1
|
Luo H, Yang Y, Shao Y, Schäffer A, Chen Z. Air-water exchange: Toxicities, risks and PAHs compounds in the three gorges reservoir of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177981. [PMID: 39657345 DOI: 10.1016/j.scitotenv.2024.177981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Air-water exchange is inevitably accompanied by the transportation of contaminants between atmosphere and water, which significantly leads to the alterations of toxicity and risks. However, the resulting changes of toxicity and risk in water and air due to the cross-interfacial transport of pollutants are still unclear. In this study, the water and atmospheric samples at the Pengxi River located in the Three Gorges Reservoir (TGR), China, were collected in winter and summer seasons respectively. The contaminated water exhibited higher toxicity effects than air in multiple toxicity endpoint tests. Besides, waters collected during winter exhibited greater toxicity effects than in summer. The concentrations of ΣPAHs were 48.0-445 ng L-1 in the water and 9.44-82.3 ng/m3 in the air, with ΣPAHs significantly higher in winter than in summer for water samples. Notably, the 2-3 ring PAHs showed a tendency to volatilize from water to air and may increase atmospheric toxicity, whereas the 4-6 ring PAHs tend to be deposited from air to water and may heighten toxicity in the water. Correlation analysis indicated that PAHs were important toxicants in the air, posing higher incremental carcinogenic risk, particularly during winter. Thus, the changes in toxicity and risk caused by the water-air exchange of pollutants cannot be ignored. This research contributes to a deeper understanding of the changes in toxicity effects and health risks caused by the air-water exchange of pollutants. The importance of considering the toxic effects and health concerns of micropollutants in the air as important as in water is emphasized.
Collapse
Affiliation(s)
- Hongyan Luo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 174 Shazheng Street Shapingba, 400045 Chongqing, China
| | - Yinjie Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 174 Shazheng Street Shapingba, 400045 Chongqing, China
| | - Ying Shao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 174 Shazheng Street Shapingba, 400045 Chongqing, China
| | - Andreas Schäffer
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 174 Shazheng Street Shapingba, 400045 Chongqing, China; Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Zhongli Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 174 Shazheng Street Shapingba, 400045 Chongqing, China.
| |
Collapse
|
2
|
Harshavarthini M, Pathan MA, Poojary N, Kumar S, Gurphale N, Varshini SVS, Kumari R, Nagpure NS. Assessment of toxicity potential of neglected Mithi River water from Mumbai megacity, India, in zebrafish using embryotoxicity, teratogenicity, and genotoxicity biomarkers. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:950. [PMID: 37450229 DOI: 10.1007/s10661-023-11542-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
The Mithi River begins at Vihar Lake and flows through the industrial hub of the city of Mumbai, India, and merges with the Arabian Sea at Mahim Creek. The current study was carried out to assess the ecotoxicological effects of the Mithi River surface water in zebrafish (Danio rerio) embryos. Water samples were collected from ten sampling sites (S1 to S10) located along the course of the Mithi River. The toxicity of water samples was assessed using a zebrafish embryo toxicity test (ZFET). Water samples were diluted from all sites at 1:0, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, and 1:128 times. The lowest and highest LDil 20 values for 96 h were estimated as 9.16 and 74.18 respectively for the S2 and S5 sites. The results of embryotoxicity and teratogenicity assays indicated a significant difference (p < 0.0001) between embryos exposed to control and sampling sites (except S1) for various endpoints such as mortality, egg coagulation, pericardial edema, yolk sac edema, tail bend, and skeletal deformities. The histopathological analysis revealed various lesions, ascertaining the toxic effects of water samples. The comet assay revealed significantly higher DNA damage (except S1) in embryos exposed to sites S5 and S6 with OTM values of 4.46 and 2.48 respectively. The results indicated that the Mithi River is polluted with maximum pollution load at the middle stretches. The study further indicated that the pollutants in the Mithi River (except S1) could potentially be hazardous to the aquatic organisms; therefore, continuous biomonitoring of the river is needed for its revival.
