1
|
Gedik D, Eraslan G. Evaluation of the efficacy of diosmin and chrysin against tau-fluvalinate exposure in rats. Food Chem Toxicol 2025; 195:115097. [PMID: 39522795 DOI: 10.1016/j.fct.2024.115097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Tau-fluvalinate is a type 2 pyrethroid insecticide. Diosmin and chrysin are flavonoids with antioxidant and anti-apoptotic effects. Role of diosmin and chrysin against infavorable toxic effects caused by tau-fluvalinate and the underlying mechanisms of these effects were investigated. Six groups were formed and diosmin, chrysin, tau-fluvalinate, tau-fluvalinate + diosmin and tau-fluvalinate + chrysin were administered orally to rats at a dose of 20 mg/kg.bw except for the control group, once a day for 21 days, respectively. Tau-fluvalinate elevated MDA and NO levels while diminishing the activities of antioxidant enzymes (SOD, CAT, GSH-Px, GR, GST, G6PD) and GSH levels in the majority of the analyzed blood and tissues, statistically significant. Serum triglyceride, cholesterol, total protein and albumin levels as well as LDH and PChE activities decreased. Conversely, serum creatinine, AST, ALT and ALP levels/activities increased. Elevated protein levels of caspase 3, caspase 9, p53 and Bax and decreased protein levels of Bcl-2 were observed in the liver. There were negative changes in body/some organ weights. Diosmin and chrysin administration resulted in a marked recovery in tau-fluvalinate-induced toxic effects, but this improvement was not complete. These flavonoids may be considered as promising potential therapeutic options to alleviate the adverse effects associated with tau-fluvalinate intoxication.
Collapse
Affiliation(s)
- Didem Gedik
- Department of Veterinary Pharmacology and Toxicology, Institute of Health Science, Erciyes University, Kayseri, Turkey
| | - Gökhan Eraslan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
2
|
Li S, Liu Y, Li D, Zhang K, Zhang Z, Zhang Z, Cai J. Microalgal astaxanthin ameliorates cypermethrin-induced necroptosis and inflammation via targeting mitochondrial Ca 2+ homeostasis and the ROS-NF-κB-RIPK3/MLKL axis in carp hepatocytes (Cyprinus carpio). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109944. [PMID: 39370019 DOI: 10.1016/j.fsi.2024.109944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Cypermethrin is a toxic pesticide that has infiltrated water bodies due to its widespread use. This contamination has led to detrimental effects on the immune organs of aquatic species, including fish. The natural fat-soluble orange-red carotenoid, astaxanthin (MAT), derived from microalgae, possesses anti-inflammatory, antioxidant, and immunomodulatory properties. To elucidate the mechanism of CY induced damage to carp liver cells and assess the potential protective effects of MAT, we established a carp hepatocyte model exposed to CY and/or MAT. Hepatocytes from carp (Cyprinus carpio) were treated with either 8 μM CY or 60 μM MAT for 24 h. Upon exposure CY, a significant increase in reactive oxygen species (ROS) was observed alongside a diminution in the activities of key antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), suggesting an impairment of cellular antioxidant capacity. Subsequently, acridine orange/ethidium bromide (AO/EB) staining and flow cytometry analysis revealed that hepatocytes exposed to CY exhibited a higher incidence of necroptosis, associated with an elevated mitochondrial Ca2+ concentration, which contributed to cellular dysfunction. Furthermore, exposure to CY also activated the ROS-NF-κB-RIPK3/MLKL signaling pathway, increasing the levels of necroptosis-related regulatory factors (RIP1, RIP3, and MLKL) in hepatocytes and the expression of inflammatory genes (IL-6, IFN-γ, IL-4, IL-1β, and TNF-α), which led to immune dysfunction in hepatocytes. The immunotoxic effects induced by CY were mitigated by MAT treatment, suggesting its potential in alleviating the aforementioned changes caused by CY. Overall, the data suggested that MAT therapy could enhance hepatocyte defenses against CY-induced necroptosis and inflammatory responses by regulating mitochondrial Ca2+ homeostasis and inhibiting the ROS-NF-κB-RIPK3/MLKL signaling cascade. This study elucidated the potential benefits of employing MAT to protect farmed fish from agrobiological hazards during CY exposure, underscoring the practical applications of MAT in aquaculture.
