1
|
Smythe TA, Gauthier L, Letcher RJ. Dietary and terrestrial exposure to methoxylated polybrominated diphenoxybenzene contaminants in Great Lakes herring gulls. CHEMOSPHERE 2024; 367:143649. [PMID: 39481486 DOI: 10.1016/j.chemosphere.2024.143649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Methoxylated polybrominated diphenoxybenzenes (MeO-PB-DPBs) are little known contaminants except in North American Great Lakes herring gull tissues and egg samples. MeO-PB-DPBs in gulls originate not via aquatic bioaccumulation pathways but instead likely via transformation of the tetradecabromo-1,4-diphenoxybenzene (TDB-DPB) flame retardant (FR). TDB-DPB was formerly produced as SAYTEX-120 in North America and is still produced in Asia. This study investigates the terrestrial exposure pathway of MeO-PB-DPBs and other FRs in herring gulls. Gull regurgitant and faeces, soil, and earthworms were collected from Channel Shelter Island (Saginaw Bay, Lake Huron), and analyzed for 3 MeO-PB-DPBs, 25 polybrominated diphenyl ethers (PBDEs), and 22 non-PBDE halogenated FRs. MeO-PB-DPBs in soil varied from non-detect to 4 ng/g dw per pentabrominated congener to a remarkably high 53 ng/g dw for the hexabrominated congener and comparable to BDE-209 which accumulates to high levels in Great Lakes sediment. MeO-hexa- to penta-brominated-DPB congener ratios were much greater (> 10x vs. ∼ 2x) than in herring gull tissues or eggs, suggesting possible differences in bioavailability. PB-DPB congeners were detected for the first time in environmental soil samples and confirmed via standard addition of the 2,2',4,4″- and 2,2',2″,4-tetrabromodiphenoxybenzene standards. MeO-PB-DPBs were mostly absent from faeces and not detected in earthworm samples. Combined with the finding of detection in regurgitant samples, indicating dietary intake, this suggests that gull exposure is via terrestrial bioaccumulation of MeO-PB-DPBs.
Collapse
Affiliation(s)
- Tristan A Smythe
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada; Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Lewis Gauthier
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada; Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
2
|
Qi Y, Wang J, Cao H, Wang C, Sun H. Tourmaline-enhanced bioremediation of Cd/BDE-153 co-contaminated soil: Migration, soil microorganism structure and enzyme activities. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133994. [PMID: 38503210 DOI: 10.1016/j.jhazmat.2024.133994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
The efficient remediation of the soil co-contaminated with heavy metals and polybrominated diphenyl ethers (PBDEs) from electronic disassembly zones is a new challenge. Here, we screened a fungus of F. solani (F.s) can immobilize Cd and remove PBDEs. wIt combined with tourmaline enhances the remediation of co- pollutants in the soil. Furthermore, the environment risks of the enhanced technology were assessed through the amount of Cd/BDE-153 in Amaranthus tricolor L. (amaranth) migrated from soil, as well as the changes of soil microorganism communities and enzyme activities. The results showed the combined treatment of tourmaline and F.s made the removal percentage of BDE-153 in rhizosphere soil co-contaminated with BDE-153 and Cd reached 46.5%. And the weak acid extractable Cd in rhizosphere soil decreased by 33.7% compared to control group. In addition, the combined remediation technology resulted in a 32.5% (22.8%), 45.5% (37.2%), and 50.7% (38.1%) decrease in BDE-153 (Cd) content in the roots, stems, and leaves of amaranth, respectively. Tourmaline combined with F.s can significantly increase soil microorganism diversity, soil dehydrogenase and urease activities, further improving the remediation rate of Cd and BDE-153co-pollutants in soil and the biomass of amaranth. This study provides the remediation technology of soil co-contaminated with heavy metal and PBDEs and ensure the maintenance of food security.
Collapse
Affiliation(s)
- Yuwen Qi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jicheng Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Huimin Cao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300071, China.
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300071, China
| |
Collapse
|
3
|
Cantwell C, Song X, Li X, Zhang B. Prediction of adsorption capacity and biodegradability of polybrominated diphenyl ethers in soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12207-12222. [PMID: 36109482 DOI: 10.1007/s11356-022-22996-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used brominated flame retardants with strong toxicity concerns. Understanding the behaviors of PBDEs in soil is essential to evaluate their environmental impact. However, the limited, incoherent, and inaccurate data has challenged predicting the adsorption capacity and biodegradability of all 209 PBDE congeners in the soil. Moreover, there are minimal studies regarding the interactions between adsorption and biodegradation behaviors of PBDEs in the soil. Herein, in this study, we adopted quantitative structure-property relationship (QSAR) modeling to predict the adsorption behavior of 209 PBDE congeners by estimating their organic carbon-water partition coefficient (KOC) values. In addition, the biodegradability of commonly occurring PBDE congeners was evaluated by analyzing their affinity to extracellular enzymes responsible for biodegradation using molecular docking. The results highlight that the degree of bromination plays a significant role in both the absorption and biodegradation of PBDEs in the soil due to compound stability and molecular geometry. Our findings help to advance the knowledge on PBDE behaviors in the soil and facilitate PBDE remediation associated with a soil environment.
