1
|
Piscia R, Manca M, Caroni R, Guilizzoni P, Bettinetti R. Zooplankton taxa repository of DDT tot and sumPCB 14: Seasonal and decadal variations in Lake Maggiore. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170563. [PMID: 38296082 DOI: 10.1016/j.scitotenv.2024.170563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/03/2024]
Abstract
Lake Maggiore has been the subject of a monitoring program on persistent organic pollutants (DDTs and PCBs) since 1996 when DDT contamination was first detected. In this context, in 2009 we started to estimate the concentration of DDTtot (Dichlorodiphenyltrichloroethane, sum of p,p'-DDT, o,p'-DDT, p,p'-DDD, o,p-DDD, p,p-DDE, o,p-DDE) and sumPCB14 (polychlorinated biphenyls 18, 28, 31, 44, 52, 101, 118, 149, 138, 153, 170, 180, 194 and 209) in zooplankton pelagic organisms preyed on by zooplanktivorous fish (size fraction ≥450 μm). We evaluated taxa specific repositories of DDTtot and sumPCB14, their seasonal variation, their changes over the period 2009-2021 and the potential contribution of different taxa in transferring toxicants to whitefish, based on the Ivlev's Electivity Index. The repository of both POPs was generally higher in spring. A decrease in the zooplankton Standing Stock Biomass (SSB) drove a decline in the zooplankton DDTtot repository over the last six years (2016-2021 SSBmean = 12.5 mg m-3; 2009-2015; SSBmean = 30 mg m-3), despite the concentration being broadly constant during this period. The sumPCB14 repository was generally characterized by lower values during the last six years, but the difference with the previous period was not so marked. Daphnia and cyclopoids were the major contributors to the repository; however, when the whitefish selectivity index was applied, the role of carnivorous Bythotrephes was more important to the detriment of cyclopoids, particularly in summer and winter. Our results are useful to elaborate predictive models on the transfer of POPs along the food chain and highlight not only the importance of freshwater zooplankton in toto, but also that different taxa can have different roles. The increasing importance of microphagous zooplankton, driven by water warming and extended thermal stratification, underlines the need for future studies on the role of small zooplankton as carriers of POPs in freshwater lakes.
Collapse
Affiliation(s)
- Roberta Piscia
- Water Research Institute, National Research Council, Largo Tonolli 50, 28922 Verbania, Italy.
| | - Marina Manca
- Water Research Institute, National Research Council, Largo Tonolli 50, 28922 Verbania, Italy.
| | - Rossana Caroni
- Institute for Electromagnetic Sensing of the Environment, National Research Council, Via Bassini, 15, 20133 Milano, Italy
| | - Piero Guilizzoni
- Water Research Institute, National Research Council, Largo Tonolli 50, 28922 Verbania, Italy.
| | - Roberta Bettinetti
- Department of Human Sciences, Innovation for the Territory, University of Insubria, Via Valleggio 11, Como, Italy.
| |
Collapse
|
2
|
Tasselli S, Rogora M, Orrù A, Guzzella L. Behaviour of synthetic musk fragrances in freshwaters: occurrence, relations with environmental parameters, and preliminary risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109643-109658. [PMID: 37777704 PMCID: PMC10622367 DOI: 10.1007/s11356-023-30030-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
The aims of this study were to investigate the presence, possible sources, and potential ecological risks of synthetic musk fragrances in freshwaters and sediments of the main tributaries of a deep subalpine lake in Northern Italy. The total musk concentrations ranged from few ng L-1 up to values > 500 ng L-1, depending on river characteristics: water flow and the presence of wastewater effluents proved to be the main factors affecting fragrance concentrations. The water flow may indeed dilute fragrance input mainly deriving from treated wastewaters. Good correlations (determination coefficients > 0.60) between synthetic fragrances concentrations and parameters related to anthropogenic impacts confirmed this hypothesis: synthetic fragrances were mainly detected in most polluted rivers crossing urbanized areas. Sediment analysis highlighted accumulation of fragrances in this matrix. Concentrations of synthetic fragrances up to 329 ng g-1 organic carbon were measured in sediments of the most contaminated rivers Boesio and Bardello, which also show the highest nutrient content. The preliminary environmental risk assessment revealed that present levels of synthetic musk fragrances do not pose any risk to the studied environmental compartments. However, a probable medium risk level was evidenced during the dry season in the most contaminated rivers Boesio and Bardello. For these reasons, small rivers draining urbanized watersheds and affected by wastewater effluents should be considered synthetic musk contamination hotspots that warrant further research.
Collapse
Affiliation(s)
- Stefano Tasselli
- National Research Council - Water Research Institute (CNR-IRSA), Via del Mulino 19, 20861, Brugherio, (MB), Italy.
| | - Michela Rogora
- National Research Council - Water Research Institute (CNR-IRSA), L.Go Tonolli 50, 28922, Verbania, (VB), Italy
| | - Arianna Orrù
- National Research Council - Water Research Institute (CNR-IRSA), L.Go Tonolli 50, 28922, Verbania, (VB), Italy
| | - Licia Guzzella
- National Research Council - Water Research Institute (CNR-IRSA), Via del Mulino 19, 20861, Brugherio, (MB), Italy
| |
Collapse
|
3
|
Li BA, Li BM, Bao Z, Li Q, Xing M, Li B. Dichlorodiphenyltrichloroethane for Malaria and Agricultural Uses and Its Impacts on Human Health. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:45. [PMID: 37730942 DOI: 10.1007/s00128-023-03789-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 08/12/2023] [Indexed: 09/22/2023]
Abstract
Pesticides are widely used in agriculture and disease control, and dichlorodiphenyltrichloroethane (DDT) is one of the most used pesticides in human history. Besides its significant contributions in pest control in agriculture, DDT was credited as having saved millions of human lives for controlling malaria and other deadly insect-transmitted diseases. Even today, the use of DDT in some countries for malaria control cannot be replaced without endangering people who live there. The recent COVID-19 pandemic has changed our lives and reminded us of the challenges in dealing with infectious diseases, especially deadly ones including malaria. However, DDT and its metabolites are stable, persist long, are found in almost every corner of the world, and their persistent effects on humans, animals, and the environment must be seriously considered. This review will focus on the history of DDT use for agriculture and malaria control, the pathways for the spread of DDT, benefits and risks of DDT use, DDT exposure to animals, humans, and the environment, and the associated human health risks. These knowledge and findings of DDT will benefit the selection and management of pesticides worldwide.