Collapse
Affiliation(s)
- Shuoyue Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Peoples R China
| | - Yinuo Liu
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, Peoples R China
| | - Di Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Peoples R China
| | - Kaixuan Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Peoples R China
| | - Zequn Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Peoples R China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Peoples R China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Peoples R China.
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Peoples R China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Peoples R China.
| |
Collapse
|
3
|
Wei Y, Wang L, Liu J. The diabetogenic effects of pesticides: Evidence based on epidemiological and toxicological studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121927. [PMID: 37268216 DOI: 10.1016/j.envpol.2023.121927] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
While the use of pesticides has improved grain productivity and controlled vector-borne diseases, the widespread use of pesticides has resulted in ubiquitous environmental residues that pose health risks to humans. A number of studies have linked pesticide exposure to diabetes and glucose dyshomeostasis. This article reviews the occurrence of pesticides in the environment and human exposure, the associations between pesticide exposures and diabetes based on epidemiological investigations, as well as the diabetogenic effects of pesticides based on the data from in vivo and in vitro studies. The potential mechanisms by which pesticides disrupt glucose homeostasis include induction of lipotoxicity, oxidative stress, inflammation, acetylcholine accumulation, and gut microbiota dysbiosis. The gaps between laboratory toxicology research and epidemiological studies lead to an urgent research need on the diabetogenic effects of herbicides and current-use insecticides, low-dose pesticide exposure research, the diabetogenic effects of pesticides in children, and assessment of toxicity and risks of combined exposure to multiple pesticides with other chemicals.
Collapse
Affiliation(s)
- Yile Wei
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Linping Wang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Tekeli MY, Eraslan G, Bayram LÇ, Aslan C, Çalımlı S. The protective effects of baicalin and chrysin against emamectin benzoate-induced toxicity in Wistar albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53997-54021. [PMID: 36869176 DOI: 10.1007/s11356-023-26110-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The aim of this study was to investigate the effects of baicalin, chrysin and their combinations against emamectin benzoate-induced toxicity in rats. For this purpose, sixty four rats were divided into evenly 8 groups with 6-8-week-old male Wistar albino rats, weighing 180-250 g, in each group. While the first group was kept as a control (corn oil), the remaining 7 groups were administered with emamectin benzoate (10 mg/kg bw), baicalin (50 mg/kg bw) and chrysin (50 mg/kg bw) alone or together for 28 days. Oxidative stress parameters, serum biochemical parameters and blood/tissue (liver, kidney, brain, testis and heart) and tissue histopathology were investigated. Compared to the control group, the emamectin benzoate-intoxicated rats had significantly higher tissue/plasma concentrations of nitric oxide (NO) and malondialdehyde (MDA), as well as lower tissue glutathione (GSH) concentrations and antioxidant enzyme activity (glutathione peroxidase/GSH-Px, glutathione reductase/GR, glutathione-S-transferase/GST, superoxide dismutase/SOD, catalase/CAT). Biochemical analysis showed that emamectin benzoate administration significantly increased serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) activities, as well as triglyceride, cholesterol, creatinine, uric acid and urea levels, and decreased serum total protein and albumin levels. The histopathological examination of the liver, kidney, brain, heart and testis tissues of the emamectin benzoate-intoxicated rats demonstrated necrotic changes. Baicalin and/or chrysin reversed the biochemical and histopathological alterations induced by emamectin benzoate on these tested organs. Therefore, baicalin and chrysin (alone or in combination) could offer protection against emamectin benzoate-induced toxicity.