Collapse
Affiliation(s)
- Cuirin Cantwell
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada
| | - Xing Song
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada
| | - Xixi Li
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada
| | - Baiyu Zhang
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada.
| |
Collapse
|
4
|
Hu D, Wu J, Fan L, Li S, Jia R. Aerobic Degradation Characteristics and Mechanism of Decabromodiphenyl Ether (BDE-209) Using Complex Bacteria Communities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:17012. [PMID: 36554891 PMCID: PMC9778866 DOI: 10.3390/ijerph192417012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Complex bacteria communities that comprised Brevibacillus sp. (M1) and Achromobacter sp. (M2) with effective abilities of degrading decabromodiphenyl ether (BDE-209) were investigated for their degradation characteristics and mechanisms under aerobic conditions. The experimental results indicated that 88.4% of 10 mg L-1 BDE-209 could be degraded after incubation for 120 h under the optimum conditions of pH 7.0, 30 °C and 15% of the inoculation volume, and the addition ratio of two bacterial suspensions was 1:1. Based on the identification of BDE-209 degradation products via liquid chromatography-mass spectrometry (LC-MS) analysis, the biodegradation pathway of BDE-209 was proposed. The debromination, hydroxylation, deprotonation, breakage of ether bonds and ring-opening processes were included in the degradation process. Furthermore, intracellular enzymes had the greatest contribution to BDE-209 biodegradation, and the inhibition of piperyl butoxide (PB) for BDE-209 degradation revealed that the cytochrome P450 (CYP) enzyme was likely the key enzyme during BDE-209 degradation by bacteria M (1+2). Our study provided alternative ideas for the microbial degradation of BDE-209 by aerobic complex bacteria communities in a water system.
Collapse
Affiliation(s)
- Dingfan Hu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Juan Wu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Luosheng Fan
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Shunyao Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Rong Jia
- School of Life Sciences, Anhui University, Hefei 230601, China
| |
Collapse
|
5
|
Huo L, Zhao C, Gu T, Yan M, Zhong H. Aerobic and anaerobic biodegradation of BDE-47 by bacteria isolated from an e-waste-contaminated site and the effect of various additives. CHEMOSPHERE 2022; 294:133739. [PMID: 35085610 DOI: 10.1016/j.chemosphere.2022.133739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/30/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Degradation experiments are conducted to specifically compare the degradation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) by aerobic and anaerobic strains isolated from real e-waste sites contaminated by BDE-47. The effect of carbon sources, inducers and surfactants on the degradation was examined to strengthen such a comparison. An aerobic strain, B. cereus S1, and an anaerobic strain, A. faecalis S4, were obtained. The results indicated that BDE-47 could be used as the sole carbon source by B. cereus S1 and A. faecalis S4 under aerobic and anaerobic conditions, respectively. The degradation of BDE-47 by B. cereus S1 and A. faecalis S4 was illustrated a first-order kinetics process obtaining a removal efficiency of 61.6% and 51.6% with a first-order rate constant of 0.0728 d-1 and 0.0514 d-1, and corresponding half-life of 8.7 d and 13.5 d, respectively. The addition of carbon sources (yeast extract, glucose, acetic acid and ethanol) and inducers (2,4-dichlorophenol, bisphenol A and toluene) promoted BDE-47 degradation by both B. cereus S1 and A. faecalis S4 under aerobic and anaerobic conditions, while hydroquinone as the inducer inhibited the degradation. All of the surfactants tested (CTAB, Tween 80, Triton X-100, rhamnolipid and SDS) showed inhibitory effect. BDE-47 degradation by B. cereus S1 under aerobic condition was more efficient than A. faecalis S4 under anaerobic condition whether with or without the additives. The results of the study indicated that in the field sites contaminated by BDE-47, the aerobic condition can be more favorable for BDE-47 removal and the degradation can be further enhanced by applying suitable carbon sources and inducers.
Collapse
Affiliation(s)
- Lili Huo
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Chenghao Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China
| | - Tianyuan Gu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China.
| | - Hua Zhong
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei, 430072, PR China.
| |
Collapse
|
6
|
Wang S, Li W, Liu L, Qi H, You H. Biodegradation of decabromodiphenyl ethane (DBDPE) by white-rot fungus Pleurotus ostreatus: Characteristics, mechanisms, and toxicological response. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127716. [PMID: 34799166 DOI: 10.1016/j.jhazmat.2021.127716] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Decabromodiphenyl ethane (DBDPE) can pose a potential toxic threat to human beings and the environment. P. ostreatus, as one of the typical white-rot fungi, can effectively degrade various refractory pollutants. The biodegradable characteristics of DBDPE by P. ostreatus, as well as the mechanisms, and toxicological response were investigated in this study. The removal rate reached 47.73% and 43.20%, respectively, for 5 and 20 mg/L DBDPE after 120-h degradation by P. ostreatus. As a coexisting substance, Pb could inhibit the biodegradation. It is found that both the intracellular enzyme (P450) and extracellular enzymes (manganese peroxidase (MnP), lignin peroxidase (LiP), and laccase (Lac)) played a very important role in the biodegradation of DBDPE, of which Lac dominated the degradation. The toxic response was monitored during the degradation. The activities of SOD and CAT were enhanced to eliminate excess ROS in P. ostreatus triggered by DBDPE. In addition, debromination, hydroxylation, and oxidation were inferred as the main degradation pathways preliminarily. The findings provide a theoretical basis for the application of microbial degradation of DBDPE contamination.
