
- Wetsus, European Centre of Excellence for Sustainable Water Technology, 8900 CC Leeuwarden, The Netherlands; (I.V.); (H.P.J.v.V.); (L.H.L.)
| | - Karola Waar
- Izore, Centrum Infectieziekten Friesland, 8900 JA Leeuwarden, The Netherlands;
| | - John W. A. Rossen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (J.W.A.R.); (A.W.F.); (S.G.-C.)
| | - Alex W. Friedrich
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (J.W.A.R.); (A.W.F.); (S.G.-C.)
| | - Lucia Hernández Leal
- Wetsus, European Centre of Excellence for Sustainable Water Technology, 8900 CC Leeuwarden, The Netherlands; (I.V.); (H.P.J.v.V.); (L.H.L.)
| | - Silvia García-Cobos
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (J.W.A.R.); (A.W.F.); (S.G.-C.)
| | - Heike Schmitt
- Wetsus, European Centre of Excellence for Sustainable Water Technology, 8900 CC Leeuwarden, The Netherlands; (I.V.); (H.P.J.v.V.); (L.H.L.)
- Institute for Risk Assessment Sciences, Utrecht University, 3508 TD Utrecht, The Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
6
|
Liu Z, Iqbal M, Zeng Z, Lian Y, Zheng A, Zhao M, Li Z, Wang G, Li Z, Xie J. Comparative analysis of microbial community structure in the ponds with different aquaculture model and fish by high-throughput sequencing. Microb Pathog 2020; 142:104101. [PMID: 32109568 DOI: 10.1016/j.micpath.2020.104101] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 01/19/2023]
Abstract
The pond has a complex microbial ecosystem, including microorganisms in water and sediment, which plays an important role in the health of fish and water quality. The microbial community structure in the ponds can be easily affected by many factors. However, not much is known about the role of different aquaculture model and fish on the microbial community structure in ponds. The purpose of the study was to investigate the microbial diversity and composition of the ponds with different aquaculture model and fish by high-throughput sequencing. A total of 3835072 valid sequences were achieved from 60 samples. Additionally, 2064 and 1917 core OTUs were observed in water and sediment samples, respectively. Our results suggested that sediment samples have a higher abundance and diversity of microbial community than water samples. In all the samples, the four most dominant phyla were Proteobacteria, Cyanobacteria, Actinomycetes and Bacteroides. At the genus level, hgcI_clade and CL500-29_marine_group were the dominant bacteria shared by the water samples and sediment samples. In addition, more bacteria related to eutrophication were found in the group of BF, BC and HSB, which suggested that these ponds may have been eutrophicated. In conclusion, the present study revealed the differences in the structure and diversity of microbial communities in ponds with different aquaculture model and fish. Furthermore, changes in typical bacteria of the ponds contribute to detect water quality and prevent water eutrophication.
Collapse
Affiliation(s)
- Zhigang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; College of Life Science, Anqing Normal University, Anqing, 246011, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Mudassar Iqbal
- University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zhibo Zeng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yuxi Lian
- College of Life Science, Anqing Normal University, Anqing, 246011, PR China
| | - Aifang Zheng
- College of Life Science, Anqing Normal University, Anqing, 246011, PR China
| | - Mengmeng Zhao
- College of Life Science, Anqing Normal University, Anqing, 246011, PR China
| | - Zixin Li
- College of Life Science, Anqing Normal University, Anqing, 246011, PR China
| | - Guangjun Wang
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China
| | - Zhifei Li
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China.
| | - Jun Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China.