Collapse
Affiliation(s)
- Muhammet Yasin Tekeli
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Gökhan Eraslan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey.
| | - Latife Çakır Bayram
- Department of Pathology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Coşkun Aslan
- Derinkuyu Emineana and Yaşar Ertaş Agriculture and Livestock Vocational School, Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey
| | - Sinem Çalımlı
- Department of Veterinary Pharmacology and Toxicology, Institute of Health Science, Erciyes University, Kayseri, Turkey
| |
Collapse
|
5
|
Carranza-Martin AC, Fabra MC, Urrutia Luna N, Farnetano N, Anchordoquy JP, Anchordoquy JM, Picco SJ, Furnus CC, Nikoloff N. In vitro adverse effects of amitraz on semen quality: Consequences in bovine embryo development. Theriogenology 2023; 199:106-113. [PMID: 36716591 DOI: 10.1016/j.theriogenology.2023.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Veterinary drugs are potential environmental pollutants that interfere with male reproductive function. Infertility has increased, and it is known that environmental toxins contribute to declining sperm parameters. Amitraz {N,N-[(methylamino) dimeth-ylidyne] di-2,4-xylidine} (AMZ) is a formamidine pesticide widely used as an insecticide and an acaricide. The aim of this study was to evaluate the toxicity of AMZ in bovine sperm. Three experiments using frozen-thawed bovine semen incubated with AMZ for 2 h were carried out. Negative and solvent (dimethyl sulfoxide) controls were run simultaneously with treatments. In experiment 1, the AMZ concentrations used were 10, 15 and 25 μg AMZ/ml and the sperm parameters evaluated were viability, mitochondrial activity, acrosomal status, functional membrane integrity and apoptosis. In experiments 2 and 3, 25 μg AMZ/ml was used to evaluate fertilizing capacity, embryo development and blastocyst DNA damage. In experiment 1, 25 μg AMZ/ml decreased sperm viability (P = 0.01), reduced mitochondrial activity (P = 0.03) and induced apoptosis (P < 0.01). Also, 15 and 25 μg AMZ/ml affected functional membrane integrity (P < 0.01). In experiment 2, AMZ did not alter sperm-zona binding (P = 0.40) and pronucleus formation (P = 0.36). In experiment 3, 25 μg AMZ/ml decreased the rate of embryo development (P < 0.01) and increased apoptosis (P = 0.03). These results suggest that AMZ induced alterations in bovine sperm, probably affecting male fertility at concentrations that could be present in the environment.
Collapse
Affiliation(s)
- Ana Cristina Carranza-Martin
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Mariana Carolina Fabra
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Naiara Urrutia Luna
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Nicolás Farnetano
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Juan Patricio Anchordoquy
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Juan Mateo Anchordoquy
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Sebastián Julio Picco
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Cecilia Cristina Furnus
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| | - Noelia Nikoloff
- IGEVET - Instituto de Genética Veterinaria "Ing. Fernando N. Dulout" (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| |
Collapse
|
6
|
Kašuba V, Tariba Lovaković B, Lucić Vrdoljak A, Katić A, Kopjar N, Micek V, Milić M, Pizent A, Želježić D, Žunec S. Evaluation of Toxic Effects Induced by Sub-Acute Exposure to Low Doses of α-Cypermethrin in Adult Male Rats. TOXICS 2022; 10:toxics10120717. [PMID: 36548550 PMCID: PMC9785956 DOI: 10.3390/toxics10120717] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 05/14/2023]
Abstract
To contribute new information to the pyrethroid pesticide α-cypermethrin toxicity profile, we evaluated its effects after oral administration to Wistar rats at daily doses of 2.186, 0.015, 0.157, and 0.786 mg/kg bw for 28 days. Evaluations were performed using markers of oxidative stress, cholinesterase (ChE) activities, and levels of primary DNA damage in plasma/whole blood and liver, kidney, and brain tissue. Consecutive exposure to α-cypermethrin affected the kidney, liver, and brain weight of rats. A significant increase in concentration of the thiobarbituric acid reactive species was observed in the brain, accompanied by a significant increase in glutathione peroxidase (GPx) activity. An increase in GPx activity was also observed in the liver of all α-cypermethrin-treated groups, while GPx activity in the blood was significantly lower than in controls. A decrease in ChE activities was observed in the kidney and liver. Treatment with α-cypermethrin induced DNA damage in the studied cell types at almost all of the applied doses, indicating the highest susceptibility in the brain. The present study showed that, even at very low doses, exposure to α-cypermethrin exerts genotoxic effects and sets in motion the antioxidative mechanisms of cell defense, indicating the potential hazards posed by this insecticide.