Collapse
Affiliation(s)
- Shutao Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wanlun Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Harbin Institute of Technology, 73, Huanghe Rd, Nangang Dist, Harbin 150090, China.
| | - Lu Liu
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, 23, Youzheng St., Nangang Dist, Harbin 150001, China.
| | - Hong Qi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Harbin Institute of Technology, 73, Huanghe Rd, Nangang Dist, Harbin 150090, China.
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Harbin Institute of Technology, 73, Huanghe Rd, Nangang Dist, Harbin 150090, China.
| |
Collapse
|
7
|
Hsu JS, Yu TY, Wei DJ, Jane WN, Chang YT. Degradation of Decabromodiphenyl Ether in an Aerobic Clay Slurry Microcosm Using a Novel Immobilization Technique. Microorganisms 2022; 10:microorganisms10020402. [PMID: 35208857 PMCID: PMC8877889 DOI: 10.3390/microorganisms10020402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
A novel chitosan immobilization technique that entraps photocatalyst and microbes was developed and applied to decompose decabromodiphenyl ether (BDE-209) in a clay slurry microcosm. The optimized conditions for immobilization were obtained by mixing 1.2% (w/v) chitosan dissolved in 1% (v/v) acetic acid with nano-TiO2 particles and the BDE-209-degrading bacterial mixed culture. This aqueous mixture was injected into 1% (w/v) water solution containing sodium tripolyphosphate to form spherical immobilized beads. The surface of the immobilized beads was reinforced by 0.25% (v/v) glutaraldehyde cross-linking. These beads had enough mechanical strength during BDE-209 degradation to maintain their shape in the system at a stirring rate of 200-rpm, while undergoing continuous 365 nm UVA irradiation. This novel TiO2-Yi-Li immobilized chitosan beads system allowed a successful simultaneous integration of photolysis, photocatalysis and biodegradation to remove BDE-209. The remaining percentage of BDE-209 was 41% after 70 days of degradation using this system. The dominant bacteria in the BDE-209-degrading bacterial mixed culture during remediation were Chitinophaga spp., Methyloversatilis spp., Terrimonas spp. and Pseudomonas spp. These bacteria tolerated the long-term UVA irradiation and high-level free radicals present, while utilizing BDE-209 as their primary carbon resource. This new method has great potential for the treatment of a range of pollutants.
Collapse
Affiliation(s)
- Jung-Shan Hsu
- Department of Microbiology, Soochow University, No.70 Linxi Rd., Shilin Dist., Taipei 11112, Taiwan; (J.-S.H.); (T.-Y.Y.); (D.-J.W.)
- Department of Pathology, University of Alabama at Birmingham, P210 West Pavilion 619 South 19th Street, Birmingham, AL 35233-7331, USA
| | - Ting-Yu Yu
- Department of Microbiology, Soochow University, No.70 Linxi Rd., Shilin Dist., Taipei 11112, Taiwan; (J.-S.H.); (T.-Y.Y.); (D.-J.W.)
| | - Da-Jiun Wei
- Department of Microbiology, Soochow University, No.70 Linxi Rd., Shilin Dist., Taipei 11112, Taiwan; (J.-S.H.); (T.-Y.Y.); (D.-J.W.)
| | - Wann-Neng Jane
- Academia Sinica, Institute of Plant and Microbial Biology, 128 Sec. 2 Academia Rd., Nankang, Taipei 11529, Taiwan;
| | - Yi-Tang Chang
- Department of Microbiology, Soochow University, No.70 Linxi Rd., Shilin Dist., Taipei 11112, Taiwan; (J.-S.H.); (T.-Y.Y.); (D.-J.W.)
- Correspondence: ; Tel.: +886-2-2881-9471 (ext. 6862)
| |
Collapse
|
8
|
Parvulescu VI, Epron F, Garcia H, Granger P. Recent Progress and Prospects in Catalytic Water Treatment. Chem Rev 2021; 122:2981-3121. [PMID: 34874709 DOI: 10.1021/acs.chemrev.1c00527] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Presently, conventional technologies in water treatment are not efficient enough to completely mineralize refractory water contaminants. In this context, the implementation of catalytic processes could be an alternative. Despite the advantages provided in terms of kinetics of transformation, selectivity, and energy saving, numerous attempts have not yet led to implementation at an industrial scale. This review examines investigations at different scales for which controversies and limitations must be solved to bridge the gap between fundamentals and practical developments. Particular attention has been paid to the development of solar-driven catalytic technologies and some other emerging processes, such as microwave assisted catalysis, plasma-catalytic processes, or biocatalytic remediation, taking into account their specific advantages and the drawbacks. Challenges for which a better understanding related to the complexity of the systems and the coexistence of various solid-liquid-gas interfaces have been identified.