Collapse
Affiliation(s)
- Benjamin A Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, 26506-9196, WV, USA
- Morgantown High School, Morgantown, WV, USA
| | | | - Zhenghong Bao
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, 26506-9196, WV, USA
| | - Qingyang Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, 26506-9196, WV, USA
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, and The Children's Hospital Research Institute of Manitoba, MB, Winnipeg, Canada
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, 26506-9196, WV, USA.
| |
Collapse
|
4
|
Mukhtorova D, Hlava J, Száková J, Najmanová J, Tlustoš P. Can mollusks or insects serve as bioindicators of the risk element polluted area? Gastropods (Gastropoda) versus leaf beetles (Coleoptera: Chrysomelidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28067-x. [PMID: 37273046 DOI: 10.1007/s11356-023-28067-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Two groups of invertebrates, terrestrial mollusks (Gastropoda) and Chrysomela populi leaf beetles (Coleoptera: Chrysomelidae), were sampled to estimate the suitability of these organisms as bioindicators of risk element pollution (predominantly Cd, Pb, and Zn) alongside the risk element concentration gradient in the contaminated area (former mining/smelting areas in the vicinity of Příbram city, Central Bohemia, Czech Republic). The individuals representing ten species of terrestrial snails and imagoes of C. populi were collected manually at five sampling sites, differing in the level of soil contamination with risk elements. The findings showed high variability of the results regardless of the element determined, animal species, and sampling location. Among the elements, higher accumulation ability was observed for Cd and Zn, given the higher bioaccessibility of these elements in soils compared to Pb, Cr, and Cu. Higher Cd and Zn accumulation in the soft tissues of gastropods (without any statistically significant differences among the species) compared to C. populi was also recorded. Medians of the bioaccumulation factors (BAFs) reached up to 33.2 for Cd and 5.8 for Zn, in gastropods while reaching up to 3.4 for Cd, and 2.3 for Zn, for C. populi. For both groups of organisms, paradoxically, a higher rate of accumulation of risk elements was observed in all analyzed organisms in sites with lower soil contamination compared to heavily contaminated sites. This indicated the ability of the organisms living in extreme conditions to avoid the uptake of these elements or to move among areas of different contamination levels. Thus, terrestrial gastropods and C. populi proved to be unsuitable bioindicators for assessing soil pollution.
Collapse
Affiliation(s)
- Dilnora Mukhtorova
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague Suchdol, 165 00, Czech Republic
| | - Jakub Hlava
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague Suchdol, 165 00, Czech Republic
| | - Jiřina Száková
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague Suchdol, 165 00, Czech Republic.
| | - Jana Najmanová
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague Suchdol, 165 00, Czech Republic
| | - Pavel Tlustoš
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague Suchdol, 165 00, Czech Republic
| |
Collapse
|
5
|
Burgess RM, Cantwell MG, Dong Z, Grundy JS, Joyce AS. Comparing Equilibrium Concentrations of Polychlorinated Biphenyls Based on Passive Sampling and Bioaccumulation in Water Column Deployments. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:317-332. [PMID: 36484760 PMCID: PMC10789481 DOI: 10.1002/etc.5536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/18/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Biomonitoring at contaminated sites undergoing cleanup, including Superfund sites, often uses bioaccumulation of anthropogenic contaminants by field-deployed organisms as a metric of remedial effectiveness. Bioaccumulation studies are unable to assess the equilibrium status of the organisms relative to the contaminants to which they are exposed. Establishing equilibrium provides a reproducible benchmark on which scientific and management decisions can be based (e.g., comparison with human dietary consumption criteria). Unlike bioaccumulating organisms, passive samplers can be assessed for their equilibrium status. In our study, over a 3-year period, we compared the bioaccumulation of selected polychlorinated biphenyls (PCBs) by mussels in water column deployments at the New Bedford Harbor Superfund site (New Bedford, MA, USA) to codeployed passive samplers. Based on comparisons to the calculated passive sampler equilibrium concentrations, the mussels were not at equilibrium, and the subsequent analysis focused on evaluating approaches for estimating equilibrium bioaccumulation. In addition, a limited evaluation of metal bioaccumulation by the exposed mussels and a metal passive sampler was performed. In general, mussel and passive sampler accumulation of PCBs was significantly correlated; however, surprisingly, agreement on the magnitude of accumulation was optimal when bioaccumulation and passive sampler uptake were not corrected for nonequilibrium conditions. A subsequent comparison of four approaches for estimating equilibrium mussel bioaccumulation using octanol-water partition coefficients (KOW ), triolein-water partition coefficients (KTW ), and two types of polymer-lipid partition coefficients demonstrated that field-deployed mussels were not at equilibrium with many PCBs. A range of estimated equilibrium mussel bioaccumulation concentrations were calculated, with the magnitude of the KOW -based values being the smallest and the polymer-lipid partition coefficient-based values being the largest. These analyses are intended to assist environmental scientists and managers to interpret field deployment data when transitioning from biomonitoring to passive sampling. Environ Toxicol Chem 2023;42:317-332. Published 2022. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Robert M. Burgess
- ORD/CEMM Atlantic Coastal Environmental Sciences Division, US Environmental Protection Agency, Narragansett, Rhode Island
| | - Mark G. Cantwell
- ORD/CEMM Atlantic Coastal Environmental Sciences Division, US Environmental Protection Agency, Narragansett, Rhode Island
| | - Zhao Dong
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - James S. Grundy
- ORD/CEMM Atlantic Coastal Environmental Sciences Division, Oak Ridge Institute for Science and Education, US Environmental Protection Agency, Narragansett, Rhode Island
| | - Abigail S. Joyce
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina, USA
| |
Collapse
|
6
|
Mercury Accumulation in a Stream Ecosystem: Linking Labile Mercury in Sediment Porewaters to Bioaccumulative Mercury in Trophic Webs. WATER 2022. [DOI: 10.3390/w14132003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mercury (Hg) deposition and accumulation in the abiotic and biotic environments of a stream ecosystem were studied. This study aimed to link labile Hg in porewater to bioaccumulative Hg in biota. Sediment cores, porewaters, and biota were sampled from four sites along the Fourmile Branch (SC, USA) and measured for total Hg (THg) and methyl-Hg (MHg) concentrations. Water quality parameters were also measured at the sediment–water interface (SWI) to model the Hg speciation. In general, Hg concentrations in porewaters and bulk sediment were relatively high, and most of the sediment Hg was in the solid phase as non-labile species. Surface sediment presented higher Hg concentrations than the medium and bottom layers. Mercury methylation and MHg production in the sediment was primarily influenced by sulfate levels, since positive correlations were observed between sulfate and Hg in the porewaters. The majority of Hg species at the SWI were in non-labile form, and the dominant labile Hg species was complexed with dissolved organic carbon. MHg concentrations in the aquatic food web biomagnified with trophic levels (biofilm, invertebrates, and fish), increasing by 3.31 times per trophic level. Based on the derived data, a modified MHg magnification model was established to estimate the Hg bioaccumulation at any trophic level using Hg concentrations in the abiotic environment (i.e., porewater).
