1
|
Auteri N, Scalenghe R, Saiano F. Phosphorus recovery from agricultural waste via cactus pear biomass. Heliyon 2023; 9:e19996. [PMID: 37810032 PMCID: PMC10559682 DOI: 10.1016/j.heliyon.2023.e19996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
In this study, the potential of cactus pear pruning waste (CPPW) as a low-cost adsorbent biomass for phosphorus (P) removal from aqueous solutions was investigated in batch mode. Biomass samples derived from cactus pear were collected and analyzed to investigate their properties when enriched with either calcium (Ca) or iron (Fe). The examination focused on the capacity of these samples to remove P. The P removal capacities were determined to be 2.27 mg g-1, 1.33 mg g-1, and 1.87 mg g-1 for Ca2+-enriched, Fe2+-loaded, and Fe3+-loaded biomass respectively. Among the various models studied, the Langmuir isotherm model was identified as the most appropriate for accurately describing the P adsorption the enriched biomass. The kinetics of the adsorption process were analyzed by applying the pseudo-first-order, pseudo-second-order, and intraparticle diffusion models. The pseudo-second-order model provided the best fit to the experimental data. Furthermore, the desorption and regeneration process was investigated, revealing minimal P desorption (less than 8%) from Ca or Fe-loaded biomass, indicating the strong stability of the biomass-cation-P system. The estimated cost ranged from 8 to 161 euros per tonne, with an additional 230 euros when considering the pruning costs inherent to the crop. These costs fall below the threshold (320 euros per tonne) for the economically viable P reuse at the farm level. Consequently, CPPW, when reduced to powder and loaded with ions, emerges as an affordable adsorbent with good removal performance, offering a promising avenue for direct utilization in agriculture as both soil conditioner and fertiliser.
Collapse
Affiliation(s)
- Nicolò Auteri
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Italy
| | - Riccardo Scalenghe
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Italy
| | - Filippo Saiano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Italy
| |
Collapse
|
2
|
Zhao Y, Zhang R, Jing L, Wang W. Performance of basalt fiber-periphyton in deep-level nutrient removal: A study concerned periphyton cultivation, characterization and application. CHEMOSPHERE 2022; 291:133044. [PMID: 34826450 DOI: 10.1016/j.chemosphere.2021.133044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/12/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Nutrients in centralized discharge area of treated sewage can cause high ecological risks to aquatic systems, thus a deep-level nutrient removal is necessary. Recently, periphyton has attracted increasing interests for its excellent performance in nutrient removal. In this study, the suitability and durability of basalt fiber (BF) as a new green carrier of periphyton was evaluated, and development process of basalt fiber-periphtyon (BFP) was tracked with bacterial community succession and physiological indicators. Then, well-developed BFP was applied to deeply purify water containing the same concentration of nutrient as the treated sewage. Results showed the periphyton could adapt to BF and formed in large quantities. In addition, the tensile strength of BF after being used as a carrier was still strong. Bacterial community and physiological indicators indicated that BFP was well developed in 40-50 days. LEfSE and random forest analysis revealed that Deinococcus-Deinococci, Spartobacteria and Chlamydiia at class-level, Rhizobiales and Rhodobacterales at order-level were the biomarkers for development of BFP. Moreover, application results showed BFP efficiently removed nitrogen and phosphorus from water and promoted the transformation of ammonia to nitrate. The concentration of ammonia and phosphorus severely decreased from 4.90 ± 0.11 mg/L to 0.51 ± 0.20 mg/L, from 0.66 ± 0.016 mg/L to 0.023 ± 0.013 mg/L, respectively. The efficient nutrient removal was attributed to accumulation of nitrogen and phosphorus metabolism related organisms in BFP as well as favorable water physic-chemical conditions created by BFP. These results suggest that BF is a suitable and durable green carrier of periphyton, and BFP could efficiently reduce ecological risk to aquatic systems receiving treated sewage.
Collapse
Affiliation(s)
- Yue Zhao
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Run Zhang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China
| | - Liandong Jing
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China.