Collapse
Affiliation(s)
- Vasile I Parvulescu
- Department of Organic Chemistry, Biochemistry and Catalysis, University of Bucharest, B-dul Regina Elisabeta 4-12, Bucharest 030016, Romania
| | - Florence Epron
- Université de Poitiers, CNRS UMR 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Hermenegildo Garcia
- Instituto Universitario de Tecnología Química, Universitat Politecnica de Valencia-Consejo Superior de Investigaciones Científicas, Universitat Politencia de Valencia, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Pascal Granger
- CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Univ. Lille, F-59000 Lille, France
| |
Collapse
|
9
|
Chang YT, Chen HC, Chou HL, Li H, Boyd SA. A coupled UV photolysis-biodegradation process for the treatment of decabrominated diphenyl ethers in an aerobic novel bioslurry reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6078-6089. [PMID: 32989696 PMCID: PMC7521767 DOI: 10.1007/s11356-020-10753-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
The commercial flame retardant is an emerging contaminant (EC) commonly found in soils and sediments. A coupled UV-photolysis-biodegradation process was used to decompose decabromodiphenyl ether (BDE-209) in clay slurries. A novel bioslurry bioreactor (NBB) was employed in which BDE-209 degradation was maximized by the simultaneous application of LED UVA irradiation and biodegradation by a mixed bacterial culture. The rate of BDE-209 degradation decreased in the order: coupled UV photolysis-biodegradation (1.31 × 10-2 day-1) > UV photolysis alone (1.10 × 10-2 day-1) > biodegradation alone (1.00 × 10-2 day-1). Degradation intermediates detected included hydroxylated polybrominated diphenylethers, partially debrominated PBDE congeners and polybrominated dibenzofuran. The UV-resistant bacterial strains isolated that could utilize BDE-209 as a sole carbon source included Stenotrophomonas sp., Pseudomonas sp., and Microbacterium sp. These strains encoded important functional genes such as dioxygenase and reductive dehalogenases. Continuous UV irradiation during the NBB process affected various biochemical oxidative reactions during PBDEs biodegradation. Simultaneous photolysis and biodegradation in the NBB system described reduces operational time, energy, expense, and maintenance-demands required for the remediation of BDE-209 when compared to sequential UV-biodegradation process or to biodegradation alone.
Collapse
Affiliation(s)
- Yi-Tang Chang
- Department of Microbiology, Soochow University, Taipei, 11102, Taiwan.
- Department of Plant, Soil and Microbial Science, Michigan State University, East Lansing, MI, 48824, USA.
| | - Huei-Chen Chen
- Department of Microbiology, Soochow University, Taipei, 11102, Taiwan
| | - Hsi-Ling Chou
- Department of Microbiology, Soochow University, Taipei, 11102, Taiwan
| | - Hui Li
- Department of Plant, Soil and Microbial Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Stephen A Boyd
- Department of Plant, Soil and Microbial Science, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
10
|
Zhang K, Yang S, Luo H, Wang W, Wu X, Chen J, Chen W, Chen J. Aerobic biodegradation pathways of pentabromobiphenyl ethers (BDE-99) and enhanced degradation in membrane bioreactor system. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:39-55. [PMID: 32910791 DOI: 10.2166/wst.2020.322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A bacterial strain capable of efficiently degrading pentabromobiphenyl ether (BDE-99) was isolated from activated sludge and named as NLPSJ-22. This strain was highly close to Pseudomonas asplenii with 100% similarity. The degradation products of BDE-99 were analyzed by gas chromatography mass spectrometry. The biochemical degradation pathways analysis indicated that BDE-99 gradually transformed to diphenyl ether by meta-, para- and ortho-debromination. It became phenol under the action of ring-opening cracking and finally entered the tricarboxylic acid cycle. The degradation of BDE-99 by strain NLPSJ-22 conformed to the first-order reaction kinetics. Rhamnolipid significantly improved the cell-surface hydrophobicity and the degradation of BDE-99. The highest degradation efficiency (96%) was achieved when diphenyl ether as co-metabolic substrate was added. In the bioaugmentation membrane bioreactor (MBR) system, BDE-99 was intensively degraded, and the reactor reached a steady state in about 35 days. The degradation rate of BDE-99 was over 80%, which was significantly higher than that of the control system. MiSeq sequencing results indicated that the genera of Rhodococcus, Bacillus, Pseudomonas, Burkholderia, and Sphingobium were the predominant bacterial communities responsible for BDE-99 biodegradation in the MBR. Pseudomonas increased significantly in the bioaugmented reactor with the relative abundance increasing from 5% to 24%.
Collapse
Affiliation(s)
- Ke Zhang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China E-mail: ; School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China
| | - Siqiao Yang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China E-mail:
| | - Hongbing Luo
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China E-mail:
| | - Wei Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China
| | - Xiangling Wu
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China E-mail:
| | - Jian Chen
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China E-mail:
| | - Wei Chen
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China E-mail:
| | - Jia Chen
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China E-mail:
| |
Collapse
|
11
|
Wang G, Liu Y, Tao W, Zhao X, Wang H, Lou Y, Li N, Liu Y. Assessing microbial degradation degree and bioavailability of BDE-153 in natural wetland soils: Implication by compound-specific stable isotope analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114014. [PMID: 32000026 DOI: 10.1016/j.envpol.2020.114014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/28/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Microbial degradation is an important pathway for the attenuation of polybrominated diphenyl ethers (PBDEs) in natural soils. In this study, the compound-specific stable isotope analysis (CSIA) was applied to characterize microbial degradation of BDE-153, one of the prevailing and toxic PBDE congeners, in natural wetland soils. During the 45-day incubation, the residual percentages of BDE-153 decreased to 67.9% and 73.6% in non-sterilized soils spiked with 1.0 and 5.0 μg/g, respectively, which were both much lower than those in sterilized soils (96.0% and 97.2%). This result indicated that microbial degradation could accelerate BDE-153 elimination in wetland soils. Meanwhile, the significant carbon isotope fractionation was observed in non-sterilized soils, with δ13C of BDE-153 shifting from -29.4‰ to -26.7‰ for 1.0 μg/g and to -27.2‰ for 5.0 μg/g, respectively, whilst not in sterilized soils. This phenomenon indicated microbial degradation could induce stable carbon isotope fractionation of BDE-153. The carbon isotope enrichment factor (εc) for BDE-153 microbial degradation was first determined as -7.58‰, which could be used to assess the microbial degradation and bioavailability of BDE-153 in wetland soils. Based on δ13C and εc, the new methods were developed to dynamically and quantitatively estimate degradation degree and bioavailability of BDE-153 during degradation process, respectively, which could exclude interference of physical processes. This work revealed that CSIA was a promising method to investigate in situ microbial degradation of PBDEs in field studies.