Collapse
|
7
|
Zooplankton as Mercury Repository in Lake Maggiore (Northern Italy): Biomass Composition and Stable Isotope Analysis. WATER 2022. [DOI: 10.3390/w14050680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Total mercury (THg) and methylmercury (MeHg) concentrations were analyzed in zooplankton (≥450 and ≥850 µm size fractions) collected seasonally over 6 years in Lake Maggiore (Northern Italy), characterized by a legacy mercury contamination. Analysis of δ 15N and δ13C stable isotopes was carried out to trace how taxa with different trophic levels and carbon sources contributed to mercury concentrations and trends. THg ranged between 44–213 µg kg−1 d.w. and MeHg 15–93 µg kg−1 d.w., representing 24–61% of THg. Values showed strong seasonal variations, with peaks in winter, due to the high biomass of predator taxa (Bythotrephes longimanus, Leptodora kindtii) and of Daphnia longispina-galeata gr. A positive correlation between THg and MeHg and δ15N signature was observed. D. longispina-galeata gr. prevailed in both size fractions, substantially contributing to THg and MeHg concentrations. Δ13C signature was strictly bound to lake thermal circulation dynamics. Mercury stock in the zooplankton compartment ranged between 19–140 ng THg m−2 and 6–44 ng MeHg m−2 for the ≥450 µm size fraction and between 2–66 ng THg m−2 and 1–7 ng MeHg m−2 for the ≥850 µm fraction, with the highest values in spring when zooplanktivorous fish actively prey in the pelagic zone. The results highlighted the crucial role of zooplankton as a repository of mercury, easily available to higher trophic levels.
Collapse
|
8
|
Neal-Walthall N, Ndu U, Rivera NA, Elias DA, Hsu-Kim H. Utility of Diffusive Gradient in Thin-Film Passive Samplers for Predicting Mercury Methylation Potential and Bioaccumulation in Freshwater Wetlands. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1743-1752. [PMID: 35044747 PMCID: PMC9630924 DOI: 10.1021/acs.est.1c06796] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mercury is a risk in aquatic ecosystems when the metal is converted to methylmercury (MeHg) and subsequently bioaccumulates in aquatic food webs. This risk can be difficult to manage because of the complexity of biogeochemical processes for mercury and the need for accessible techniques to navigate this complexity. Here, we explored the use of diffusive gradient in thin-film (DGT) passive samplers as a tool to simultaneously quantify the methylation potential of inorganic Hg (IHg) and the bioaccumulation potential of MeHg in freshwater wetlands. Outdoor freshwater wetland mesocosms were amended with four isotopically labeled and geochemically relevant IHg forms that represent a range of methylation potentials (202Hg2+, 201Hg-humic acid, 199Hg-sorbed to FeS, and 200HgS nanoparticles). Six weeks after the spikes, we deployed DGT samplers in the mesocosm water and sediments, evaluated DGT-uptake rates of total Hg, MeHg, and IHg (calculated by difference) for the Hg isotope spikes, and examined correlations with total Hg, MeHg, and IHg concentrations in sediment, water, and micro and macrofauna in the ecosystem. In the sediments, we observed greater relative MeHg concentrations from the initially dissolved IHg isotope spikes and lower MeHg levels from the initially particulate IHg spikes. These trends were consistent with uptake flux of IHg into DGTs deployed in surface sediments. Moreover, we observed correlations between total Hg-DGT uptake flux and MeHg levels in periphyton biofilms, submergent plant stems, snails, and mosquitofish in the ecosystem. These correlations were better for DGTs deployed in the water column compared to DGTs in the sediments, suggesting the importance of vertical distribution of bioavailable MeHg in relation to food sources for macrofauna. Overall, these results demonstrate that DGT passive samplers are a relatively simple and efficient tool for predicting IHg methylation and MeHg bioaccumulation potentials without the need to explicitly delineate IHg and MeHg speciation and partitioning in complex ecosystems.