Collapse
|
7
|
Al-Asmari KM, Altayb HN, Al-Attar AM, Qahl SH, Al-Thobaiti SA, Abu Zeid IM. Arabica coffee and olive oils mitigate malathion-induced nephrotoxicity in rat: In silico, immunohistochemical and biochemical evaluation. Saudi J Biol Sci 2022; 29:103307. [PMID: 35602869 PMCID: PMC9120970 DOI: 10.1016/j.sjbs.2022.103307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/21/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022] Open
|
8
|
In Vitro Neurotoxicity of Flumethrin Pyrethroid on SH-SY5Y Neuroblastoma Cells: Apoptosis Associated with Oxidative Stress. TOXICS 2022; 10:toxics10030131. [PMID: 35324756 PMCID: PMC8955675 DOI: 10.3390/toxics10030131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 11/26/2022]
Abstract
Pyrethroids are neurotoxicants for animals, showing a pattern of toxic action on the nervous system. Flumethrin, a synthetic pyrethroid, is used against ectoparasites in domestic animals, plants, and for public health. This compound has been shown to be highly toxic to bees, while its effects on other animals have been less investigated. However, in vitro studies to evaluate cytotoxicity are scarce, and the mechanisms associated with this effect at the molecular level are still unknown. This study aimed to investigate the oxidative stress and cell death induction in SH-SY5Y neuroblastoma cells in response to flumethrin exposure (1–1000 µM). Flumethrin induced a significant cytotoxic effect, as evaluated by MTT and LDH leakage assays, and produced an increase in the biomarkers of oxidative stress as reactive oxygen species and nitric oxide (ROS and NO) generation, malondialdehyde (MDA) concentration, and caspase-3 activity. In addition, flumethrin significantly increased apoptosis-related gene expressions (Bax, Casp-3, BNIP3, APAF1, and AKT1) and oxidative stress and antioxidative (NFκB and SOD2) mediators. The results demonstrated, by biochemical and gene expression assays, that flumethrin induces oxidative stress and apoptosis, which could cause DNA damage. Detailed knowledge obtained about these molecular changes could provide the basis for elucidating the molecular mechanisms of flumethrin-induced neurotoxicity.
Collapse
|
9
|
Oliveira JMD, Lima GDDA, Destro ALF, Condessa S, Zuanon JAS, Freitas MB, Oliveira LLD. Short-term intake of deltamethrin-contaminated fruit, even at low concentrations, induces testicular damage in fruit-eating bats (Artibeus lituratus). CHEMOSPHERE 2021; 278:130423. [PMID: 33819891 DOI: 10.1016/j.chemosphere.2021.130423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/21/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Deltamethrin (DTM) is a pyrethroid insecticide widely used for agricultural purposes. Exposure to DTM has proven to be harmful to humans, but whether low, environmental concentrations of this pesticide also poses a threat to wild mammals is still unknown. In Neotropical areas, bats play important roles in contributing to forest regeneration. We investigated the effects of DTM exposure on the reproductive function of male Neotropical fruit-eating bats (Artibeus lituratus), known for contributing to reforestation through seed dispersal in Neotropical Forests. Bats were assigned to 3 groups: control (fed with papaya); DTM2 (fed with papaya treated with DTM at 0.02 mg/kg) and DTM4 (fed with papaya treated with DTM at 0.04 mg/kg) for seven days. Bats from DTM2 and DTM4 groups showed increased testicular levels of nitric oxide and superoxide dismutase and catalase activities. The germinal epithelium from DTM4 bats showed non-viable cells and cell desquamation, indicating microscopic lesions and Leydig cells atrophy. Our results demonstrate the onset of cell degeneration that may affect the reproductive function in DTM exposed bats.