| | - Wenjing Wang
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 7 Chunhui Road, Yantai, 264003, China
| |
Collapse
|
3
|
Zhang K, Hamidian AH, Tubić A, Zhang Y, Fang JKH, Wu C, Lam PKS. Understanding plastic degradation and microplastic formation in the environment: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116554. [PMID: 33529891 DOI: 10.1016/j.envpol.2021.116554] [Citation(s) in RCA: 514] [Impact Index Per Article: 128.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/23/2020] [Accepted: 01/19/2021] [Indexed: 05/20/2023]
Abstract
Plastic waste are introduced into the environment inevitably and their exposure in the environment causes deterioration in mechanical and physicochemical properties and leads to the formation of plastic fragments, which are considered as microplastics when their size is < 5 mm. In recent years, microplastic pollution has been reported in all kinds of environments worldwide and is considered a potential threat to the health of ecosystems and humans. However, knowledge on the environmental degradation of plastics and the formation of microplastics is still limited. In this review, potential hotspots for the accumulation of plastic waste were identified, major mechanisms and characterization methods of plastic degradation were summarized, and studies on the environmental degradation of plastics were evaluated. Future research works should further identify the key environmental parameters and properties of plastics affecting the degradation in order to predict the fate of plastics in different environments and facilitate the development of technologies for reducing plastic pollution. Formation and degradation of microplastics, including nanoplastics, should receive more research attention to assess their fate and ecological risks in the environment more comprehensively.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| | - Amir Hossein Hamidian
- Department of Environmental Science and Engineering, University of Tehran, Karaj, 31587-77878, Iran; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Aleksandra Tubić
- Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, 21000, Novi Sad, Serbia
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - James K H Fang
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Chen X, Chen X, Zhao Y, Zhou H, Xiong X, Wu C. Effects of microplastic biofilms on nutrient cycling in simulated freshwater systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137276. [PMID: 32114222 DOI: 10.1016/j.scitotenv.2020.137276] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/23/2020] [Accepted: 02/11/2020] [Indexed: 05/07/2023]
Abstract
Microplastic surfaces could be colonized by microorganisms and form biofilms in aquatic ecosystem, which can participate in the nitrogen (N) and phosphorus (P) cycles. In this work, polypropylene squares were deployed in a pond for 30 days for microplastic biofilms colonization and then were transported to indoor microcosms at an environmental relevant level to study their effects on N and P cycling. Results showed that microplastic biofilms could accelerate ammonia and nitrite oxidation as well as denitrification. Presence of microplastic biofilms accumulated P temporarily and increased alkaline phosphatase activities (APA) in the system. Later in the experiment, disintegration of matured biofilms released N and P into the water. Mass balance calculation suggested possible N input caused by biological nitrogen fixation. Our results demonstrated that microplastics associated biofilms have the ability to alter the N and P cycling processes in aquatic system. However, additional works are required to further quantify the extent of such impact.
Collapse
Affiliation(s)
- Xianchuan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaofei Chen
- Hubei Academy of Environmental Sciences, Wuhan 430072, China
| | - Yanhui Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hane Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiong Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
5
|
Reducing the Phytoplankton Biomass to Promote the Growth of Submerged Macrophytes by Introducing Artificial Aquatic Plants in Shallow Eutrophic Waters. WATER 2019. [DOI: 10.3390/w11071370] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Harmful cyanobacterial blooms frequently occur in shallow eutrophic lakes and usually cause the decline of submerged vegetation. Therefore, artificial aquatic plants (AAPs) were introduced into enclosures in the eutrophic Dianchi Lake to investigate whether or not they could reduce cyanobacterial blooms and promote the growth of submerged macrophytes. On the 60th day after the AAPs were installed, the turbidity, total nitrogen (TN), total phosphorous (TP), and the cell density of phytoplankton (especially cyanobacteria) of the treated enclosures were significantly reduced as compared with the control enclosures. The adsorption and absorption of the subsequently formed periphyton biofilms attached to the AAPs effectively decreased nutrient levels in the water. Moreover, the microbial diversity and structure in the water changed with the development of periphyton biofilms, showing that the dominant planktonic algae shifted from Cyanophyta to Chlorophyta. The biodiversity of both planktonic and attached bacterial communities in the periphyton biofilm also gradually increased with time, and were higher than those of the control enclosures. The transplanted submerged macrophyte (Elodea nuttallii) in treated enclosures recovered effectively and reached 50% coverage in one month while those in the control enclosures failed to grow. The application of AAPs with incubated periphyton presents an environmentally-friendly and effective solution for reducing nutrients and controlling the biomass of phytoplankton, thereby promoting the restoration of submerged macrophytes in shallow eutrophic waters.