Collapse
Affiliation(s)
- Natalia Neal-Walthall
- Department of Civil and Environmental Engineering, Duke University, Box 90287, Durham, North Carolina 27708, United States
| | - Udonna Ndu
- Department of Civil and Environmental Engineering, Duke University, Box 90287, Durham, North Carolina 27708, United States
- Harte Research Institute for Gulf of Mexico Studies, Texas A&M Corpus Christi, Corpus Christi, TX, 78412, United States
| | - Nelson A. Rivera
- Department of Civil and Environmental Engineering, Duke University, Box 90287, Durham, North Carolina 27708, United States
| | - Dwayne A. Elias
- Elias Consulting, LLC, Knoxville, Tennessee 37934, United States
| | - Heileen Hsu-Kim
- Department of Civil and Environmental Engineering, Duke University, Box 90287, Durham, North Carolina 27708, United States
| |
Collapse
|
9
|
Valsecchi L, Roscioli C, Schiavon A, Marziali L. Methylmercury determination in freshwater biota and sediments: Static headspace GC-MS compared to direct mercury analyzer. MethodsX 2022; 8:101581. [PMID: 35004215 PMCID: PMC8720905 DOI: 10.1016/j.mex.2021.101581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/13/2021] [Indexed: 11/29/2022] Open
Abstract
We developed and compared two analytical methods for determination of MeHg in freshwater biota and sediments, by: I) simplified static headspace GC-MS using internal standard (IS) isotope dilution quantification, after microwave acid digestion and aqueous phase NaBEt4 ethylation; II) Automated Mercury Analyzer, after double toluene extraction followed by back-extraction with L-cystein. The performance was evaluated by analysis of certified reference materials. For biota, mean recovery was 100 ± 2% and relative standard deviation (RSD) ≤ 6.8% for method I, and mean recovery was 98 ± 7% and RSD ≤13% for method II. For sediments, recovery of 94.5% and RSD of 8.8% were obtained with method I, and recovery of 90.3% and RSD of 9.4% with method II. Limits of detection (LOD) were 0.7 µg kg−1 and 6 µg kg−1, respectively. Both techniques were tested for MeHg analysis in freshwater invertebrates, fish and sediments, covering a large range of MeHg values (1.9–670 µg kg−1 d.w.). • Both protocols proved to be suitable for MeHg analysis in complex environmental matrices, even if, for method II, interferences in the extraction phase and limited sensitivity may hinder sediment analysis. • Passing-Bablock regression revealed a slight disproportion between methods, with line slope = 1.058 (95% CI ranging from 1.001 to 1.090).
Collapse
Affiliation(s)
- Lucia Valsecchi
- CNR-IRSA National Research Council, Water Research Institute, Via del Mulino 19, Brugherio (MB) I-20861, Italy
| | - Claudio Roscioli
- CNR-IRSA National Research Council, Water Research Institute, Via del Mulino 19, Brugherio (MB) I-20861, Italy
| | - Alfredo Schiavon
- CNR-IRSA National Research Council, Water Research Institute, Via del Mulino 19, Brugherio (MB) I-20861, Italy.,Department of Ecohydrology, IGB Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin 12587, Germany
| | - Laura Marziali
- CNR-IRSA National Research Council, Water Research Institute, Via del Mulino 19, Brugherio (MB) I-20861, Italy
| |
Collapse
|
10
|
Mercury Bioaccumulation in Benthic Invertebrates: From Riverine Sediments to Higher Trophic Levels. TOXICS 2021; 9:toxics9090197. [PMID: 34564348 PMCID: PMC8473003 DOI: 10.3390/toxics9090197] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/04/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022]
Abstract
Riverine sediments are important sites of mercury methylation and benthic invertebrates may be indicators of Hg exposure to higher organisms. From 2014 to 2018, sediments and invertebrates were collected along a mercury gradient in the Toce River (Northern Italy) and analyzed for THg and MeHg. Concentrations in invertebrates, separated according to taxon and to Functional Feeding Group, ranged from 20 to 253 µg kg−1 dry weight (d.w.) for THg, increasing from grazers (Leuctra, Baetis, Serratella) to predators (Perla). MeHg ranged from 3 to 88 µg kg−1 d.w. in biota, representing 6–53% of THg, while in sediments it was mostly below LOD (0.7 µg kg−1), accounting for ≤3.8% of THg. The Biota-Sediment Accumulation Factor (BSAF, ranging 0.2–4.6) showed an inverse relation to exposure concentrations (THg in sediments, ranging 0.014–0.403 µg kg−1 d.w.) and to organic carbon. THg in invertebrates (up to 73 µg kg−1 wet weight), i.e., at the basal levels of the aquatic trophic chain, exceeded the European Environmental Quality Standard for biota (20 µg kg−1 w.w.), posing potential risks for top predators. Concentrations in adult insects were close to those in aquatic stages, proving active mercury transfer even to terrestrial food chains.
Collapse
|
11
|
Qiu XW, Pei J, Wu CC, Song L, Bao LJ, Zeng EY. Determination of low-density polyethylene-water partition coefficients for novel halogenated flame retardants with the large volume model and co-solvent model. CHEMOSPHERE 2021; 277:130235. [PMID: 33794435 DOI: 10.1016/j.chemosphere.2021.130235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/23/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
The partition coefficient (Kpew) of an analyte between low-density polyethylene (LDPE) film and water is a critical parameter for measuring freely dissolved concentrations of the analyte with PE passive sampling devices. Measuring log Kpew for super hydrophobic organic chemicals (HOCs) have been proven extremely difficult. The present study developed a large volume model for measuring log Kpew of super HOCs, i.e., novel halogenated flame retardants (NHFRs). Results showed that the measured log Kpew values of selected PAHs and PCBs obtained by the large volume model were in line with those from the co-solvent model and the literature data within less 0.3 log units of difference, while those of NHFRs (6.27-7.34) except for hexachlorocyclopentadienyldibromocyclooctane (HCDBCO) and Decabromodiphenyl ethane (DBDPE) were significantly lower than those (6.51-8.89) from the co-solvent model. A curvilinear relationship was observed between log Kpew and log Kow of all target compounds, with the turning point at log Kow = ∼8.0 in the large volume model, but that was not found for the co-solvent model. These can be attributed to the large molecular volumes (> 450 Å3) for NHFRs, which require high Gibbs free energy to penetrate into the inside structures of LDPE in the large volume model. However, the solvent swelling effects in the co-solvent model needs to be investigated. Therefore, the large volume model is robust to determine the Kpew values of super HOCs for facilitating the application of aquatic passive sampling techniques.