| |
Collapse
|
7
|
Analysis of Bacterial Communities in White Clover Seeds via High-Throughput Sequencing of 16S rRNA Gene. Curr Microbiol 2018; 76:187-193. [DOI: 10.1007/s00284-018-1607-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/24/2018] [Indexed: 01/16/2023]
|
8
|
Jin D, Kong X, Cui B, Jin S, Xie Y, Wang X, Deng Y. Bacterial communities and potential waterborne pathogens within the typical urban surface waters. Sci Rep 2018; 8:13368. [PMID: 30190569 PMCID: PMC6127328 DOI: 10.1038/s41598-018-31706-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/10/2018] [Indexed: 12/11/2022] Open
Abstract
Waterborne pathogens have attracted a great deal of attention in the public health sector over the last several decades. However, little is known about the pathogenic microorganisms in urban water systems. In this study, the bacterial community structure of 16 typical surface waters in the city of Beijing were analyzed using Illumina MiSeq high-throughput sequencing based on 16S rRNA gene. The results showed that Bacteroidetes, Proteobacteria and Actinobacteria were the dominant groups in 16 surface water samples, and Betaproteobacteria, Alphaproteobacteria, Flavobacteriia, Sphingobacteriia and Actinobacteria were the most dominant classes. The dominant genus across all samples was Flavobacterium. In addition, fifteen genus level groups of potentialy pathogenic bacteria were detected within the 16 water samples, with Pseudomonas and Aeromonas the most frequently identified. Spearman correlation analysis demonstrated that richness estimators (OTUs and Chao1) were correlated with water temperature, nitrate and total nitrogen (p < 0.05), while ammonia-nitrogen and total nitrogen were significantly correlated with the percent of total potential pathogens (p ≤ 0.05). These results could provide insight into the ecological function and health risks of surface water bacterial communities during the process of urbanization.
Collapse
Affiliation(s)
- Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. .,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiao Kong
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bingjian Cui
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shulan Jin
- School of History Geography and Tourism, Shangrao Normal University, Shangrao, 334000, China
| | - Yunfeng Xie
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xingrun Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. .,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Truchado P, Gil MI, Suslow T, Allende A. Impact of chlorine dioxide disinfection of irrigation water on the epiphytic bacterial community of baby spinach and underlying soil. PLoS One 2018; 13:e0199291. [PMID: 30020939 PMCID: PMC6051574 DOI: 10.1371/journal.pone.0199291] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 06/05/2018] [Indexed: 12/13/2022] Open
Abstract
The contamination of pathogenic bacteria through irrigation water is a recognized risk factor for fresh produce. Irrigation water disinfection is an intervention strategy that could be applied to reduce the probability of microbiological contamination of crops. Disinfection treatments should be applied ensuring minimum effective doses, which are efficient in inhibiting the microbial contamination while avoiding formation and accumulation of chemical residues. Among disinfection technologies available for growers, chlorine dioxide (ClO2) represents, after sodium hypochlorite, an alternative disinfection treatment, which is commercially applied by growers in the USA and Spain. However, in most of the cases, the suitability of this treatment has been tested against pathogenic bacteria and low attention have been given to the impact of chemical residues on the bacterial community of the vegetable tissue. The aim of this study was to (i) to evaluate the continual application of chlorine dioxide (ClO2) as a water disinfection treatment of irrigation water during baby spinach growth in commercial production open fields, and (ii) to determine the subsequent impact of these treatments on the bacterial communities in water, soil, and baby spinach. To gain insight into the changes in the bacterial community elicited by ClO2, samples of treated and untreated irrigation water as well as the irrigated soil and baby spinach were analyzed using Miseq® Illumina sequencing platform. Next generation sequencing and multivariate statistical analysis revealed that ClO2 treatment of irrigation water did not affect the diversity of the bacterial community of water, soil and crop, but significant differences were observed in the relative abundance of specific bacterial genera. This demonstrates the different susceptibility of the bacteria genera to the ClO2 treatment. Based on the obtained results it can be concluded that the phyllosphere bacterial community of baby spinach was more influenced by the soil bacteria community rather than that of irrigation water. In the case of baby spinach, the use of low residual ClO2 concentrations (approx. 0.25 mg/L) to treat irrigation water decreased the relative abundance of Pseudomonaceae (2.28-fold) and Enterobacteriaceae (2.5-fold) when comparing treated versus untreated baby spinach. Members of these two bacterial families are responsible for food spoilage and foodborne illnesses. Therefore, a reduction of these bacterial families might be beneficial for the crop and for food safety. In general it can be concluded that the constant application of ClO2 as a disinfection treatment for irrigation water only caused changes in two bacterial families of the baby spinach and soil microbiota, without affecting the major phyla and classes. The significance of these changes in the bacterial community should be further evaluated.