Collapse
Affiliation(s)
- Jerusa Maria de Oliveira
- Departament of General Biology, Federal University of Viçosa, Avenida Peter Henry Rolfs, S/n - Campus Universitário, Viçosa - MG, 36570-900, MG, Brazil
| | - Graziela Domingues de Almeida Lima
- Departament of General Biology, Federal University of Viçosa, Avenida Peter Henry Rolfs, S/n - Campus Universitário, Viçosa - MG, 36570-900, MG, Brazil
| | - Ana Luiza Fonseca Destro
- Departament of Animal Biology - Federal University of Viçosa, Avenida Peter Henry Rolfs, S/n - Campus Universitário, Viçosa - MG, 36570-900, MG, Brazil
| | - Suellen Condessa
- Departament of Animal Biology - Federal University of Viçosa, Avenida Peter Henry Rolfs, S/n - Campus Universitário, Viçosa - MG, 36570-900, MG, Brazil
| | - Jener Alexandre Sampaio Zuanon
- Departament of Animal Biology - Federal University of Viçosa, Avenida Peter Henry Rolfs, S/n - Campus Universitário, Viçosa - MG, 36570-900, MG, Brazil
| | - Mariella Bontempo Freitas
- Departament of Animal Biology - Federal University of Viçosa, Avenida Peter Henry Rolfs, S/n - Campus Universitário, Viçosa - MG, 36570-900, MG, Brazil
| | - Leandro Licursi de Oliveira
- Departament of General Biology, Federal University of Viçosa, Avenida Peter Henry Rolfs, S/n - Campus Universitário, Viçosa - MG, 36570-900, MG, Brazil.
| |
Collapse
|
10
|
Alalwani AD. Nephrotoxicity of cypermethrin in rats. Histopathological aspects. Histol Histopathol 2020; 35:1437-1448. [PMID: 32969486 DOI: 10.14670/hh-18-263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cypermethrin (CYP) is an important type II pyrethroid pesticide widely used to protect crops against pests and insect infestations. However, its toxicity is a risk to both human health and the surrounding environment. The present study was conducted to investigate the nephrotoxic effect and histopathological changes caused by Cypermethrin in the kidney tissues of adult Wistar rats. In this study, 30 Wistar rats were equally divided into three groups. G1, control animals; G2 and G3 treated with various sub lethal doses of CYP for 30 days as follows: G2, administered low dose (1/100 of LD50) of CYP; G3, administered high dose (1/50 of LD50) of CYP. The damage to different organelles of renal proximal and distal cells was observed using transmission electron microscopy. Histopathological damage in kidney samples was confirmed using morphological and histological measures. The results showed that CYP caused significant histopathological damage to the renal proximal and distal tubules of treated rats. Compared to control samples, CYP caused marked alterations in the dimensions of nucleus, ovoid and filamentous mitochondria of the treated cells. In conclusion, Cypermethrin is found to be toxic to mammals. It caused marked ultrastructural damage to the renal proximal and distal tubules of Wistar rats and the intensity of nephrotoxicity correlated with the dose of oral administration.
Collapse
Affiliation(s)
- Aisha D Alalwani
- Department of Biology, Science College, University of Jeddah, Jeddah, Saudi Arabia.
| |
Collapse
|
11
|
Liu H, Li P, Wang P, Liu D, Zhou Z. Toxicity risk assessment of pyriproxyfen and metabolites in the rat liver: A vitro study. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121835. [PMID: 31843398 DOI: 10.1016/j.jhazmat.2019.121835] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/09/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Pyriproxyfen (PYR) is a type of aromatic juvenile hormone analog and a hygienic insecticide used in agriculture to control insect species. Therefore, assessing the metabolic behavior and toxic effects of PYR in mammals is the best means of evaluating its risks to human health. Previous studies have reported conflicting results regarding the toxicity risks of PYR and its metabolites in rat hepatocytes. We used ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to perform a chiral analysis of PYR and its metabolites investigating the enantioselective metabolism of PYR in rat liver microsomes. Our results concluded that the recoveries of PYR, metabolites A and B ranged from 81.13%-111.54 %, with RSD values of 0.01 %-6.52 %. The method limits of detection (LODs) and limits of quantification (LOQs) for PYR, metabolites A and B were in accordance with the analysis requirements. Previous studies have demonstrated the enantioselective metabolism of PYR and the generation of metabolites. Measurements of cell proliferation toxicity to rat hepatocytes, apoptosis and DNA damage induced by PYR and its metabolites in rat hepatocytes indicated that the metabolites reflected higher toxicity potential than PYR in rat hepatocytes. More studies about the molecular mechanism of PYR-induced toxicity are urgently needed in future work.