Collapse
Affiliation(s)
- Xia-Wen Qiu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511436, China
| | - Jie Pei
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511436, China
| | - Chen-Chou Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511436, China
| | - Lin Song
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511436, China
| | - Lian-Jun Bao
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511436, China.
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511436, China
| |
Collapse
|
12
|
Marziali L, Guzzella L, Salerno F, Marchetto A, Valsecchi L, Tasselli S, Roscioli C, Schiavon A. Twenty-year sediment contamination trends in some tributaries of Lake Maggiore (Northern Italy): relation with anthropogenic factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38193-38208. [PMID: 33728603 DOI: 10.1007/s11356-021-13388-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/08/2021] [Indexed: 05/24/2023]
Abstract
Lake tributaries collect contaminants from the watershed, which may accumulate in lake sediments over time and may be removed through the outlets. DDx, PCB, PAH, PBDE, and trace element (Hg, As, Cd, Ni, Cu, Pb) contamination was analyzed over 2001-2018 period in sediments of the 5 main tributaries and of the outlet of Lake Maggiore (Northern Italy). Sediment cores were collected in two points of the lake, covering 1995-2017 period. Concentrations were compared to Sediment Quality Guidelines (PECs), potential sources and drivers (land use, population numbers, industrial activities, hydrology) were analyzed, and temporal trends were calculated (Mann-Kendall test). PCB, PBDE, Pb, Cd, and Hg contamination derives mainly from heavy urbanization and industry. Cu and Pb show a temporal decreasing trend in the basin, likely as result of improved wastewater treatments and change in use. A recent PAH increase in the whole lake may derive from a single point source. A legacy DDx and Hg industrial pollution is still present, due to high persistence in sediments. Values of DDx, Hg, Pb, and Cu above the PECs in lake sediments and/or in the outlet show potential risk for aquatic organisms. Results highlight the key role of tributaries in driving contamination from the watershed to the lake through sediment transport.
Collapse
Affiliation(s)
- Laura Marziali
- National Research Council - Water Research Institute (CNR-IRSA), via del Mulino 19, 20861, Brugherio, MB, Italy.
| | - Licia Guzzella
- National Research Council - Water Research Institute (CNR-IRSA), via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Franco Salerno
- National Research Council - Water Research Institute (CNR-IRSA), via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Aldo Marchetto
- National Research Council - Water Research Institute (CNR-IRSA), Corso Tonolli 50, 28922, Verbania, VB, Italy
| | - Lucia Valsecchi
- National Research Council - Water Research Institute (CNR-IRSA), via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Stefano Tasselli
- National Research Council - Water Research Institute (CNR-IRSA), via del Mulino 19, 20861, Brugherio, MB, Italy
- Department of Environmental Sciences, University of Milano Bicocca, Piazza della Scienza 1, 20126, Milano, Italy
| | - Claudio Roscioli
- National Research Council - Water Research Institute (CNR-IRSA), via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Alfredo Schiavon
- National Research Council - Water Research Institute (CNR-IRSA), via del Mulino 19, 20861, Brugherio, MB, Italy
- Department of Ecohydrology, IGB Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| |
Collapse
|
13
|
Mercury Bioavailability in Fluvial Sediments Estimated Using Chironomus riparius and Diffusive Gradients in Thin-Films (DGT). ENVIRONMENTS 2021. [DOI: 10.3390/environments8020007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mercury bioavailability was assessed by exposing the dipteran Chironomus riparius for the whole life cycle to legacy-contaminated fluvial sediments (0.038–0.285 mg Hg kg−1 d.w.) and analyzing tissue concentrations in larvae at different exposure times (7, 11, and 16 days) and in adults. In the same experiment, diffusive gradients in thin-film passive samplers (DGTs), both piston- and probe-shaped, were co-deployed in the same sediments and retrieved at the same times as the organisms. To compare the two approaches, results showed a good agreement between accumulation kinetics of C. riparius and DGTs, both approximating an apparent steady-state. A strong correlation was found between values in tissues and in both types of DGTs (r between 0.74 and 0.99). Concentrations in mature larvae (19–140 µg kg−1 w.w.), which may represent a basal level of the aquatic food web, exceeded the European Environmental Quality Standard for biota (20 µg kg−1 w.w.), which aims at protecting the top predators from secondary poisoning. Body burdens in larvae and in adults were similar, showing negligible decontamination during metamorphosis and proving an efficient mercury transfer from sediments to terrestrial food webs.
Collapse
|
14
|
Trophic Magnification of Legacy (PCB, DDT and Hg) and Emerging Pollutants (PFAS) in the Fish Community of a Small Protected Southern Alpine Lake (Lake Mergozzo, Northern Italy). WATER 2020. [DOI: 10.3390/w12061591] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The biomagnification of mercury, polychlorobiphenyls (PCBs), dichlorodiphenyltrichloroethane and its metabolites (DDTs) and perfluoroalkyl acids substances (PFASs) was evaluated in the trophic web of Lake Mergozzo, a small and deep Italian subalpine lake, which has been chosen because it is a protected environment, and discharges into the lake are mostly avoided. Carbon source and relative trophic levels were calculated by using 13C and 15N stable isotopes, respectively, and trophic magnification factors (TMFs) were derived. Zooplankton and thirteen species of fish were collected and analyzed, and the results showed the elevated level of biota contamination from both legacy and emerging pollutants, even if direct discharges were avoided. Concentrations in biota, expressed as sums of compounds, ranged from 0.4 to 60 µg kg−1 wet weight (ww) for PFASs, from 16 to 1.3 104 µg kg−1 lipid content (lw) for DDTs, from 17 to 1.5 104 µg kg−1 lw for PCBs and from 20.0 to 501 µg kg−1 ww for mercury (Hg). TMFs of this deep, cold lake, with a prevalent pelagic trophic chain, were high and clearly indicated fish biomagnification, except for PFAS. The biomagnification capability of PFAS in a fish-only food web was discussed by using the biomagnification of Hg as a benchmark for assessing their bioaccumulation potential.