Collapse
Affiliation(s)
- Pilar Truchado
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
| | - María Isabel Gil
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
| | - Trevor Suslow
- Department of Plant Science, University of California, One Shields Avenue, Mann Laboratory, Davis, CA, United States of America
| | - Ana Allende
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
- * E-mail:
| |
Collapse
|
10
|
Xiang Y, Wang Y, Zhang C, Shen H, Wang D. Water level fluctuations influence microbial communities and mercury methylation in soils in the Three Gorges Reservoir, China. J Environ Sci (China) 2018; 68:206-217. [PMID: 29908740 DOI: 10.1016/j.jes.2018.03.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/03/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Reservoirs tend to have enhanced methylmercury (MeHg) concentrations compared to natural lakes and rivers, and water level fluctuations can promote MeHg production. Until now, little research has been conducted on the effects of microorganisms in soils for the formation of MeHg during different drying and flooding alternating conditions in the Three Gorges Reservoir (TGR). This study aimed to understand how water level fluctuations affect soil microbial composition and mercury concentrations, and if such microbial variations are related to Hg methylation. The results showed that MeHg concentrations and the ratios of MeHg to THg (MeHg%) in soils were higher in the seasonally drying and flooding alternating areas (DFAs, 175-155m) than those in the non-inundated (NIAs, >175m) and inundated areas (IAs, <145m). However, MeHg% in all samples was less than 1%, indicating that the Hg methylation activity in the soils of the TGR was under a low level. 454 high-throughput sequencing of 16S rRNA gene amplicons showed that soil bacterial abundance and diversity were relatively higher in DFA compared to those in NIA and IA, and microbial community composition varied in these three areas. At the family level, those groups in Deltaproteobacteria and Methanomicrobia that might have many Hg methylators were also showed a higher relative abundance in DFA, which might be the reason for the higher MeHg production in these areas. Overall, our results suggested that seasonally water level fluctuations can enhance the microbial abundance and diversity, as well as MeHg production in the TGR.
Collapse
Affiliation(s)
- Yuping Xiang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yongmin Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Agricultural Non-point Source Pollution Control in the Three Gorges Reservoir Area, Chongqing 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400715, China
| | - Cheng Zhang
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Agricultural Non-point Source Pollution Control in the Three Gorges Reservoir Area, Chongqing 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400715, China
| | - Hong Shen
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Agricultural Non-point Source Pollution Control in the Three Gorges Reservoir Area, Chongqing 400715, China.
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Agricultural Non-point Source Pollution Control in the Three Gorges Reservoir Area, Chongqing 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400715, China.