Collapse
Affiliation(s)
- Hui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Peize Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China.
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| |
Collapse
|
12
|
Abd El-Moneim Ibrahim K, Mohamed Abdelrahman S, K A Elhakim H, Ali Ragab E. Single or combined exposure to chlorpyrifos and cypermethrin provoke oxidative stress and downregulation in monoamine oxidase and acetylcholinesterase gene expression of the rat's brain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:12692-12703. [PMID: 32006337 DOI: 10.1007/s11356-020-07864-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/23/2020] [Indexed: 02/07/2023]
Abstract
The extensive uses of organophosphates and pyrethroids have made it necessary to investigate the neurotoxicity of their combination as they may implicate in the neurodegenerative syndromes. Monoamine oxidase-A (MAO-A) and acetylcholinesterase (AChE) gene expression in the rat brain were evaluated after independent and combined intoxications with chlorpyrifos and cypermethrin. Twenty-four mature male rats were equally distributed into four groups. The first one was kept as a control group, whereas the second, third and fourth were orally gavage with chlorpyrifos (16.324 mg/kg), cypermethrin (25.089 mg/kg) and their combination (9.254 mg/kg), respectively, for 4 weeks. As compared to the control group, intoxications with chlorpyrifos and/or cypermethrin revealed significant (P < 0.05) declines in the levels of brain neurotransmitters (dopamine and serotonin) plus the enzymatic activities of MAO-A, AChE and sodium-potassium adenosine triphosphatase. The mRNA genes expression of MAO-A and AChE have also confirmed the enzymatic actions. Moreover, the oxidative injury recorded as the levels of malondialdehyde and nitric oxide markedly increased (P < 0.01), while the total thiol content reduced and the histopathological outcomes have confirmed these impacts. In conclusion, chlorpyrifos and cypermethrin revealed antagonistic inhibitions on the brain MAO-A and AChE gene regulation through neurotransmission deteriorations and oxidative damage, which could describe their contributions in the neuropathological progressions.
Collapse
Affiliation(s)
- Khairy Abd El-Moneim Ibrahim
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Dokki, Giza, 12618, Egypt.
| | | | - Heba K A Elhakim
- Biochemistry Division, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Eman Ali Ragab
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
13
|
Pyrethroid exposure and neurotoxicity: a mechanistic approach. Arh Hig Rada Toksikol 2019; 70:74-89. [DOI: 10.2478/aiht-2019-70-3263] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/01/2019] [Indexed: 12/27/2022] Open
Abstract
Abstract
Pyrethroids are a class of synthetic insecticides that are used widely in and around households to control the pest. Concerns about exposure to this group of pesticides are now mainly related to their neurotoxicity and nigrostriatal dopaminergic neurodegeneration seen in Parkinson’s disease. The main neurotoxic mechanisms include oxidative stress, inflammation, neuronal cell loss, and mitochondrial dysfunction. The main neurodegeneration targets are ion channels. However, other receptors, enzymes, and several signalling pathways can also participate in disorders induced by pyrethroids. The aim of this review is to elucidate the main mechanisms involved in neurotoxicity caused by pyrethroids deltamethrin, permethrin, and cypermethrin. We also review common targets and pathways of Parkinson’s disease therapy, including Nrf2, Nurr1, and PPARγ, and how they are affected by exposure to pyrethroids. We conclude with possibilities to be addressed by future research of novel methods of protection against neurological disorders caused by pesticides that may also find their use in the management/treatment of Parkinson’s disease.