Collapse
Affiliation(s)
- Guoguang Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China; Environmental Information Institute, Dalian Maritime University, Dalian, 116026, China
| | - Yu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China; Environmental Information Institute, Dalian Maritime University, Dalian, 116026, China.
| | - Wei Tao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xinda Zhao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Haixia Wang
- Navigation College, Dalian Maritime University, Dalian, 116026, China
| | - Yadi Lou
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Na Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yuxin Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| |
Collapse
|
12
|
Chang YT, Chao WL, Chen HY, Li H, Boyd SA. Characterization of a Sequential UV Photolysis-Biodegradation Process for Treatment of Decabrominated Diphenyl Ethers in Sorbent/Water Systems. Microorganisms 2020; 8:E633. [PMID: 32349399 PMCID: PMC7284435 DOI: 10.3390/microorganisms8050633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 12/26/2022] Open
Abstract
Decabrominated diphenyl ether (BDE-209) is a primary component of the brominated flame retardants used in a variety of industrial and domestic applications. BDE-209 bioaccumulates in aquatic organisms and has been identified as an emerging contaminant that threatens human and ecosystem health. Sequential photolysis-microbial biodegradation processes were utilized here to treat BDE-209 in clay- or soil-water slurries. The removal efficiency of BDE-209 in the clay-water slurries was high; i.e., 96.5%, while that in the soil-water slurries was minimal. In the clay-water slurries the first order rate constants for the UV photolysis and biodegradation of BDE-209 were 0.017 1/day and 0.026 1/day, respectively. UV wavelength and intensity strongly influenced the BDE-209 photolysis and the subsequent biodegradation of photolytic products. Facultative chemotrophic bacteria, including Acidovorax spp., Pseudomonas spp., Novosphingobium spp. and Sphingomonas spp., were the dominant members of the bacterial community (about 71%) at the beginning of the biodegradation; many of these organisms have previously been shown to biodegrade BDE-209 and other polybrominated diphenyl ether (PBDE) congeners. The Achromobacter sp. that were isolated (NH-2; NH-4; NH-6) were especially effective during the BDE-209 degradation. These results indicated the effectiveness of the sequential UV photolysis and biodegradation for treating certain BDE-209-contaminated solids; e.g., clays; in bioreactors containing such solids as aqueous slurries. Achieving a similar treatment effectiveness for more heterogeneous solids containing natural organic matter, e.g., surface solids, appears to be significantly more difficult. Further investigations are needed in order to understand the great difference between the clay-water or soil-water slurries.
Collapse
Affiliation(s)
- Yi-Tang Chang
- Department of Microbiology, Soochow University, Shilin District, Taipei 11102, Taiwan; (W.-L.C.); (H.-Y.C.)
- Department of Plant, Soil and Microbial Science, Michigan State University, East Lansing, MI 48824, USA;
| | - Wei-Liang Chao
- Department of Microbiology, Soochow University, Shilin District, Taipei 11102, Taiwan; (W.-L.C.); (H.-Y.C.)
| | - Hsin-Yu Chen
- Department of Microbiology, Soochow University, Shilin District, Taipei 11102, Taiwan; (W.-L.C.); (H.-Y.C.)