| |
Collapse
|
11
|
Ki BM, Huh IA, Choi JH, Cho KS. Relationship of nutrient dynamics and bacterial community structure at the water-sediment interface using a benthic chamber experiment. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:482-491. [PMID: 29303410 DOI: 10.1080/10934529.2017.1412191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The relationships between nutrient dynamics and the bacterial community at the water-sediment interface were investigated using the results of nutrient release fluxes, bacterial communities examined by 16S rRNA pyrosequencing and canonical correlation analysis (CCA) accompanied by lab-scale benthic chamber experiment. The nutrient release fluxes from the sediments into the water were as follows: -3.832 to 12.157 mg m-2 d-1 for total phosphorus, 0.049 to 9.993 mg m-2 d-1 for PO4-P, -2.011 to 41.699 mg m-2 d-1 for total nitrogen, -7.915 to -0.074 mg m-2 d-1 for NH3-N, and -17.940 to 1.209 mg m-2 d-1 for NO3-N. To evaluate the relationship between the bacterial communities and environmental variables, CCA was conducted in three representative conditions: in the overlying water, in the sediment at a depth of 0-5 cm, and in the sediment at a depth of 5-15 cm. CCA results showed that environmental variables such as nutrient release fluxes (TN, NH4, NO3, TP, and PO4) and water chemical parameters (pH, DO, COD, and temperature) were highly correlated with the bacterial communities. From the results of the nutrient release fluxes and the bacterial community, this study proposed the hypothesis for bacteria involved in the nutrient dynamics at the interface between water and sediment. In the sediment, sulfate-reducing bacteria (SRB) such as Desulfatibacillum, Desulfobacterium, Desulfomicrobium, and Desulfosalsimonas are expected to contribute to the decomposition of organic matter, and release of ammonia (NH4+) and phosphate (PO43-). The PO43- released into the water layer was observed by the positive fluxes of PO43-. The NH4+ released from the sediment was rapidly oxidized by the methane-oxidizing bacteria (MOB). This study observed in the water layer dominantly abundant MOB of Methylobacillus, Methylobacter, Methylocaldum, and Methylophilus. The nitrate (NO3-) accumulation caused by the oxidation environment of the water layer moved back to the sediment, which led to the relatively large negative fluxes of NO3-, compared to the small negative fluxes of NH4+.
Collapse
Affiliation(s)
- Bo-Min Ki
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , South Korea
| | - In Ae Huh
- b National Institute of Environmental Research , Incheon , South Korea
| | - Jung-Hyun Choi
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , South Korea
| | - Kyung-Suk Cho
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , South Korea
| |
Collapse
|
12
|
Meerbergen K, Willems KA, Dewil R, Van Impe J, Appels L, Lievens B. Isolation and screening of bacterial isolates from wastewater treatment plants to decolorize azo dyes. J Biosci Bioeng 2018; 125:448-456. [DOI: 10.1016/j.jbiosc.2017.11.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/12/2017] [Accepted: 11/17/2017] [Indexed: 01/13/2023]
|
13
|
Pimentel T, Marcelino J, Ricardo F, Soares AMVM, Calado R. Bacterial communities 16S rDNA fingerprinting as a potential tracing tool for cultured seabass Dicentrarchus labrax. Sci Rep 2017; 7:11862. [PMID: 28928412 PMCID: PMC5605529 DOI: 10.1038/s41598-017-11552-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/25/2017] [Indexed: 11/12/2022] Open
Abstract
Traceability of seafood has become crucial with market globalization and consumer’s awareness. The present study used PCR-DGGE and 454 pyrosequencing to assess if bacterial communities fingerprint associated to seabass (Dicentrarchus labrax) skin mucus can be used to discriminate the geographic origin of fishes cultured in three semi-intensive fish farms. PCR-DGGE and pyrosequencing results were congruent and suggested that this molecular approach has the potential to trace fish farms with a spatial resolution <500 m. Pyrosequencing results provided a detailed insight into the bacterial community composition of seabass skin mucus and revealed the existence of a core of bacterial communities within family Pseudomonadaceae and Rhodobacteraceae. This approach also allowed to recognized key OTUs that are potentially relevant to discriminate the geographic origin of the fish being surveyed. Overall, the present study increased our knowledge on farmed seabass microbiome and demonstrated that specific and unique bacterial taxa can act as natural signatures that allow us to trace fish to its respective geographic origin. Our study provides valuable clues that should be more investigated in future studies as a way to fulfill current traceability needs in the global trade of seafood.
