1
|
Lu Y, Chun Y, Shi X, Wang D, Ahmadijokani F, Rojas OJ. Multiphase Under-Liquid Biofabrication With Living Soft Matter: A Route to Customize Functional Architectures With Microbial Nanocellulose. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400311. [PMID: 38483010 DOI: 10.1002/adma.202400311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/04/2024] [Indexed: 03/27/2024]
Abstract
The growth of aerobic microbes at air-water interfaces typically leads to biofilm formation. Herein, a fermentative alternative that relies on oil-water interfaces to support bacterial activity and aerotaxis is introduced. The process uses under-liquid biofabrication by structuring bacterial nanocellulose (BNC) to achieve tailorable architectures. Cellulose productivity in static conditions is first evaluated using sets of oil homologues, classified in order of polarity. The oils are shown for their ability to sustain bacterial growth and BNC production according to air transfer and solubilization, both of which impact the physiochemical properties of the produced biofilms. The latter are investigated in terms of their morphological (fibril size and network density), structural (crystallinity) and physical-mechanical (surface area and strength) features. The introduced under-liquid biofabrication is demonstrated for the generation of BNC-based macroscale architectures and compartmentalized soft matter. This can be accomplished following three different routes, namely, 3D under-liquid networking (multi-layer hydrogels/composites), emulsion templating (capsules, emulgels, porous materials), and anisotropic layering (Janus membranes). Overall, the proposed platform combines living matter and multi-phase systems as a robust option for material development with relevance in biomedicine, soft robotics, and bioremediation, among others.
Collapse
Affiliation(s)
- Yi Lu
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Yeedo Chun
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Xuetong Shi
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Dong Wang
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, 150040, China
| | - Farhad Ahmadijokani
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto, Espoo, 02150, Finland
| |
Collapse
|
2
|
Bahadur A, Zhang L, Guo W, Sajjad W, Ilahi N, Banerjee A, Faisal S, Usman M, Chen T, Zhang W. Temperature-dependent transformation of microbial community: A systematic approach to analyzing functional microbes and biogas production. ENVIRONMENTAL RESEARCH 2024; 249:118351. [PMID: 38331158 DOI: 10.1016/j.envres.2024.118351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/24/2023] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
The stability and effectiveness of the anaerobic digestion (AD) system are significantly influenced by temperature. While majority research has focused on the composition of the microbial community in the AD process, the relationships between functional gene profile deduced from gene expression at different temperatures have received less attention. The current study investigates the AD process of potato peel waste and explores the association between biogas production and microbial gene expression at 15, 25, and 35 °C through metatranscriptomic analysis. The production of total biogas decreased with temperature at 15 °C (19.94 mL/g VS), however, it increased at 35 °C (269.50 mL/g VS). The relative abundance of Petrimonas, Clostridium, Aminobacterium, Methanobacterium, Methanothrix, and Methanosarcina were most dominant in the AD system at different temperatures. At the functional pathways level 3, α-diversity indices, including Evenness (Y = 5.85x + 8.85; R2 = 0.56), Simpson (Y = 2.20x + 2.09; R2 = 0.33), and Shannon index (Y = 1.11x + 4.64; R2 = 0.59), revealed a linear and negative correlation with biogas production. Based on KEGG level 3, several dominant functional pathways associated with Oxidative phosphorylation (ko00190) (25.09, 24.25, 24.04%), methane metabolism (ko00680) (30.58, 32.13, and 32.89%), and Carbon fixation pathways in prokaryotes (ko00720) (27.07, 26.47, and 26.29%), were identified at 15 °C, 25 °C and 35 °C. The regulation of biogas production by temperature possibly occurs through enhancement of central function pathways while decreasing the diversity of functional pathways. Therefore, the methanogenesis and associated processes received the majority of cellular resources and activities, thereby improving the effectiveness of substrate conversion to biogas. The findings of this study illustrated the crucial role of central function pathways in the effective functioning of these systems.