Collapse
Affiliation(s)
- M Harshavarthini
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Mujahidkhan A Pathan
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Nalini Poojary
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Saurav Kumar
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Nikita Gurphale
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - S V Sai Varshini
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Riya Kumari
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - N S Nagpure
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India.
| |
Collapse
|
3
|
Xie M, Qian L, Dong H, Mei W, Fu X, Hu Y, Yan J, Sun Y, Wu P, Chen X, Wang L. The high organic carbon accumulation in estuarine wetlands necessarily does not represent a high CO 2 sequestration capacity. ENVIRONMENT INTERNATIONAL 2023; 172:107762. [PMID: 36689865 DOI: 10.1016/j.envint.2023.107762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Estuarine wetlands with high organic carbon (OC) accumulation rates due to their high plant biomass and interception of tide-derived OC are generally considered as large CO2 sinks. However, our previous study found that tidal OC input seems to stimulate soil CO2 emissions, potentially weakening CO2 sequestration in estuarine wetlands. To further verify this phenomenon, we first established a structural equation model, which confirmed a positive correlation between tidal OC input and soil organic carbon (SOC) and soil respiration. We then performed trace analysis to determine the stability of SOC derived from different sources and its effect on soil CO2 emissions by analyzing the input and retention of OC derived from tides and plants in the Yangtze Estuary wetlands. From upstream to downstream, as tidal OC input decreased, the relative retention ratio of the tidal OC in wetland soil increased from 1.259 to 2.148, whereas the relative retention ratio of plant OC in the soil decreased from 61.5% to 14.8%. Our findings indicated that the degradability of tidal OC was higher upstream than that downstream, but both inhibited plant OC degradation, thus providing an important reason for the higher CO2 emissions upstream of wetlands (with higher tidal OC input). In addition, the primarily contributor to CO2 (δ13) emissions' transforming from plant SOC (81.35%) to tidal SOC (91.18%) was an increase in organic matter input from the tide in a microcosm system. Consequently, a higher CO2 output than CO2 input (plant OC) due to the ready degradation of tidal OC consequently weakens the CO2 sequestration capacity of the estuarine wetlands. This phenomenon is cause for concern regarding the CO2 sink function of estuarine wetlands intercepting large amounts of organic matter.
Collapse
Affiliation(s)
- Mengdi Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Liwei Qian
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Research Department of Energy and Eco-Environment, Zhejiang Development & Planning Institute, Hangzhou 310030, China
| | - Haoyu Dong
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wenxuan Mei
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohua Fu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yu Hu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianfang Yan
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Ying Sun
- Shanghai Jiuduansha Wetland Nature Reserve Management Center, Shanghai 200135, China
| | - Pengfei Wu
- Shanghai Jiuduansha Wetland Nature Reserve Management Center, Shanghai 200135, China
| | - Xiuzhi Chen
- Shanghai Jiuduansha Wetland Nature Reserve Management Center, Shanghai 200135, China
| | - Lei Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
4
|
Yamamoto FY, Souza ATC, Paula VDCSD, Beverari I, Garcia JRE, Padial AA, de Souza Abessa DM. From molecular endpoints to modeling longer-term effects in fish embryos exposed to the elutriate from Doce River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157332. [PMID: 35870591 DOI: 10.1016/j.scitotenv.2022.157332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/31/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Sediments represent a major sink and also a main source of contaminants to aquatic environments. An environmental disaster from a mining dam breakage in 2015 in South-East Brazil re-suspended complex mixtures of chemicals deposited in the sediment, spreading contaminants along the Doce River Basin (DRB) major river course. While high levels of contaminants in sediment were well described, toxicological effects in aquatic organisms were poorly investigated. Thus, the effects of these potentially toxic chemicals were assessed in the present study through different endpoints (biochemical to populational levels) in fish embryos of the South-American silver catfish exposed to elutriates from different sites of the DRB. Despite no significant mortality observed, our results showed that exposure to the elutriates, especially those from the closest site to the dam collapse, caused higher deformities rates and DNA damage in the fish embryos than in the control group. Multivariate analysis showed that these sublethal effects may be related to the high levels of metals introduced by mining activities, compromising long-term survival and reproduction success. In addition, it was possible to observe the influence of other sources of pollutants along the river. According to our data, the mathematical model simulated a significant impact on the population density at longer-term exposure, for the sites that showed the most prominent toxicity responses. The fish embryo toxicity test proved to be an effective assay to assess the ecotoxicological effects of the pollutants from a major river contaminated by a mining dam collapse and showed that the survival rate per se was not a suitable endpoint to assess the toxicity of the pollutants. As a consequence, we contributed to shed a light on a potential underestimated impact of pollutants in sediments of the DRB on the native organisms at distinct biological levels of organizations.