Collapse
Affiliation(s)
- Tânia Pimentel
- Departamento de Biologia & CESAM & ECOMARE, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Joana Marcelino
- Instituto Universitário de Lisboa (ISCTE-IUL), DINÂMIA'CET, Avenida das Forças Armadas, 1649-026, Lisbon, Portugal
| | - Fernando Ricardo
- Departamento de Biologia & CESAM & ECOMARE, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM & ECOMARE, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Ricardo Calado
- Departamento de Biologia & CESAM & ECOMARE, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
14
|
Isolation of Viable but Non-culturable Bacteria from Printing and Dyeing Wastewater Bioreactor Based on Resuscitation Promoting Factor. Curr Microbiol 2017; 74:787-797. [DOI: 10.1007/s00284-017-1240-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/21/2017] [Indexed: 12/22/2022]
|
15
|
Gonzalez-Martinez A, Rodriguez-Sanchez A, van Loosdrecht MCM, Gonzalez-Lopez J, Vahala R. Detection of comammox bacteria in full-scale wastewater treatment bioreactors using tag-454-pyrosequencing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:25501-25511. [PMID: 27783252 DOI: 10.1007/s11356-016-7914-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/14/2016] [Indexed: 05/20/2023]
Abstract
The nitrogen cycle has been expanded with the recent discovery of Nitrospira strains that can conduct complete ammonium oxidation (commamox). Their importance in the nitrogen cycle within engineered ecosystems has not yet been analyzed. In this research, the community structure of the Bacteria domain of six full-scale activated sludge systems and three autotrophic nitrogen removal systems in the Netherlands and China has been investigated through tag-454-pyrosequencing. The phylogenetic analyses conducted in the present study showed that just a few of the Nitrospira sequences found in the bioreactors were comammox. Multivariate redundancy analysis of nitrifying genera showed an outcompetition of Nitrosomonas and non-comammox Nitrospira. Operational data from the bioreactors suggested that comammox could be favored at low temperature, low nitrogen substrate, and high dissolved oxygen. The non-ubiquity and low relative abundance of comammox in full-scale bioreactors suggested that this phylotype is not very relevant in the nitrogen cycle in wastewater treatment plants.
Collapse
Affiliation(s)
- Alejandro Gonzalez-Martinez
- Department of Built Environment, School of engineering, Aalto University, P.O. Box 15200, Aalto, FI-00076, Espoo, Finland.
| | | | - M C M van Loosdrecht
- Department of Biotechnology, Technical University of Delft, Julianalaan 67, 2628 BC, Delft, The Netherlands
| | - Jesus Gonzalez-Lopez
- Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071, Granada, Spain
| | - Riku Vahala
- Department of Built Environment, School of engineering, Aalto University, P.O. Box 15200, Aalto, FI-00076, Espoo, Finland
| |
Collapse
|
16
|
Bacterial abundance and diversity in pond water supplied with different feeds. Sci Rep 2016; 6:35232. [PMID: 27759010 PMCID: PMC5069485 DOI: 10.1038/srep35232] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 09/22/2016] [Indexed: 01/17/2023] Open
Abstract
The abundance and diversity of bacteria in two types of ponds were investigated by quantitative PCR and Illumina MiSeq sequencing. The results revealed that the abundance of bacterial 16S rRNA genes in D ponds (with grass carp fed sudan grass) was significantly lower than that in E ponds (with grass carp fed commercial feed). The microbial communities were dominated by Proteobacteria, Cyanobacteria, Bacteroidetes, and Actinobacteria in both E and D ponds, while the abundance of some genera was significantly different between the two types of ponds. Specifically, some potential pathogens such as Acinetobacter and Aeromonas were found to be significantly decreased, while some probiotics such as Comamonadaceae unclassified and Bacillales unclassified were significantly increased in D ponds. In addition, water quality of D ponds was better than that of E ponds. Temperature, dissolved oxygen and nutrients had significant influence on bacterial communities. The differences in bacterial community compositions between the two types of ponds could be partially explained by the different water conditions.