Collapse
|
15
|
Stable Isotope Analysis and Persistent Organic Pollutants in Crustacean Zooplankton: The Role of Size and Seasonality. WATER 2019. [DOI: 10.3390/w11071490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Zooplankton is crucial for the transfer of matter, energy, and pollutants through aquatic food webs. Primary and secondary consumers contribute to the abundance and standing stock biomass, which both vary seasonally. By means of taxa- and size-specific carbon and nitrogen stable isotope analysis, the path of pollutants through zooplankton is traced and seasonal changes are addressed, in an effort to understand pollutant dynamics in the pelagic food web. We analyzed zooplankton plurennial changes in concentration of polychlorinated biphenyls (PCBs) and dichlorodiphenyltrichloroethane and its relatives (DDTs) and in taxa-specific δ15N signatures in two size fractions, ≥450 µm and ≥850 µm, representative of the major part of zooplankton standing stock biomass and of the fraction to which fish predation is mainly directed, respectively. Our work is aimed at verifying: (1) A link between nitrogen isotopic signatures and pollutant concentrations; (2) the predominance of size versus seasonality for concentration of pollutants; and (3) the contribution of secondary versus primary consumers to carbon and nitrogen isotopic signatures. We found a prevalence of seasonality versus size in pollutant concentrations and isotopic signatures. The taxa-specific δ15N results correlated to pollutant concentrations, by means of taxa contribution to standing stock biomass and δ15N isotopic signatures. This is a step forward to understanding the taxa-specific role in pollutant transfer to planktivores and of zooplankton enrichment in PCBs and DDTs.
Collapse
|
16
|
Mukhtorova D, Hlava J, Száková J, Kubík Š, Vrabec V, Tlustoš P. Risk element accumulation in Coleoptera and Hymenoptera (Formicidae) living in an extremely contaminated area-a preliminary study. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:432. [PMID: 31190146 DOI: 10.1007/s10661-019-7584-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
The risk element accumulation ability of two groups of epigeic species, insects from families Coleoptera and Hymenoptera (namely Formicidae), was determined and related to soil risk element content and bioaccessibility. The study was conducted in the district of Příbram, Czech Republic, which was characterised by extremely high aged pollution in the soils, including risk elements, especially As, Pb, Zn and Cd, due to the former mining and smelting activity. Four sampling sites differing in their pseudo-total risk element contents were selected and composite samples of individuals representing either Coleoptera or Formicidae were sampled at the individual sampling points. The results indicate the ability of Coleoptera and Formicidae organisms to accumulate risk elements, especially at the location with extremely high soil risk element content. In soil containing up to 841 mg As kg-1, 84.6 mg Cd kg-1, 4250 mg Pb kg-1 and 8542 mg Zn kg-1, contents in insect bodies reached 239 mg As kg-1 As, 24.2 mg Cd kg-1, 70.4 mg Pb kg-1 and 335 mg Zn kg-1 in beetles and up to 20.9 mg As kg-1, 29.9 mg Cd kg-1, 111 mg Pb kg-1 and 657 mg Zn kg-1 in ants. Therefore, bioaccumulation factors (BAFs) varied between 0.02 and 0.55. Increasing Cd content in Coleoptera bodies with increasing soil pseudo-total element content was observed only among the investigated elements. However, the results indicate increasing BAF values with decreasing soil element levels, especially for Cd, Pb and Zn, indicating limited uptake of elements by the organisms living in contact with extremely contaminated soil.
Collapse
Affiliation(s)
- Dilnora Mukhtorova
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague Suchdol, Czech Republic
| | - Jakub Hlava
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague Suchdol, Czech Republic
| | - Jiřina Száková
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague Suchdol, Czech Republic.
| | - Štěpán Kubík
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague Suchdol, Czech Republic
| | - Vladimír Vrabec
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague Suchdol, Czech Republic
| | - Pavel Tlustoš
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague Suchdol, Czech Republic
| |
Collapse
|
17
|
Bratkič A, Klun K, Gao Y. Mercury speciation in various aquatic systems using passive sampling technique of diffusive gradients in thin-film. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 663:297-306. [PMID: 30711596 DOI: 10.1016/j.scitotenv.2019.01.241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/19/2019] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
Mercury (Hg) is one of the primary health concerns in natural and urbanised environments due to past and present natural and anthropogenic emissions. Its environmental cycle is driven by redox reactions, microbial metabolism and organic matter (OM) interactions, which may all lead to formation of bioaccumulative organic Hg species; methylmercury (MeHg), with damaging consequences for human and ecosystem health. Hence, Hg lability and bioavailability has been the focus of many investigations and assessed with a variety of chemical proxies in order to improve understanding of the conditions that lead to enhanced bioavailability of Hg and its species. We investigated Hg labile species with Diffusive Gradient in Thin-film technique (DGT) in the water column and sediment of Zenne River (Brussels, Belgium) and Gulf of Trieste (North Adriatic). They represent two contemporary important Hg-impacted areas; the former by anthropogenic urban pollution, and the latter by historic pollution from Hg mining. Hg speciation of labile inorganic and methylmercury in these two environments was not yet investigated using DGT technique. The results show labile Hg species changing with season in the water column of Zenne River, while the sediments are the source of bioavailable MeHg to the water column that is transported further creating a halo effect in the region. Values of labile Hg species for water column and sediments in Gulf of Trieste differ from previous research, highlighting the need for more investigation into Hg bioavailability. MeHg/THg ratios were compared to other sampling methods for labile Hg species.