Collapse
Affiliation(s)
| | | | | | - Isabella Beverari
- Institute of Biosciences, São Paulo State University, São Vicente, Brazil
| | | | - André Andian Padial
- Graduation Program in Ecology and Conservation, Federal University of Paraná, Curitiba, Brazil; Analyses and Synthesis in Biodiversity Lab, Botany Department, Federal University Curitiba, Brazil.
| | | |
Collapse
|
5
|
Suwa K, Takahashi C, Horie Y. Acute toxicity assays using Danio rerio and Daphnia magna to assess hot-spring drainage in the Shibukuro and Tama Rivers (Akita, Japan). ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:187-193. [PMID: 35039997 DOI: 10.1007/s10646-021-02514-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
We investigated the lethal toxicity of Shibukuro and Tama river water near the inflow of Tamagawa hot-spring water in Akita Prefecture, Japan. We first measured metal concentrations in both rivers. We detected iron, arsenic, and aluminum; the concentrations of each tended to decrease from upstream to downstream. We next examined the influence of river water on zebrafish Danio rerio and water flea Daphnia magna. We observed lethal effects in both species, with Daphnia magna more sensitive to toxicity than Danio rerio. For both species, the toxic effects of river water decreased with increasing distance downstream from the inflow of hot-spring water. Our results show that the metals discharged from Tamagawa hot spring have a negative effect on aquatic organisms.
Collapse
Affiliation(s)
- Kyo Suwa
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi, Nakano Simoshinjo, Akita, 010-0195, Japan
| | - Chiho Takahashi
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi, Nakano Simoshinjo, Akita, 010-0195, Japan
| | - Yoshifumi Horie
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-Nishi, Nakano Simoshinjo, Akita, 010-0195, Japan.
- Research Center for Inland Sea (KURCIS), Kobe University, Fukaeminami, Higashinada, Kobe, 658-0022, Japan.
| |
Collapse
|
6
|
Alves RN, Mariz CF, de Melo Alves MK, Cavalcanti MGN, de Melo TJB, de Arruda-Santos RH, Zanardi-Lamardo E, Carvalho PSM. Contamination and Toxicity of Surface Waters Along Rural and Urban Regions of the Capibaribe River in Tropical Northeastern Brazil. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:3063-3077. [PMID: 34324728 DOI: 10.1002/etc.5180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/09/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
The Capibaribe River provides water to a population of 1.7 million people in the Brazilian northeast, while receiving agricultural runoff and industrial and domestic effluents along its 280 km. The present study evaluated the ecotoxicity of surface waters along ten sites in rural and urban areas using zebrafish (Danio rerio) early-life stages and related it to water quality indices and chemical abiotic variables. Lethality rates, delays in embryo-larval development quantified by the general morphology score (GMS), and frequencies of developmental abnormalities were analyzed. A correlation was detected between zebrafish GMS and water quality index (WQI), sensitivity to domestic sewage contamination, and trophic state index, focused on eutrophication. These indices agreed in identifying a spatial pattern of smaller impact in terms of ecotoxicity, domestic sewage contamination, and eutrophication risk at three sites in rural areas (mean GMS 16.9), an intermediate impact at four sites with urban and agricultural influence (mean GMS 16.4), and greatest impacts at three more urbanized sites (mean GMS 14.9). Most frequent developmental abnormalities included noninflation of the swim bladder, delayed hatching, nonprotrusion of the mouth, blood stasis, and nondevelopment of pectoral fins. Toxic NH3 concentrations varied spatially, with higher concentrations in urban sites; and blood stasis correlated positively with NH3 , suggesting a causal relationship. Polycyclic aromatic hydrocarbons were detected in both rural and urbanized sites, contributing to detected toxicity. The present study demonstrates the potential of zebrafish early-life stages as an ecotoxicological model that may contribute to a better understanding of surface water quality and ecotoxicity in tropical river systems. Environ Toxicol Chem 2021;40:3063-3077. © 2021 SETAC.