Collapse
|
14
|
Moyano P, Ruiz M, García JM, Frejo MT, Anadon Baselga MJ, Lobo M, García J, Del Pino J. Oxidative stress and cell death induction by amitraz and its metabolite BTS-27271 mediated through cytochrome P450 and NRF2 pathway alteration in primary hippocampal cell. Food Chem Toxicol 2019; 129:87-96. [PMID: 31029719 DOI: 10.1016/j.fct.2019.04.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/13/2019] [Accepted: 04/22/2019] [Indexed: 11/28/2022]
Abstract
Amitraz is a neurotoxic formamidine pesticide that induces cell death in hippocampal neurons, although its mechanisms are unknown. Amitraz produces reactive oxygen species (ROS), which could lead to cell death. Amitraz was shown to induce different cytochrome P450 (CYP) isoenzymes involved with ROS and apoptotic cell death induction. Finally, amitraz was described to decrease the activity of antioxidant enzymes regulated through KEAP1/NRF2 pathway, thus likely leading to a reduction of ROS elimination and to cell death induction. We evaluated the effect of amitraz or BTS-27271 co-treatment with or without the antioxidant N-acetylcysteine and/or the unspecific CYP inhibitor 1-aminobenzotriazole on cell viability and its related mechanisms in wild type and silenced primary hippocampal neurons after 24 h treatment. We observed that amitraz produced oxidative stress and CYPs induction leading to apoptotic cell death. ROS generation was partially mediated by CYPs induction and downregulation of NRF2-pathway through KEAP1 overexpression. These data could help explain the mechanism by which amitraz induces cell death and oxidative stress and provide a therapeutic strategy to protect against this effect in case of poisoning.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain.
| | - Matilde Ruiz
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - José Manuel García
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - María Teresa Frejo
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - María José Anadon Baselga
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Margarita Lobo
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Jimena García
- Department of Pharmacology, Health Sciences School, Alfonso X University, 28691, Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
15
|
Monteiro HR, Lemos MFL, Novais SC, Soares AMVM, Pestana JLT. Amitraz toxicity to the midge Chironomus riparius: Life-history and biochemical responses. CHEMOSPHERE 2019; 221:324-332. [PMID: 30641373 DOI: 10.1016/j.chemosphere.2019.01.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 05/21/2023]
Abstract
Acute and chronic toxicity of the formamidine pesticide amitraz to the midge Chironomus riparius was assessed using conventional ecotoxicological tests and biochemical approaches (biomarkers). Amitraz is mainly used as an ectoparasiticide in veterinary medicine, but also in agriculture and apiculture. However, information of amitraz toxicity to non-target invertebrates is limited. Besides the impairment of developmental and emergence rates (reduced larval growth, emergence, and delayed development time) caused by chronic exposure to amitraz, acute exposures induced alterations in the antioxidant enzymes glutathione peroxidase (GPx) and catalase (CAT), and in energetic metabolism biomarkers, lactate dehydrogenase (LDH) and electron transport system (ETS) activities. Moreover, lipid peroxidation (LPO) increased by amitraz exposure. Our results reveal potential secondary effects of amitraz to invertebrates and biomarkers that may aid in the interpretation of sub-lethal toxic responses to amitraz. These results add information concerning the potential outcomes of amitraz exposure to freshwater invertebrates underlining the importance of risk assessment studies of formamidine pesticides.
Collapse
Affiliation(s)
- Hugo R Monteiro
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal; MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641, Peniche, Portugal; Department of Biochemistry and Microbiology, Laboratory for Microbiology, Ghent University, B-9000, Gent, Belgium.
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641, Peniche, Portugal
| | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641, Peniche, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - João L T Pestana
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
16
|
Oliveira JM, Losano NF, Condessa SS, de Freitas RMP, Cardoso SA, Freitas MB, de Oliveira LL. Exposure to deltamethrin induces oxidative stress and decreases of energy reserve in tissues of the Neotropical fruit-eating bat Artibeus lituratus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:684-692. [PMID: 29172149 DOI: 10.1016/j.ecoenv.2017.11.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/05/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
Deltamethrin (DTM) is a synthetic pyrethroid insecticide highly used by farmers and home users. This pesticide has lipophilic properties that facilitate a high absorption and can cause toxicity in non-target organisms. During foraging, the fruit-eating bats Artibeus lituratus are exposed to pesticides. However, the knowledge of the toxicity of pesticides on the physiology of bats is relatively scarce. This study aimed to check the toxicity of short-term exposure to low concentration of DTM on fruit-eating bat A. lituratus. After seven days of exposure to two doses of DTM (0.02 and 0.04mg/kg of papaya), the fruit bats showed an increase in the enzyme aspartate aminotransferase, alanine aminotransferase, and hyperglycemia. The liver and pectoral muscle presented oxidative stress. In the liver, the hydrogen peroxide (H2O2) and nitric oxide (NO) were increased as well as the antioxidant glutathione (GSH), the activity of glutathione S-transferase (GST), superoxide dismutase (SOD) and catalase (CAT) but in a lesser extent. Yet, total lipids were increased while hepatic glycogen content is reduced. The pectoral muscle showed NO, SOD, CAT, malondialdehyde (MDA), and carbonyl increased protein levels in both concentrations of DTM. All these results show that low doses of DTM can cause hepatic and muscular toxicity and induce changes in carbohydrate metabolism. Physiological changes caused by exposure to DTM in bats may have direct consequences in flight capacity, reproduction, and metabolism of these animals.