| | - Hui Li
- Department of Plant, Soil and Microbial Science, Michigan State University, East Lansing, MI 48824, USA;
| | - Stephen A. Boyd
- Department of Plant, Soil and Microbial Science, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
13
|
Yu Y, Yin H, Peng H, Lu G, Dang Z. Proteomic mechanism of decabromodiphenyl ether (BDE-209) biodegradation by Microbacterium Y2 and its potential in remediation of BDE-209 contaminated water-sediment system. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121708. [PMID: 31806441 DOI: 10.1016/j.jhazmat.2019.121708] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
The investigation of BDE-209 degradation by Microbacterium Y2 under different condition was conducted. Cell membrane permeability, cell surface hydrophobicity (CSH), membrane potential (MP) and reactive oxygen species (ROS) production were altered under BDE-209 stress. Eleven debrominated congeners were identified, suggesting that BDE-209 biodegradation by Microbacterium Y2 was dominantly a successive debromination process. Proteome analysis showed that the overexpression of haloacid dehalogenases, glutathione S-transferases (GSTs) and ATP-binding cassette (ABC) transporters might occupy important roles in BDE-209 biotransformation. Meanwhile, heat shock proteins (HSPs), ribonuclease E, oligoribonuclease (Orn) and ribosomal protein were activated to counter the BDE-209 toxicity. The up-regulated pyruvate dehydrogenase E1 component beta subunit and dihydrolipoamide dehydrogenase suggested that the pyruvate metabolism pathway was activated. Bioaugmentation of BDE-209 polluted water-sediments system with Microbacterium Y2 could efficiently improve BDE-209 removal. The detection of total 16S rRNA genes in treatment system suggested that Microbacterium (25.6 %), Luteimonas (14.3 %), Methylovorus (12.6 %), Hyphomicrobium (9.2 %) were the dominant genera and PICRUSt results further revealed that the diminution of BDE-209 was owed to cooperation between the introduced bacteria and aboriginal ones.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
14
|
Chou TH, Ou MH, Wu TY, Chen DY, Shih YH. Temporal and spatial surveys of polybromodiphenyl ethers (PBDEs) contamination of soil near a factory using PBDEs in northern Taiwan. CHEMOSPHERE 2019; 236:124117. [PMID: 31323549 DOI: 10.1016/j.chemosphere.2019.06.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), previously commonly used as flame retardants, should be monitored in the environment since some are listed as persistent organic pollutants. A contaminated site near a northern Taiwan factory using decabrominated diphenyl ether (deca-BDE) was identified based on a vegetable PBDEs monitoring project in 2013. The subsequent spatial and temporal survey of that contaminated site shows the contamination ingredients in soils were close to ones used by the factory, indicating that contamination was from the factory, possibly through an exhaust vent. The average concentration of deca-BDE in the main contaminated soil was 615 μg/kg d. w. (dry weight) soil in 2015, slightly decreasing to 604 μg/kg d. w. soil in 2016, increasing to 844 μg/kg d. w. soil in 2017, and then slightly decreasing to 670 μg/kg d. w. soil in 2018. The slight change of deca-BDE and the minor change in low brominated congener level indicate a low degradation rate. The contamination of peripheral sites was around 5000 μg/kg d. w. soil for one PBDEs sampling site that was higher than those around or within the main contaminated farm, indicating serious pollution. Concentrations of PBDEs in different soil depths show that depth 2-15 cm accounted for the greatest PBDEs accumulation, indicating that deca-BDE pollution had been present over time and transported into deeper soil. There can be PBDEs uptake by crops consumed by humans, as shown in our previous studies, so continuous monitoring of PBDEs in this site is important and treatments should be established urgently.
Collapse
Affiliation(s)
- Tzu-Ho Chou
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan, ROC
| | - Ming-Han Ou
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan, ROC
| | - Tien-Yu Wu
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan, ROC
| | - De-Yu Chen
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan, ROC
| | - Yang-Hsin Shih
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan, ROC.
| |
Collapse
|
15
|
Variation of Microbial Communities in Aquatic Sediments under Long-Term Exposure to Decabromodiphenyl Ether and UVA Irradiation. SUSTAINABILITY 2019. [DOI: 10.3390/su11143773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abiotic components create different types of environmental stress on bacterial communities in aquatic ecosystems. In this study, the long-term exposure to various abiotic factors, namely a high-dose of the toxic chemical decabromodiphenyl ether (BDE-209), continuous UVA irradiation, and different types of sediment, were evaluated in order to assess their influence on the bacterial community. The dominant bacterial community in a single stress situation, i.e., exposure to BDE-209 include members of Comamonadaceae, members of Xanthomonadaceae, a Pseudomonas sp. and a Hydrogenophaga sp. Such bacteria are capable of biodegrading polybrominated diphenyl ethers (PBDEs). When multiple environmental stresses were present, Acidobacteria bacterium and a Terrimonas sp. were predominant, which equipped the population with multiple physiological characteristics that made it capable of both PBDE biodegradation and resistance to UVA irradiation. Methloversatilis sp. and Flavisolibacter sp. were identified as representative genera in this population that were radioresistant. In addition to the above, sediment heterogeneity is also able to alter bacterial community diversity. In total, seventeen species of bacteria were identified in the microcosms containing more clay particles and higher levels of soil organic matter (SOM). This means that these communities are more diverse than in microcosms that contained more sand particles and a lower SOM, which were found to have only twelve identifiable bacterial species. This is the first report to evaluate how changes in bacterial communities in aquatic sediment are affected by the presence of multiple variable environmental factors at the same time.