Collapse
Affiliation(s)
- Romulo Nepomuceno Alves
- Laboratório de Ecotoxicologia Aquática, Centro de Biociências, Federal University of Pernambuco, Recife, Brazil
| | - Célio Freire Mariz
- Laboratório de Ecotoxicologia Aquática, Centro de Biociências, Federal University of Pernambuco, Recife, Brazil
| | | | | | | | - Roxanny Helen de Arruda-Santos
- Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos (OrganoMAR), Centro de Tecnologia e Geociências, Federal University of Pernambuco, Recife, Brazil
| | - Eliete Zanardi-Lamardo
- Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos (OrganoMAR), Centro de Tecnologia e Geociências, Federal University of Pernambuco, Recife, Brazil
| | - Paulo S M Carvalho
- Laboratório de Ecotoxicologia Aquática, Centro de Biociências, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
7
|
Saiki P, Mello-Andrade F, Gomes T, Rocha TL. Sediment toxicity assessment using zebrafish (Danio rerio) as a model system: Historical review, research gaps and trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148633. [PMID: 34182436 DOI: 10.1016/j.scitotenv.2021.148633] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/19/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Sediment is an important compartment in aquatic environments and acts as a sink for environmental pollutants. Sediment toxicity tests have been suggested as critical components in environmental risk assessment. Since the zebrafish (Danio rerio) has been indicated as an emerging model system in ecotoxicological tests, a scientometric and systematic review was performed to evaluate the use of zebrafish as an experimental model system in sediment toxicity assessment. A total of 97 papers were systematically analyzed and summarized. The historical and geographical distributions were evaluated and the data concerning the experimental design, type of sediment toxicity tests and approach (predictive or retrospective), pollutants and stressors, zebrafish developmental stages and biomarkers responses were summarized and discussed. The use of zebrafish to assess the sediment toxicity started in 1996, using mainly a retrospective approach. After this, research showed an increasing trend, especially after 2014-2015. Zebrafish exposed to pollutant-bound sediments showed bioaccumulation and several toxic effects, such as molecular, biochemical, morphological, physiological and behavioral changes. Zebrafish is a suitable model system to assess the toxicity of freshwater, estuarine and marine sediments, and sediment spiked in the laboratory. The pollutant-bound sediment toxicity in zebrafish seems to be overall dependent on physical and chemical properties of pollutants, experimental design, environmental factor, developmental stages and presence of organic natural matter. Overall, results showed that the zebrafish embryos and larvae are suitable model systems to assess the sediment-associated pollutant toxicity.
Collapse
Affiliation(s)
- Patrícia Saiki
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil; Federal Institute of Education, Science and Technology of Goiás (IFG), Câmpus Goiânia, Goiás, Brazil
| | - Francyelli Mello-Andrade
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil; Federal Institute of Education, Science and Technology of Goiás (IFG), Câmpus Goiânia, Goiás, Brazil
| | - Tânia Gomes
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
8
|
Wang M, Chen X, Zhang R, Zhao J, Yang C, Wu L. Developmental toxicity and transcriptome analysis of 4-epianhydrotetracycline to zebrafish (Danio rerio) embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139227. [PMID: 32450397 DOI: 10.1016/j.scitotenv.2020.139227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/23/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
As a primary degradation by-product of tetracycline (TC), 4-Epianhydrotetracycline (4-EATC) has been detected frequently in the aquatic environment, which may pose a potential environmental risk to aquatic organisms. Up to now, however, the toxicology study on 4-EATC to aquatic organisms is limited. In the present study, in order to better understand the toxic mechanism of 4-EATC, developmental toxicity including lethal and sublethal effects of 4-EATC and TC were investigated. The results showed that the developmental toxicity of 4-EATC to zebrafish embryos was stronger than that of TC. The 96 h LC50 value of 4-EATC to zebrafish embryos was 29.13 mg/L. Malformations seemed to be the most sensitive sublethal endpoint of 4-EATC exposure, and the 96 h EC50 value was 8.57 mg/L. Transcriptome response of 4-EATC to zebrafish embryos was determined. The results showed that 430 different expression genes (DEGs) caused by 4-EATC, and most enriched in tryptophan (TRP) metabolism pathway. Annotation of DEGs in the TRP metabolism demonstrated that expression of 4 gene products in tryptophan metabolized along the kynurenine (KYN) pathway were changed. Disorder of TRP catabolism in KYN pathway was a potential mechanism of 4-EATC toxicity to zebrafish embryos.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaoping Chen
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Run Zhang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jianfu Zhao
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Changming Yang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Lingling Wu
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
9
|
Chen X, Wang Y, Cai Z, Zhang M, Ye C. Response of the nitrogen load and its driving forces in estuarine water to dam construction in Taihu Lake, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31458-31467. [PMID: 32488718 DOI: 10.1007/s11356-020-09454-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