Collapse
Affiliation(s)
- Arne Bratkič
- Analytical, Environmental and Geochemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Katja Klun
- Marine Biology Station, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Yue Gao
- Analytical, Environmental and Geochemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| |
Collapse
|
18
|
Di S, Diao J, Wang X, Qi P, Wang Z, Xu H, Zhang H, Wang X, Han J. Bioaccumulation of dichlorodiphenyltrichloroethanes (DDTs) in carp in a water/sediment microcosm: important role of sediment particulate matter and bioturbation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9500-9507. [PMID: 30726537 DOI: 10.1007/s11356-019-04426-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Sediments are reservoirs and sources of DDTs to the aquatic ecosystem. However, the role of sediment particulate matter and benthic organisms in transferring DDTs remains unclear. In this study, microcosms were built up with different groups to simulate a freshwater system with DDT-contaminated sediment and organisms. The impacts of different exposure routes (water and sediment) on the changes of DDT and its metabolites (DDD and DDE) in carp (Cyprinus carpio) were investigated. The bioturbation of Tubifex tubifex (Oligochaeta, Tubificidae) was investigated to understand the fate and transfer of DDTs in aquatic environment. For the sediment treatment, the concentrations of o,p'-DDT in carp were significantly higher than those of p,p'-DDT, and the metallothionein (MT) content decreased. The bioaccumulation of DDTs in carp via sediment particulate matter was significantly higher/faster than that via overlying water. T. tubifex and sediment particulate matter accelerate DDT bioaccumulation in carp. Selective enrichment of the (+)-o,p'-DDT and (+)-o,p'-DDD was found in carp. These results help to reduce uncertainty in ecological and health risk assessments and to better understand the risk of DDTs in the environment.
Collapse
Affiliation(s)
- Shanshan Di
- Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Desheng Middle Road 298, Hangzhou, 310021, China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, China
- Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou, 310021, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan west road 2, Beijing, 100193, People's Republic of China
| | - Xiangyun Wang
- Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Desheng Middle Road 298, Hangzhou, 310021, China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, China
- Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou, 310021, China
| | - Peipei Qi
- Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Desheng Middle Road 298, Hangzhou, 310021, China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, China
- Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou, 310021, China
| | - Zhiwei Wang
- Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Desheng Middle Road 298, Hangzhou, 310021, China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, China
- Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou, 310021, China
| | - Hao Xu
- Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Desheng Middle Road 298, Hangzhou, 310021, China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, China
- Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou, 310021, China
| | - Hu Zhang
- Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Desheng Middle Road 298, Hangzhou, 310021, China
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, China
- Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou, 310021, China
| | - Xinquan Wang
- Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Desheng Middle Road 298, Hangzhou, 310021, China.
- Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, China.
- Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou, 310021, China.
| | - Jiajun Han
- Department of Chemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
19
|
Vieira M, Bernardi JVE, Dórea JG, Rocha BCP, Ribeiro R, Zara LF. Distribution and availability of mercury and methylmercury in different waters from the Rio Madeira Basin, Amazon. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:771-779. [PMID: 29351888 DOI: 10.1016/j.envpol.2018.01.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/17/2017] [Accepted: 01/08/2018] [Indexed: 06/07/2023]
Abstract
Waters from the Amazon Basin have distinct physicochemical characteristics that can be optically classified as "black", "clear" and "white". We studied the distribution of total-Hg (THg) and methyl-Hg (MeHg) in these waters and respective suspended solids, sediment, phytoplankton, zooplankton, and benthic macroinvertebrates (BM) in the Madeira River Basin. Compared with the other types of water, the more acidic "black" kind had the highest THg and MeHg concentrations. The trend (black > clear > white) occurred for the concentrations of THg and MeHg in sediments and in the biotic compartment (plankton, macroinvertebrates). Organic Hg accounted for a small percentage (0.6-0.4%) of the THg in sediments but was highest in water (17-15%). For plankton and BM, the biota sediment accumulation factor (BSAFs) of MeHg (53-125) were greater than those of THg (4.5-15); however, the BSAF trend according to water type (black > clear > white) was only significant for MeHg. Sediment THg is correlated with all forms of Hg in biotic and abiotic matrices. The results indicate that water acidity in the Amazon is an important chemical characteristic in assessing Hg contamination of sediments and bioaccumulation in the aquatic food web. The differences in the BSAFs between THg and MeHg support the use of this factor for evaluating the bioaccumulation potential of sediment-bound Hg. The results add information critical to assessing environmental and health risks related to Hg methylation and potential fish-MeHg contamination, especially in tropical aquatic environments.
Collapse
Affiliation(s)
- Miguel Vieira
- Laboratorio of Ciências da Vida e da Terra, Universidade de Brasília - (Campus Planaltina), Brazil.
| | - José V E Bernardi
- Laboratorio of Ciências da Vida e da Terra, Universidade de Brasília - (Campus Planaltina), Brazil.
| | - José G Dórea
- Laboratorio of Ciências da Vida e da Terra, Universidade de Brasília - (Campus Planaltina), Brazil.
| | - Bruno C P Rocha
- Departamento de Química-UNESP - (Campus Araraquara), Brazil.
| | - Romulo Ribeiro
- Laboratorio of Ciências da Vida e da Terra, Universidade de Brasília - (Campus Planaltina), Brazil.
| | - Luis F Zara
- Laboratorio of Ciências da Vida e da Terra, Universidade de Brasília - (Campus Planaltina), Brazil.