Collapse
Affiliation(s)
- Ali Bahadur
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Cryosphere and Eco-Environment Research Station of Shule River Headwaters, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lu Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Guo
- Lanzhou Xinrong Environmental Energy Engineering Technology Co. Ltd. Lanzhou 730000, China
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Nikhat Ilahi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Abhishek Banerjee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shah Faisal
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Muhammad Usman
- State Key Laboratory of Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
3
|
Microbiome of Seven Full-Scale Anaerobic Digestion Plants in South Korea: Effect of Feedstock and Operational Parameters. ENERGIES 2021. [DOI: 10.3390/en14030665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, the microbiomes linked with the operational parameters in seven mesophilic full-scale AD plants mainly treating food waste (four plants) and sewage sludge (three plants) were analyzed. The results obtained indicated lower diversity and evenness of the microbial population in sludge digestion (SD) plants compared to food digestion (FD) plants. Candidatus Accumulibacter dominated (up to 42.1%) in SD plants due to microbial immigration from fed secondary sludge (up to 89%). Its potential activity in SD plants was correlated to H2 production, which was related to the dominance of hydrogenotrophic methanogens (Methanococcus). In FD plants, a balance between the hydrogenotrophic and methylotrophic pathways was found, while Flavobacterium and Levilinea played an important role during acidogenesis. Levilinea also expressed sensitivity to ammonia in FD plants. The substantial differences in hydraulic retention time (HRT), organic loading rate (OLR), and total ammonium nitrogen (TAN) among the studied FD plants did not influence the archaeal methane production pathway. In addition, the bacterial genera responsible for acetate production through syntrophy and homoacetogenesis (Smithella, Treponema) were present in all the plants studied.
Collapse
|
4
|
Sposob M, Moon HS, Lee D, Kim TH, Yun YM. Comprehensive analysis of the microbial communities and operational parameters of two full-scale anaerobic digestion plants treating food waste in South Korea: Seasonal variation and effect of ammonia. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122975. [PMID: 32512456 DOI: 10.1016/j.jhazmat.2020.122975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/11/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
There are about ninety full-scale anaerobic digestion (AD) plants in South Korea that treat food waste (FW); however, the key diff ;erences in the microbial communities in different seasons and the effects of ammonia in AD remain poorly understood. In this study, the seasonal changes in microbial communities associated with operational parameters of two full-scale ADs (C and W plants) treating FW were analyzed. The organic loading rate (OLR) variability had an influence on the seasonal CH4 yield; the W plant had a lower CH4 yield with an unstable AD performance while the C plant had a higher CH4 yield with a stable AD performance. It was mainly due to the substantially different NH4+ concentration; the W plant had a NH4+ concentration nearly 1.6 times higher compared to the C plant. The high NH4+ presence in the W plant led to the dominance of class Clostridia, and methanogenesis was mostly done by hydrogenotrophs (Methanomassiliicoccus luminyensis). Additionally, the members belonging to Clostridia and Bacteroidia were found at both plants in each season (share ≥0.5%) implying their indispensable role during the anaerobic digestion of FW.
Collapse
Affiliation(s)
- Michal Sposob
- Department of Environmental Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Hee-Sung Moon
- Waste-Energy Research Division, Environmental Resources Research Department, National Institute of Environmental Research, Environmental Research Complex, Incheon, 22689, Republic of Korea
| | - Dongjin Lee
- Waste-Energy Research Division, Environmental Resources Research Department, National Institute of Environmental Research, Environmental Research Complex, Incheon, 22689, Republic of Korea
| | - Tae-Hoon Kim
- Department of Environmental Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Yeo-Myeong Yun
- Department of Environmental Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
5
|
Yun YM, Kim M, Kim H, Kim DH, Kwon EE, Kang S. Increased biodegradability of low-grade coal wastewater in anaerobic membrane bioreactor by adding yeast wastes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 234:36-43. [PMID: 30599328 DOI: 10.1016/j.jenvman.2018.12.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/28/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Demineralization is required in upgrading low-grade coal to serve as an alternative energy resource for the production of fuel and valuable chemicals but generates a large amount of low-grade coal wastewater (LCWW). The objective of this study was to investigate the effects of a co-substrate on an anaerobic membrane bioreactor (AnMBR) treating LCWW. CH4 was not produced during the operation fed by LCWW alone. When yeast wastes (YW) were supplemented, there was a gradual increase in the biodegradability of LCWW, achieving 182 CH4 mL/g COD with 58% COD removal efficiency. The analysis of physicochemical characteristics in the effluent of AnMBR, done by excitation-emission matrix (EEM) and size exclusion chromatography (SEC), showed that the proportion of soluble microbial products (SMPs) and aromatic group with high-molecular weight (>1 kDa) increased. Microbial analysis revealed that the increased dominance of bacteria Comamonas, Methanococcus, and Methanosarcina facilitated biodegradation of LCWW in the presence of YW.