To regulate the water level and minimize the occurrence of water eutrophication in shallow lakes, dams and gates are often constructed in rivers. However, this practice may result in a deterioration of water quality in some estuaries. In the present study, using the correction of Nemerow pollution index (CNPI) and a redundancy analysis (RDA), water samples from different dammed rivers around Taihu Lake were compared to assess the pollution risk and identify the factors responsible for water eutrophication. The average total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC) concentrations, and chemical oxygen demand (CODMn) were 2.45 ± 2.28, 0.08 ± 0.06, 43.01 ± 18.75, and 10.78 ± 4.86 mg L-1, respectively. The CNPI values indicated that approximately 76.47% of the estuarine water was moderately polluted (1 < CNPI < 7.28). A positive correlation was observed between dam construction and nutrient concentrations (e.g., rTN = 0.38, p < 0.05; rTP = 0.89, p < 0.01). Under the effects of dam construction, land use change, estuary shape, and meteorological conditions, there was a clear spatial variation of the TN concentrations. Dams that were closed all year round accelerated the TN accumulation in the water around them. The pollution risk in a trumpet-shaped estuary was higher than that in other regions (t = 2.92, p = 0.02). Endogenous release of pollutants was an important factor that may have a priming effect on algal blooms and should be given more attention. In Wuli Lake, exogenous pollution was the dominant pollutant source. A total of 74.49% of the nitrogen losses with the runoff into the estuarine water in 2018 were derived from urban domestic sewage and constructed land, with the load being 4.40 times higher than in 2000. The RDA results revealed that dam construction was the main factor (43.70%) affecting water quality, while meteorological conditions, land use types, estuary shape, and other factors contributed 56.30%. Scientific regulation and control of dam operation is important to protect the water environment of Taihu Lake.
Collapse
Affiliation(s)
- Xi Chen
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Yanhua Wang
- School of Geography, Nanjing Normal University, Nanjing, 210023, China.
- Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing, 210023, China.
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China.
| | - Zucong Cai
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
- Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
| | - Maoheng Zhang
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
- Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
| | - Chun Ye
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
10
|
Gajski G, Žegura B, Ladeira C, Novak M, Sramkova M, Pourrut B, Del Bo' C, Milić M, Gutzkow KB, Costa S, Dusinska M, Brunborg G, Collins A. The comet assay in animal models: From bugs to whales - (Part 2 Vertebrates). MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:130-164. [PMID: 31416573 DOI: 10.1016/j.mrrev.2019.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/26/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022]
Abstract
The comet assay has become one of the methods of choice for the evaluation and measurement of DNA damage. It is sensitive, quick to perform and relatively affordable for the evaluation of DNA damage and repair at the level of individual cells. The comet assay can be applied to virtually any cell type derived from different organs and tissues. Even though the comet assay is predominantly used on human cells, the application of the assay for the evaluation of DNA damage in yeast, plant and animal cells is also quite high, especially in terms of biomonitoring. The present extensive overview on the usage of the comet assay in animal models will cover both terrestrial and water environments. The first part of the review was focused on studies describing the comet assay applied in invertebrates. The second part of the review, (Part 2) will discuss the application of the comet assay in vertebrates covering cyclostomata, fishes, amphibians, reptiles, birds and mammals, in addition to chordates that are regarded as a transitional form towards vertebrates. Besides numerous vertebrate species, the assay is also performed on a range of cells, which includes blood, liver, kidney, brain, gill, bone marrow and sperm cells. These cells are readily used for the evaluation of a wide spectrum of genotoxic agents both in vitro and in vivo. Moreover, the use of vertebrate models and their role in environmental biomonitoring will also be discussed as well as the comparison of the use of the comet assay in vertebrate and human models in line with ethical principles. Although the comet assay in vertebrates is most commonly used in laboratory animals such as mice, rats and lately zebrafish, this paper will only briefly review its use regarding laboratory animal models and rather give special emphasis to the increasing usage of the assay in domestic and wildlife animals as well as in various ecotoxicological studies.
Collapse
Affiliation(s)
- Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Carina Ladeira
- H&TRC - Health & Technology Research Center, Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal; Centro de Investigação e Estudos em Saúde de Publica, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Matjaž Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Monika Sramkova
- Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Bertrand Pourrut
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Cristian Del Bo'
- DeFENS-Division of Human Nutrition, University of Milan, Milan, Italy
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | - Solange Costa
- Environmental Health Department, National Health Institute Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry-MILK, NILU - Norwegian Institute for Air Research, Kjeller, Norway
| | - Gunnar Brunborg
- Department of Molecular Biology, Norwegian Institute of Public Health, Oslo, Norway
| | - Andrew Collins
- Department of Nutrition, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Comet assay: an essential tool in toxicological research. Arch Toxicol 2016; 90:2315-36. [DOI: 10.1007/s00204-016-1767-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/14/2016] [Indexed: 01/02/2023]
|