Collapse
|
16
|
Yu Y, Yin H, Peng H, Lu G, Dang Z. Biodegradation of decabromodiphenyl ether (BDE-209) using a novel microbial consortium GY1: Cells viability, pathway, toxicity assessment, and microbial function prediction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:958-965. [PMID: 31018474 DOI: 10.1016/j.scitotenv.2019.03.078] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
GY1, a novel microbial consortium with efficient ability to degrade decabromodiphenyl ether (BDE-209) has been isolated and the sequencing analysis has been conducted. The results revealed that Hyphomicrobium, Pseudomonas, Aminobacter, Sphingopyxis, Chryseobacterium, Bacillus, Pseudaminobacter, Stenotrophomonas, Sphingobacterium and Microbacterium were the dominant genera, and the function genes involved in BDE-209 conversion were predicted by PICRUSt. When BDE-209 concentration increased from 0.5 to 10mg/L, its degradation efficiency declined from 57.2% to 22.3%. Various kinds of debrominated metabolites were detected during the biodegradation process, including BDE-208, BDE-207, BDE-206, BDE-205, BDE-190, BDE-181, BDE-155, BDE-154, BDE-99, BDE-47, BDE-17 and BDE-7. Also, the proportion of necrotic cells was observed during GY1 mediated degradation of BDE-209 to reveal the changes of cells viability under BDE-209 stress. Subsequent analysis showed that the reaction of BDE-209 with GY1 was a detoxification process and bioaugmentation with GY1 effectively enhanced BDE-209 degradation in actual water and water-sediment system.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou 510632, Guangdong, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
17
|
Demirtepe H, Imamoglu I. Degradation of decabromodiphenyl ether (BDE-209) in microcosms mimicking sediment environment subjected to comparative bioremediation strategies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:120-130. [PMID: 30576959 DOI: 10.1016/j.jenvman.2018.11.144] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/05/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
The aim of this study was to examine bioremediation strategies for BDE-209 contaminated sediments. Sediment microcosms were established to observe anaerobic debromination of BDE-209 under conditions representing three bioremediation strategies: biostimulation, bioaugmentation and natural attenuation. To simulate biostimulation, a defined mineral medium containing both a carbon source (sodium formate) and electron donor (ethanol) was added into sediments. Bioaugmentation was established by enrichment of the sediments using a culture of Dehalobium chlorocoercia strain DF-1, previously shown to dechlorinate polychlorinated biphenyls, to sediments. No amendments were made to the third set in order to represent natural attenuation. The biostimulation, bioaugmentation and natural attenuation strategies resulted in 55.3%, 40.2% and 30.9% reductions in BDE-209, respectively, after 180 days. Nona- through tri-BDEs were observed as products, with 17 PBDE congeners detected in 25 different proposed debromination pathways. At the end of the 180 day incubation period, the products for bioaugmentation, biostimulation and natural attenuation were tri-BDEs, tetra-BDEs and penta-BDEs, respectively. The proposed pathways revealed that meta- and ortho-Br removal were favored in sediments, and that debromination regiospecificity varied with each bioremediation strategy applied. Lastly, pseudo-first-order rate constants for BDE-209 reduction were calculated as 0.0049 d-1, 0.0028 d-1, 0.0025 d-1 for biostimulation, bioaugmentation and natural attenuation, respectively.
Collapse
Affiliation(s)
- Hale Demirtepe
- Department of Environmental Engineering, Middle East Technical University, 06531, Ankara, Turkey
| | - Ipek Imamoglu
- Department of Environmental Engineering, Middle East Technical University, 06531, Ankara, Turkey.
| |
Collapse
|
18
|
A Comparison of the Microbial Community and Functional Genes Present in Free-Living and Soil Particle-Attached Bacteria from an Aerobic Bioslurry Reactor Treating High-Molecular-Weight PAHs. SUSTAINABILITY 2019. [DOI: 10.3390/su11041088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High-molecular-weight (HMW) polycyclic aromatic hydrocarbons (PAHs) contaminate a wide range of ecosystems, including soils, groundwater, rivers and harbor sediments. The effective removal of HMW PAHs is a difficult challenge if a rapid remediation time and low economic cost are required. Bioremediation provides a cheap and eco-friendly cleanup strategy for the removal of HMW PAHs. Previous studies have focused on removal efficiency during PAHs bioremediation. In such studies, only limited research has targeted the bacterial communities and functional genes present in such bioremediation systems, specifically those of free-living (aqueous) bacteria and soil particle-attached bacteria present. In this study, a high-level of HMW PAH (1992 mg/kg pyrene) was bioremediated in an aerobic bioslurry reactor (ABR) for 42 days. The results showed a pseudo first order constant rate for pyrene biodegradation of 0.0696 day−1. The microbial communities forming free-living bacteria and soil-attached bacteria in the ABR were found to be different. An analysis of the aqueous samples identified free-living Mycobacterium spp., Pseudomonas putida, Rhodanobacter spp. and Burkholderia spp.; these organisms would seem to be involved in pyrene biodegradation. Various biointermediates, including phenanthrene, catechol, dibenzothiophene, 4,4′-bipyrimidine and cyclopentaphenanthrene, were identified and measured in the aqueous samples. When a similar approach was taken with the soil particle samples, most of the attached bacterial species did not seem to be involved in pyrene biodegradation. Furthermore, community level physiological profiling resulted in significantly different results for the aqueous and soil particle samples. Nevertheless, these two bacterial populations both showed positive signals for the presence of various dioxygenases, including PAHs-RHDα dioxygenases, riesk iron-sulfur motif dioxygenases and catechol 2,3-dioxygenases. The present findings provide a foundation that should help environmental engineers when designing future HMW PAH bioremediation systems that use the ABR approach.