Collapse
|
17
|
Meerbergen K, Van Geel M, Waud M, Willems KA, Dewil R, Van Impe J, Appels L, Lievens B. Assessing the composition of microbial communities in textile wastewater treatment plants in comparison with municipal wastewater treatment plants. Microbiologyopen 2016; 6. [PMID: 27667132 PMCID: PMC5300884 DOI: 10.1002/mbo3.413] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 12/20/2022] Open
Abstract
It is assumed that microbial communities involved in the biological treatment of different wastewaters having a different chemical composition harbor different microbial populations which are specifically adapted to the environmental stresses encountered in these systems. Yet, little is known about the composition of these microbial communities. Therefore, the aim of this study was to assess the microbial community composition over two seasons (winter and summer) in activated sludge from well‐operating textile wastewater treatment plants (WWTPs) in comparison with municipal WWTPs, and to explain observed differences by environmental variables. 454‐pyrosequencing generated 160 archaeal and 1645 bacterial species‐level Operational Taxonomic Units (OTUs), with lower observed richness in activated sludge from textile WWTPs compared to municipal WWTPs. The bacterial phyla Planctomycetes, Chloroflexi, Chlorobi, and Acidobacteria were more abundant in activated sludge samples from textile WWTPs, together with archaeal members of Thaumarchaeota. Nonmetric multidimensional scaling analysis of the microbial communities showed that microbial communities from textile and municipal WWTPs were significantly different, with a seasonal effect on archaea. Nitrifying and denitrifying bacteria as well as phosphate‐accumulation bacteria were more abundant in municipal WWTPs, while sulfate‐reducing bacteria were almost only detected in textile WWTPs. Additionally, microbial communities from textile WWTPs were more dissimilar than those of municipal WWTPs, possibly due to a wider diversity in environmental stresses to which microbial communities in textile WWTPs are subjected to. High salinity, high organic loads, and a higher water temperature were important potential variables driving the microbial community composition in textile WWTPs. This study provides a general view on the composition of microbial communities in activated sludge of textile WWTPs, and may provide novel insights for identifying key players performing important functions in the purification of textile wastewaters.
Collapse
Affiliation(s)
- Ken Meerbergen
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), Technology Campus De Nayer, KU Leuven, Sint-Katelijne-Waver, Belgium
| | - Maarten Van Geel
- Plant Conservation and Population Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Michael Waud
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), Technology Campus De Nayer, KU Leuven, Sint-Katelijne-Waver, Belgium
| | - Kris A Willems
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), Technology Campus De Nayer, KU Leuven, Sint-Katelijne-Waver, Belgium
| | - Raf Dewil
- Process and Environmental Technology Lab (PETLab), Department of Chemical Engineering, Technology Campus De Nayer, KU Leuven, Sint-Katelijne-Waver, Belgium
| | - Jan Van Impe
- Chemical and Biochemical Process Technology and Control (BioTeC), Department of Chemical Engineering, Technology Campus Gent, KU Leuven, Gent, Belgium
| | - Lise Appels
- Process and Environmental Technology Lab (PETLab), Department of Chemical Engineering, Technology Campus De Nayer, KU Leuven, Sint-Katelijne-Waver, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), Technology Campus De Nayer, KU Leuven, Sint-Katelijne-Waver, Belgium
| |
Collapse
|
18
|
Zhang M, Sun Y, Chen L, Cai C, Qiao F, Du Z, Li E. Symbiotic Bacteria in Gills and Guts of Chinese Mitten Crab (Eriocheir sinensis) Differ from the Free-Living Bacteria in Water. PLoS One 2016; 11:e0148135. [PMID: 26820139 PMCID: PMC4731060 DOI: 10.1371/journal.pone.0148135] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/13/2016] [Indexed: 02/07/2023] Open
Abstract
Aquatic animals have a close relationship with water, but differences in their symbiotic bacteria and the bacterial composition in water remains unclear. Wild or domestic Chinese mitten crabs (Eriocheir sinensis) and the water in which they live were collected from four sampling sites in Jiangsu and Shanghai, China. Bacterial composition in water, gills or guts of E. sinensis, were compared by high-throughput sequencing using 16S rRNA genes. Analysis of >660,000 sequences indicated that bacterial diversity was higher in water than in gills or guts. Tenericutes and Proteobacteria were dominant phyla in guts, while Actinobacteria, Proteobacteria and Bacteroidetes were dominant in gills and water. Non-metric multidimensional scaling analysis indicated that microbiota from gills, guts or water clearly separated into three groups, suggesting that crabs harbor a more specific microbial community than the water in which they live. The dominant OTUs in crab gut were related to Mycoplasmataceae, which were low in abundance in gills, showing that, like mammals, crabs have body-site specific microbiota. OTUs related to Ilumatobacter and Albimonas, which are commonly present in sediment and seawater, were dominant in gills but almost absent from the sampled water. Considering E. sinensis are bottom-dwelling crustacean and they mate in saline water or seawater, behavior and life cycle of crabs may play an important role in shaping the symbiotic bacterial pattern. This study revealed the relationship between the symbiotic bacteria of Chinese mitten crab and their habitat, affording information on the assembly factors of commensal bacteria in aquatic animals.