| |
Collapse
|
20
|
Marziali L, Rosignoli F, Drago A, Pascariello S, Valsecchi L, Rossaro B, Guzzella L. Toxicity risk assessment of mercury, DDT and arsenic legacy pollution in sediments: A triad approach under low concentration conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 593-594:809-821. [PMID: 28371758 DOI: 10.1016/j.scitotenv.2017.03.219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 06/07/2023]
Abstract
The determination of sediment toxicity is challenging due to site-specific factors affecting pollutants distribution and bioavailability, especially when contamination levels are close to expected non-effect concentrations. Different lines of evidence and sensitive tools are necessary for a proper toxicity risk assessment. We examined the case study of the Toce River (Northern Italy), where past industrial activities determined Hg, DDT and As enrichment in sediments. A triad approach comprising chemical, ecotoxicological and ecological analyses (benthic invertebrates) was carried out for risk assessment of residual contamination in river sediments. A "blank" site upstream from the industrial site was selected to compare the other sites downstream. Sediment, water and benthic invertebrate samplings were carried out following standard protocols. Results emphasized that despite the emissions of the industrial site ceased about 20years ago, sediments in the downstream section of the river remain contaminated by Hg, DDT and As with concentrations exceeding Threshold Effect Concentrations. A chronic whole-sediment test with Chironomus riparius showed decreased development rate and a lower number of eggs per mass in the contaminated sediments. Benthic community was analyzed with the calculation of integrated (STAR_ICMi) and stressor-specific metrics (SPEARpesticide and mean sensitivity to Hg), but no significant differences were found between upstream and downstream sites. On the other hand, multivariate analysis (partial Redundancy Analysis and variation partitioning) emphasized a slight impact on invertebrate community, accounting for 5% variation in taxa composition. Results show that legacy contaminants in sediments, even at low concentrations, may be bioavailable and possibly toxic for benthic invertebrates. At low concentration levels, sensitive and site-specific tools need to be developed for a proper risk analysis.
Collapse
Affiliation(s)
- L Marziali
- Water Research Institute - National Research Council (IRSA-CNR), Via del Mulino 19, 20861 Brugherio, MB, Italy.
| | - F Rosignoli
- Water Research Institute - National Research Council (IRSA-CNR), Via del Mulino 19, 20861 Brugherio, MB, Italy
| | - A Drago
- Water Research Institute - National Research Council (IRSA-CNR), Via del Mulino 19, 20861 Brugherio, MB, Italy
| | - S Pascariello
- Water Research Institute - National Research Council (IRSA-CNR), Via del Mulino 19, 20861 Brugherio, MB, Italy
| | - L Valsecchi
- Water Research Institute - National Research Council (IRSA-CNR), Via del Mulino 19, 20861 Brugherio, MB, Italy
| | - B Rossaro
- University of Milan, Department of Food, Environmental and Nutritional Sciences (DeFENS), Via Celoria 2, 20133 Milan, Italy
| | - L Guzzella
- Water Research Institute - National Research Council (IRSA-CNR), Via del Mulino 19, 20861 Brugherio, MB, Italy
| |
Collapse
|
21
|
Zhang Y, Liu Y, Niu Z, Jin S. Ecological risk assessment of toxic organic pollutant and heavy metals in water and sediment from a landscape lake in Tianjin City, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:12301-12311. [PMID: 28357793 DOI: 10.1007/s11356-017-8906-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 03/21/2017] [Indexed: 06/06/2023]
Abstract
To estimate the ecological risk of toxic organic pollutant (formaldehyde) and heavy metals (mercury (Hg), arsenic (As), cadmium (Cd), and chromium (Cr)) in water and sediment from a landscape Lake in Tianjin City, an ecological risk assessment was performed. The risk quotient (RQ) method and the AQUATOX model were used to assess the ecological risk of formaldehyde in landscape water. Meanwhile, the RQ method and the potential ecological risk index method were used to assess the ecological risk of four heavy metals in water and sediment from the studied landscape lake, respectively. The results revealed that the maximum concentration of formaldehyde in landscape water was lower than the environmental quality standards of surface water in China. The maximum simulated concentrations of formaldehyde in phytoplankton and invertebrates were 3.15 and 22.91 μg/L, respectively, which were far less than its toxicity data values (1000 and 510 μg/L, respectively), suggesting that formaldehyde in landscape water was at a safe level for aquatic organisms. The RQ model indicated that the risks of phytoplankton and invertebrates were higher than that of fish posed by Hg and Cd in landscape water, and the risks from As and Cr were acceptable for all test organisms. Cd is the most important pollution factor among all heavy metals in sediment from studied landscape lake, and the pollution factor sequence of heavy metals was Hg > As > Cr > Cd. The values of risk index (RI) for four heavy metals in samples a and b were 43.48 and 72.66, which were much lower than the threshold value (150), suggesting that the ecological risk posed by heavy metals in sediment was negligible.
Collapse
Affiliation(s)
- Ying Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yuanyuan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Zhiguang Niu
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China.
| | - Shaopei Jin
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
22
|
Song B, Zeng G, Gong J, Zhang P, Deng J, Deng C, Yan J, Xu P, Lai C, Zhang C, Cheng M. Effect of multi-walled carbon nanotubes on phytotoxicity of sediments contaminated by phenanthrene and cadmium. CHEMOSPHERE 2017; 172:449-458. [PMID: 28092766 DOI: 10.1016/j.chemosphere.2017.01.032] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/11/2016] [Accepted: 01/05/2017] [Indexed: 06/06/2023]
Abstract
To implement effective control and abatement programs for contaminants accumulating in sediments, strategies are needed for evaluating the quality of amended sediments. In this study, phytotoxicity of the sediments contaminated by cadmium and phenanthrene was evaluated after in situ remediation with multi-walled carbon nanotubes (MWCNTs) as adsorbents. Adsorption experiments and measurement of aqueous concentrations of the contaminants in overlying water were used to investigate the remediation effectiveness from physical and chemical aspects. The results indicated that MWCNTs showed a much better adsorption performance towards phenanthrene and Cd(II) compared with the sediments. The in situ remediation with MWCNTs could distinctly decrease the aqueous concentrations of phenanthrene and Cd(II) released from the sediments, reducing environmental risk towards overlying water. Influences of MWCNTs dose, MWCNTs diameter, and contact time on phtotoxicity of the contaminated sediments were studied. No significant inhibition of the amended sediments on germination of the test species was observed in the experiments, while the root growth was more sensitive than biomass production to the changes of contaminant concentrations. The analysis of Pearson correlation coefficients between evaluation indicators and associated remediation parameters suggested that phytotoxicity of sediments might inaccurately indicate the changes of pollutant content, but it was significant in reflecting the ecotoxicity of sediments after remediation.
Collapse
Affiliation(s)
- Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Jilai Gong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Peng Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jiaqin Deng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Canhui Deng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jin Yan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|