Collapse
|
19
|
Yan Y, Li Y, Ma M, Ma W, Cheng X, Xu K. Effects of coexisting BDE-47 on the migration and biodegradation of BDE-99 in river-based aquifer media recharged with reclaimed water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:5140-5153. [PMID: 28512710 DOI: 10.1007/s11356-017-9143-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
Two prominent polybrominated diphenyl ether (PBDE) congeners have been included in the persistent organic pollutant list, 2,2',4,4',5-tetrabromodiphenyl ether (BDE-99) and 2,2,4,4'-tetrabromodiphenyl ether (BDE-47), which have been detected in treated municipal wastewater, river water, and sediments in China. A lab-scale column experiment was established to investigate the effects of the competitive sorption of BDE-47 on BDE-99 biodegradation and migration in two types of river-based aquifer soils during groundwater recharge with reclaimed water. Two types of recharge columns were used, filled with either silty clay (SC) or black carbon-amended silty clay (BCA). The decay rate constants of BDE-99 in the BCA and SC systems were 0.186 and 0.13 m-1 in the single-solute system and 0.128 and 0.071 m-1 in the binary-solute system, respectively, showing that the decay of BDE-99 was inhibited by the coexistence of BDE-47. This was particularly evident in the SC system because the higher hydrophobicity of BDE-99 determined the higher affinity and competition for sorption sites onto black carbon. The biodegradation of BDE-99 was suppressed by the coexistence of BDE-47, especially in the SC system. Lesser-brominated congeners (BDE-47 and BDE-28) and higher-brominated congeners (BDE-100, BDE-153, BDE-154, and BDE-183) were generated in the four recharge systems, albeit at different ratios. Bacterial biodiversity was influenced by the presence of BDE-47 in the SC system, while it had no significant effect on the BCA system, because the high sorption capacity of black carbon on the hydrophobic PBDEs effectively reduced their toxicity. The ranking order of the most abundant classes changed markedly due to the coexistence of BDE-47 in both the SC and BCA systems. The ranking order of the most abundant genera changed from Azospira, Methylotenera, Desulfovibrio, Methylibium, and Bradyrhizobium to Halomonas, Hyphomicrobium, Pseudomonas, Methylophaga, and Shewanella, which could be involved in PBDE degradation.
Collapse
Affiliation(s)
- Y Yan
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Y Li
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - M Ma
- Graduate School of International Relationship, International University of Japan, Minami Uonuma, 9497248, Japan
| | - W Ma
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - X Cheng
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - K Xu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
20
|
Yan Y, Ma M, Liu X, Ma W, Li Y. Vertical distribution of archaeal communities associated with anaerobic degradation of pentabromodiphenyl ether (BDE-99) in river-based groundwater recharge with reclaimed water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:5154-5163. [PMID: 28871397 DOI: 10.1007/s11356-017-0034-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/25/2017] [Indexed: 06/07/2023]
Abstract
When groundwater is recharged with reclaimed water, the presence of trace amounts of biorefractory pentabromodiphenyl ether (PBDE, specifically BDE-99) might cause potential groundwater pollution. A laboratory-scale column was designed to investigate the distribution of the community of archaea in this scenario and the associated anaerobic degradation of BDE-99. The concentration of BDE-99 decreased significantly as soil depth increased, and fluorescence in situ hybridization (FISH) analysis suggested that archaea exerted significant effects on the biodegradation of PBDE. Through 454 pyrosequencing of 16s rRNA genes, we found that the distribution and structure of the archaeal community associated with anaerobic degradation of BDE-99 in the river-based aquifer media changed significantly between different soil depths. The primary debrominated metabolites varied with changes in the vertically distributed archaeal community. The archaea in the surface layer were dominated by Methanomethylovorans, and the middle layer was mainly composed of Nitrososphaera. Nitrosopumilus and Nitrososphaera were equally abundant in the bottom layer. In addition, Methanomethylovorans abundance depended on the depth of soil, and the relative abundance of Nitrosopumilus increased with increasing depth, which was associated with the oxidation-reduction potential and the content of intermediate metabolites. We propose that Nitrososphaera and Nitrosopumilus might be the key archaeal taxa mediating the biodegradation of BDE-99.
Collapse
Affiliation(s)
- Yulin Yan
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Mengsi Ma
- Graduate School of International Relationship, International University of Japan, Minamiuonuma, 9497248, Japan
| | - Xiang Liu
- School of Environmental Engineering, Tsinghua University, Beijing, 100084, China
| | - Weifang Ma
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Yangyao Li
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
21
|
Fu R, Xu Z, Peng L, Bi D. Removal of polybrominated diphenyl ethers by biomass carbon-supported nanoscale zerovalent iron particles: influencing factors, kinetics, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:23983-23993. [PMID: 27634155 DOI: 10.1007/s11356-016-7621-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/07/2016] [Indexed: 06/06/2023]
Abstract
In this study, nanoscale zerovalent iron (NZVI) immobilized on biomass carbon was used for the high efficient removal of BDE 209. NZVI supported on biomass carbon minimized the aggregation of NZVI particles resulting in the increased reaction performance. The proposed removal mechanism included the adsorption of BDE 209 on the surface or interior of the biomass carbon NZVI (BC-NZVI) particles and the subsequent debromination of BDE 209 by NZVI while biomass carbon served as an electron shuttle. BC-NZVI particles and the interaction between BC-NZVI particles and BDE 209 were characterized by TEM, XRD, and XPS. The removal reaction followed a pseudo-first-order rate expression under different reaction conditions, and the k obs was higher than that of other NZVI-supported materials. The debromination of BDE 209 by BC-NZVI was a stepwise process from nona-BDE to DE. A proposed pathway suggested that supporting NZVI on biomass carbon has potential as a promising technique for in situ organic-contaminated groundwater remediation.
Collapse
Affiliation(s)
- Rongbing Fu
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Zhen Xu
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China.
| | - Lin Peng
- Department of Chemical Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Dongsu Bi
- Department of Chemical Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| |
Collapse
|