Collapse
Affiliation(s)
- Jerusa Maria Oliveira
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Nicole Fontes Losano
- Departamento de Biologia Animal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Suellen Silva Condessa
- Departamento de Biologia Animal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | | | - Silvia Almeida Cardoso
- Departamento de Medicina e Enfermagem, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | | | | |
Collapse
|
17
|
Ajao MS, Sansa AB, Imam A, Ibrahim A, Adana MY, Alli-Oluwafuyi A, Kareem SB. Protective Effect of Nigella Sativa (Black Caraway (Oil on Oral Dichlorvos Induced Hematological, Renal and Nonspecific Immune System Toxicity in Wistar Rats. IRANIAN JORNAL OF TOXICOLOGY 2017. [DOI: 10.29252/arakmu.11.6.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
18
|
Mu X, Shen G, Huang Y, Luo J, Zhu L, Qi S, Li Y, Wang C, Li X. The enantioselective toxicity and oxidative stress of beta-cypermethrin on zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:312-320. [PMID: 28601763 DOI: 10.1016/j.envpol.2017.05.088] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/10/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
Although the toxicity of beta-cypermethrin (beta-CYP) to aquatic organisms has become a significant concern in recent years, its enantioselective effects on non-target organisms is poorly understood. To investigate the enantioselective toxicity of beta-CYP on zebrafish, adult zebrafish were exposed to a series of isometric concentrations of four beta-CYP enantiomers and the beta-CYP racemate for 96 h. In addition, the activities of four antioxidant enzymes and the malondialdehyde (MDA) content in zebrafish liver and brain were tested after 15 and 30 days beta-CYP enantiomers and racemate exposure under environmentally relevant dosages (0.01 and 0.1 μg/L). According to the acute toxicity results, the 1R-cis-αS and 1R-trans-αS enantiomers were more lethal than 1S-cis-αR and 1S-trans-αR. At 0.1 μg/L, the 1R-cis-αS and 1R-trans-αS enantiomers, and the beta-CYP racemate could significantly induce a hepatic MDA content at 30 days post exposure (dpe), while only 1R-cis-αS caused brain lipid peroxidation. An apparent regulation of antioxidase levels was observed in zebrafish liver and brain after exposure to the 1R-cis-αS and 1R-trans-αS enantiomers, and the beta-CYP racemate. In contrast, no significant oxidative stress was observed in zebrafish exposed to 1S-cis-αR and 1S-trans-αR enantiomers under the test concentrations. This work demonstrated the occurrence of enantioselectivity in toxicity and oxidative stress of beta-CYP to adult zebrafish, which should be considered in environmental risk assessments.
Collapse
Affiliation(s)
- Xiyan Mu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China.
| | - Gongming Shen
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Ying Huang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Jianbo Luo
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Lizhen Zhu
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Suzhen Qi
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Xuefeng Li
- College of Sciences, China Agricultural University, Beijing, People's Republic of China.
| |
Collapse
|
19
|
Saillenfait AM, Sabaté JP, Denis F, Antoine G, Robert A, Roudot AC, Ndiaye D, Eljarrat E. Evaluation of the effects of α-cypermethrin on fetal rat testicular steroidogenesis. Reprod Toxicol 2017; 72:106-114. [DOI: 10.1016/j.reprotox.2017.06.133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/15/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
|