Collapse
|
6
|
Zhu N, Wu Y, Tang J, Duan P, Yao L, Rene ER, Wong PK, An T, Dionysiou DD. A New Concept of Promoting Nitrate Reduction in Surface Waters: Simultaneous Supplement of Denitrifiers, Electron Donor Pool, and Electron Mediators. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8617-8626. [PMID: 29966090 DOI: 10.1021/acs.est.8b01605] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The efficiency of biological nitrate reduction depends on the community composition of microorganisms, the electron donor pool, and the electron mediators participating in the biological reduction process. This study aims at creating an in situ system comprising of denitrifiers, electron donors, and electron mediators to reduce nitrate in surface waters. The ubiquitous periphytic biofilm in waters was employed to promote in situ nitrate reduction in the presence of titanium dioxide (TiO2) nanoparticles (NPs). The nitrate removal rate in the periphytic biofilm and TiO2 NPs system was significantly higher than the control (only periphytic biofilm or TiO2 NPs). TiO2 NPs optimized the community composition of periphytic biofilm for nitrate reduction by increasing the relative abundance of four dominant denitrifying bacteria. Periphytic biofilm showed a substantial increase in extracellular polymeric substance, especially the humic acid and protein content, due to the presence of TiO2 NPs. The synergistic action of humic acid, protein, denitrifying bacteria of the periphytic biofilm, and TiO2 NPs contributed to 80% of the nitrate reduction. The protein and humic acid, acting as electron mediators, facilitated the transfer of exogenous electrons from photoexcited TiO2 NPs to periphytic biofilm containing denitrifiers, which enhanced nitrate reduction in surface waters.
Collapse
Affiliation(s)
- Ningyuan Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences , Chinese Academy of Sciences , 71 East Beijing Road , Nanjing 210008 , China
- College of Resource and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences , Chinese Academy of Sciences , 71 East Beijing Road , Nanjing 210008 , China
| | - Jun Tang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences , Chinese Academy of Sciences , 71 East Beijing Road , Nanjing 210008 , China
- College of Resource and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Pengfei Duan
- Collaborative Innovation Center of Water Security for Water Source, Region of Mid-line of South-to-North Diversion Project , Nanyang Normal University , Nanyang 473061 , Henan , China
| | - Lunguang Yao
- Collaborative Innovation Center of Water Security for Water Source, Region of Mid-line of South-to-North Diversion Project , Nanyang Normal University , Nanyang 473061 , Henan , China
| | - Eldon R Rene
- Department of Environmental Engineering and Water Technology , IHE Delft Institute for Water Education , Westvest 7 , 2611 AX Delft , The Netherlands
| | - Po Keung Wong
- School of Life Sciences , The Chinese University of Hong Kong , Shatin, NT, Hong Kong , SAR , China
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control , Guangdong University of Technology , Guangzhou , 510006 , China
| | - Dionysios D Dionysiou
- Department of Chemical and Environmental Engineering (ChEE), 705 Engineering Research Center , University of Cincinnati , Cincinnati , Ohio 45221-0012 , United States
| |
Collapse
|
7
|
Chen S, Yang G, Lu J, Wang L. Water quality in simulated eutrophic shallow lakes in the presence of periphyton under different flow conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4584-4595. [PMID: 29192398 DOI: 10.1007/s11356-017-0747-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
Although the effects of periphyton on water quality and its relationship with flow conditions have been studied by researchers, our understanding about their combined action in eutrophic shallow lakes is poor. In this research, four aquatic model ecosystems with different water circulation rates and hydraulic conditions were constructed to investigate the effect of periphyton and flow condition on water quality. The concentrations of NH4+, TP, and chlorophyll-a and flow conditions were determined. The results show that, as a result of the rising nutrient level at the early stage and the decline in the lower limit, the presence of periphyton can make the ecosystem adaptable to a wider range of nutrients concentration. In terms of the flow condition, the circulation rate and hydraulic condition are influential factors for aquatic ecosystem. Higher circulation rate in the ecosystem, on one hand, facilitates the metabolism by accelerating nutrient cycling which is beneficial to water quality; on the other hand, high circulation rate leads to the nutrient lower limit rising which is harmful to water quality improvement. At low velocities, slight differences in hydraulic conditions, vertical velocity gradient and turbulence intensity gradient could affect the quantity of phytoplankton. Our study suggests that, considering environmental effect of periphyton, flow conditions and their combined action is essential for water quality improvement and ecological restoration in eutrophic shallow lakes.
Collapse
Affiliation(s)
- Shu Chen
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China.
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan, 430072, China.
| | - Guolu Yang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan, 430072, China
| | - Jing Lu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan, 430072, China
| | - Lei Wang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
8
|
Zhu N, Zhang J, Tang J, Zhu Y, Wu Y. Arsenic removal by periphytic biofilm and its application combined with biochar. BIORESOURCE TECHNOLOGY 2018; 248:49-55. [PMID: 28720276 DOI: 10.1016/j.biortech.2017.07.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
A biochar and periphyton-based system (BPS) comprising of a biochar column and a periphyton bioreactor was designed to avoid the toxicity issue associated with removing As(III) from wastewater. Results showed that the periphyton can grow when As(III) is less than 5.0mgL-1. The BPS obtained a high As(III) removal rate (∼90.2-95.4%) at flow rate=1.0mLmin-1 and initial concentration of As(III)=2.0mgL-1. About 60% of the As(III) was pre-treated (adsorbed) in the biochar column and the removal of the remaining As(III) was attributed to the periphyton bioreactor. The As(III) removal process by periphytic biofilm in the initial stage fits a pseudo-second-kinetic model. The calcite in the periphytic biofilm surfaces and the OH and CO groups were responsible for the As(III) removal. This study indicates the feasibility of the BPS for As(III) removal in practice.