Collapse
Affiliation(s)
- Yeo-Myeong Yun
- Department of Environmental Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Myungchan Kim
- Process Research Team, Institute of Environmental Technology, LG-Hitachi Water Solutions, 51 Gasan Digital 1-ro, Geumcheon-gu, Seoul, 08592, Republic of Korea
| | - Hyojeon Kim
- Department of Civil and Environmental Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Dong-Hoon Kim
- Department of Civil Engineering, Inha University, 100 Inharo, Nam-gu, Incheon, 22212, Republic of Korea
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea
| | - Seoktae Kang
- Department of Civil and Environmental Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
6
|
Bohutskyi P, Phan D, Spierling RE, Kopachevsky AM, Bouwer EJ, Lundquist TJ, Betenbaugh MJ. Production of lipid-containing algal-bacterial polyculture in wastewater and biomethanation of lipid extracted residues: Enhancing methane yield through hydrothermal pretreatment and relieving solvent toxicity through co-digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:1377-1394. [PMID: 30759577 DOI: 10.1016/j.scitotenv.2018.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/11/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
The feasibility of generating a lipid-containing algal-bacterial polyculture biomass in municipal primary wastewater and enhancing biomethanation of lipid-extracted algal residues (LEA) through hydrothermal pretreatment and co-digestion with sewage sludge (SS) was investigated. In high-rate algal ponds, the polyculture of native algal and bacteria species demonstrated a monthly average net and gross biomass productivity of 30 ± 3 and 36 ± 3 gAFDW m-2 day-1 (summer season). The algal community was dominated by Micractinium sp. followed by Scenedesmus sp., Chlorella sp., pennate diatoms and Chlamydomonas sp. The polyculture metabolic activities resulted in average reductions of wastewater volatile suspended solids (VSS), carbonaceous soluble biochemical oxygen demand (csBOD5) and total nitrogen (Ntotal) of 63 ± 18%, 98 ± 1% and 76 ± 21%, respectively. Harvested biomass contained nearly 23% lipid content and an extracted blend of fatty acid methyl esters satisfied the ASTM D6751 standard for biodiesel. Anaerobic digestion of lipid extracted algal residues (LEA) demonstrated long lag-phase in methane production of 17 days and ultimate methane yield of 296 ± 2 mL/gVS (or ~50% of theoretical), likely because to its limited biodegradability and toxicity due to presence of the residual solvent (hexane). Hydrothermal pretreatment increased the ultimate methane yield and production rate by 15-30% but did not mitigate solvent toxicity effects completely leading to less substantial improvement in energy output of 5-20% and diminished Net Energy Ratio (NER < 1). In contrast, co-digestion of LEA with sewage sludge (10% to 90% ratio) was found to minimize solvent toxicity and improve methane yield enhancing the energy output ~4-fold, compared to using LEA as a single substrate, and advancing NER to 4.2.