Collapse
Affiliation(s)
- Meiling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
- * E-mail: (MLZ); (ECL)
| | - Yuhong Sun
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chunfang Cai
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhenyu Du
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Erchao Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
- * E-mail: (MLZ); (ECL)
| |
Collapse
|
19
|
Liu T, Kong W, Chen N, Zhu J, Wang J, He X, Jin Y. Bacterial characterization of Beijing drinking water by flow cytometry and MiSeq sequencing of the 16S rRNA gene. Ecol Evol 2016; 6:923-34. [PMID: 26941936 PMCID: PMC4761785 DOI: 10.1002/ece3.1955] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 01/30/2023] Open
Abstract
Flow cytometry (FCM) and 16S rRNA gene sequencing data are commonly used to monitor and characterize microbial differences in drinking water distribution systems. In this study, to assess microbial differences in drinking water distribution systems, 12 water samples from different sources water (groundwater, GW; surface water, SW) were analyzed by FCM, heterotrophic plate count (HPC), and 16S rRNA gene sequencing. FCM intact cell concentrations varied from 2.2 × 10(3) cells/mL to 1.6 × 10(4) cells/mL in the network. Characteristics of each water sample were also observed by FCM fluorescence fingerprint analysis. 16S rRNA gene sequencing showed that Proteobacteria (76.9-42.3%) or Cyanobacteria (42.0-3.1%) was most abundant among samples. Proteobacteria were abundant in samples containing chlorine, indicating resistance to disinfection. Interestingly, Mycobacterium, Corynebacterium, and Pseudomonas, were detected in drinking water distribution systems. There was no evidence that these microorganisms represented a health concern through water consumption by the general population. However, they provided a health risk for special crowd, such as the elderly or infants, patients with burns and immune-compromised people exposed by drinking. The combined use of FCM to detect total bacteria concentrations and sequencing to determine the relative abundance of pathogenic bacteria resulted in the quantitative evaluation of drinking water distribution systems. Knowledge regarding the concentration of opportunistic pathogenic bacteria will be particularly useful for epidemiological studies.
Collapse
Affiliation(s)
- Tingting Liu
- College of Biological Sciences and Technology Beijing Forestry University P. O. Box 162 Beijing 100083 China
| | - Weiwen Kong
- College of Biological Sciences and Technology Beijing Forestry University P. O. Box 162 Beijing 100083 China
| | - Nan Chen
- College of Biological Sciences and Technology Beijing Forestry University P. O. Box 162 Beijing 100083 China
| | - Jing Zhu
- College of Biological Sciences and Technology Beijing Forestry University P. O. Box 162 Beijing 100083 China
| | - Jingqi Wang
- College of Biological Sciences and Technology Beijing Forestry University P. O. Box 162 Beijing 100083 China
| | - Xiaoqing He
- College of Biological Sciences and Technology Beijing Forestry University P. O. Box 162 Beijing 100083 China
| | - Yi Jin
- College of Biological Sciences and Technology Beijing Forestry University P. O. Box 162 Beijing 100083 China
| |
Collapse
|