Collapse
Affiliation(s)
- Ningyuan Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
| | - Jianhong Zhang
- Resources & Environment Business Dept., International Engineering Consulting Corporation, Beijing 100048, China
| | - Jun Tang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
| | - Yan Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China.
| |
Collapse
|
9
|
Song C, Hu H, Ao H, Wu Y, Wu C. Removal of parabens and their chlorinated by-products by periphyton: influence of light and temperature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5566-5575. [PMID: 28032288 DOI: 10.1007/s11356-016-8301-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
The extensive use of parabens as preservatives in food and pharmaceuticals and personal care products results in frequent detection of their residuals in aquatic environment. In this work, the adsorption and removal of four parabens (methyl-, ethyl-, propyl-, and butyl-paraben) and two chlorinated methyl-parabens (CMPs) by periphyton were studied. Characteristics of the periphyton were identified to explore the possible relationship between paraben removal and periphyton properties. Results showed that linear adsorption coefficients (K d) vary from 554.4 to 808.6 L kg-1 for the adsorption parabens and CMPs to autoclaved periphyton. The adsorption strength is positively related to the hydrophobicity of these compounds. Removal of parabens from water by periphyton was efficient with half-life (t 1/2) values estimated using first-order kinetic model ranging from 0.49 to 3.29 days, but CMPs were more persistent with t 1/2 ranging from 1.15 to 25.57 days, and t 1/2 increased with the chlorination degree. Higher incubation temperature accelerated the removal of all tested compounds, while a better removal of CMPs was observed in dark condition. Analysis of periphyton properties suggests that bacteria played a more important role in the removal of CMPs, but no specific relationship between periphyton properties and paraben removal ability can be established.
Collapse
Affiliation(s)
- Chaofeng Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road No. 7, Wuhan, 430072, People's Republic of China
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Hongjuan Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road No. 7, Wuhan, 430072, People's Republic of China
| | - Hongyi Ao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road No. 7, Wuhan, 430072, People's Republic of China
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road No. 7, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
10
|
Hou J, You G, Xu Y, Wang C, Wang P, Miao L, Ao Y, Li Y, Lv B, Yang Y. Impacts of CuO nanoparticles on nitrogen removal in sequencing batch biofilm reactors after short-term and long-term exposure and the functions of natural organic matter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:22116-22125. [PMID: 27543126 DOI: 10.1007/s11356-016-7281-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
The impacts of CuO nanoparticle (NP) exposure on total nitrogen (TN) removal in a sequencing batch biofilm reactor (SBBR) as well as the effects of natural organic matter (NOM) in wastewater were studied. Short-term exposure (8 h) to 1 and 50 mg/L CuO NPs induced negligible influence on the nitrogen removal efficiency, and biofilms could recover from the slight damage caused by the prolonged exposure (45 days) to 1 mg/L CuO NPs. On the other hand, long-term exposure to 50 mg/L CuO NPs notably decreased the nitrogen removal efficiencies to 47.74 and 59.04 % in the absence and presence of bovine serum albumin (BSA), much lower than those in the control (75.43 %), mainly as the suppressed denitrification process. Analysis of key enzyme activities showed that the activities of nitrite reductase and nitrate reductase were obviously reduced with 50 mg/L CuO NP exposure. Further studies revealed that the inhibited nitrite/nitrate reductase was related to the variations of microenvironment pH and decrease of nirS and nirK by microelectrode and fluorescent quantitative polymerase chain reaction (PCR) analysis. In addition, the presence of BSA mitigated the toxicity of CuO NPs due to the enhanced particle size and Cu2+ release, electrostatic repulsion, and surface coating of CuO NPs, which indicated that lower inhibition effects of CuO NPs in NOM-rich wastewater is of importance when evaluating the environmental risk of NPs to wastewater treatment plants.
Collapse
Affiliation(s)
- Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China
- College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China
- College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, People's Republic of China
| | - Yi Xu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China
- College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, People's Republic of China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China
- College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, People's Republic of China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China.
- College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, People's Republic of China.
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China
- College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, People's Republic of China
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China
- College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, People's Republic of China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China
- College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, People's Republic of China
| | - Bowen Lv
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China
- College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, People's Republic of China
| | - Yangyang Yang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China
- College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, People's Republic of China
| |
Collapse
|