Collapse
Affiliation(s)
- Pavlo Bohutskyi
- Biological Sciences Division, Pacific Northwest National Laboratory, 3300 Stevens Dr., Richland, WA 99354, USA.
| | - Duc Phan
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686, USA; Department of Civil and Environmental Engineering, The University of Texas at San Antonio, 1 UTSA Cir San Antonio, TX 78249, USA
| | - Ruth E Spierling
- Civil and Environmental Engineering Department, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA 93407, USA; MicroBio Engineering Inc, PO Box 15821, San Luis Obispo, CA 93406, USA
| | - Anatoliy M Kopachevsky
- Department of Water Supply and Sanitary Engineering, Academy of Construction and Architecture of V.I. Vernadsky Crimean Federal University, 4 Prospekt Vernadskogo, Simferopol 295007, Republic of Crimea; Water Technologies Research and Production Company, 7 Petropavlovskaya street, Simferopol 295000, Republic of Crimea; Water of the Crimea State Unitary Enterprise of the Republic of Crimea, 1а Kievskaya street, Simferopol 295053, Republic of Crimea
| | - Edward J Bouwer
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686, USA
| | - Trygve J Lundquist
- Civil and Environmental Engineering Department, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA 93407, USA; MicroBio Engineering Inc, PO Box 15821, San Luis Obispo, CA 93406, USA
| | - Michael J Betenbaugh
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686, USA
| |
Collapse
|
7
|
Oh YK, Hwang KR, Kim C, Kim JR, Lee JS. Recent developments and key barriers to advanced biofuels: A short review. BIORESOURCE TECHNOLOGY 2018. [PMID: 29523378 DOI: 10.1016/j.biortech.2018.02.089] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Biofuels are regarded as one of the most viable options for reduction of CO2 emissions in the transport sector. However, conventional plant-based biofuels (e.g., biodiesel, bioethanol)'s share of total transportation-fuel consumption in 2016 was very low, about 4%, due to several major limitations including shortage of raw materials, low CO2 mitigation effect, blending wall, and poor cost competitiveness. Advanced biofuels such as drop-in, microalgal, and electro biofuels, especially from inedible biomass, are considered to be a promising solution to the problem of how to cope with the growing biofuel demand. In this paper, recent developments in oxy-free hydrocarbon conversion via catalytic deoxygenation reactions, the selection of and lipid-content enhancement of oleaginous microalgae, electrochemical biofuel conversion, and the diversification of valuable products from biomass and intermediates are reviewed. The challenges and prospects for future development of eco-friendly and economically advanced biofuel production processes also are outlined herein.
Collapse
Affiliation(s)
- You-Kwan Oh
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Kyung-Ran Hwang
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Changman Kim
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jung Rae Kim
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jin-Suk Lee
- Gwangju Bioenergy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea.
| |
Collapse
|
8
|
Bozan M, Akyol Ç, Ince O, Aydin S, Ince B. Application of next-generation sequencing methods for microbial monitoring of anaerobic digestion of lignocellulosic biomass. Appl Microbiol Biotechnol 2017; 101:6849-6864. [PMID: 28779289 DOI: 10.1007/s00253-017-8438-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
The anaerobic digestion of lignocellulosic wastes is considered an efficient method for managing the world's energy shortages and resolving contemporary environmental problems. However, the recalcitrance of lignocellulosic biomass represents a barrier to maximizing biogas production. The purpose of this review is to examine the extent to which sequencing methods can be employed to monitor such biofuel conversion processes. From a microbial perspective, we present a detailed insight into anaerobic digesters that utilize lignocellulosic biomass and discuss some benefits and disadvantages associated with the microbial sequencing techniques that are typically applied. We further evaluate the extent to which a hybrid approach incorporating a variation of existing methods can be utilized to develop a more in-depth understanding of microbial communities. It is hoped that this deeper knowledge will enhance the reliability and extent of research findings with the end objective of improving the stability of anaerobic digesters that manage lignocellulosic biomass.
Collapse
Affiliation(s)
- Mahir Bozan
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342, Istanbul, Turkey
| | - Çağrı Akyol
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342, Istanbul, Turkey
| | - Orhan Ince
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Sevcan Aydin
- Department of Genetics and Bioengineering, Nişantaşı University, Maslak, 34469, Istanbul, Turkey.
| | - Bahar Ince
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342, Istanbul, Turkey
| |
Collapse
|