1
|
Wang S, Wang T, Gao L, Du H, Wang D, Ma M, Rennenberg H. Iron addition promotes mercury removal from soil by Robinia pseudoacacia-rhizobia symbiosis. TREE PHYSIOLOGY 2025; 45:tpae166. [PMID: 39699123 DOI: 10.1093/treephys/tpae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/19/2024] [Accepted: 12/17/2024] [Indexed: 12/20/2024]
Abstract
Iron plaques on the root surface can promote or inhibit the absorption and accumulation of heavy metals by plants. However, the mechanism by which iron regulates the response of Robinia pseudoacacia to mercury (Hg) has not been elucidated, which hinders its application in divalent Hg (Hg2+) removal from Hg-contaminated soil. In this study, association analyses between transcriptome and metabolome were used to investigate effects of iron on the rhizosphere microenvironment and performance of R. pseudoacacia to assess its potential for Hg2+ removal. The results showed that the addition of 10 mg kg-1 iron significantly increased the development of iron plaques on the root surface and reduced the secretion of low-molecular-weight organic acids by roots, thereby changing rhizosphere soil characteristics and decreasing total Hg in roots. In addition, the secretion of choline supported signal transduction and enhanced the interaction between R. pseudoacacia and rhizobia, thereby inducing resistance to Hg2+. Anti-oxidative enzyme activities were increased and Hg2+ exposure of plants was reduced. Enhanced Hg2+ resistance was indicated by improved photosynthesis and growth, despite promoted xylem loading and transport of Hg2+, resulting in its accumulation in aboveground tissues, which is essential for Hg2+ removal. These results indicate that iron addition has a great potential to improve the growth of R. pseudoacacia in Hg-contaminated soil and promote the accumulation of Hg2+ in aboveground tissues for phytoremediation approaches.
Collapse
Affiliation(s)
- Shufeng Wang
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Tao Wang
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Lan Gao
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Hongxia Du
- Chongqing Key Laboratory of Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Dingyong Wang
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, No. 2, Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Ming Ma
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, Chongqing 400715, China
| |
Collapse
|
2
|
Mamadalieva NZ, Koval A, Dusmuratov MM, Hussain H, Katanaev VL. Chemical and Biological Characterization of Metabolites from Silene viridiflora Using Mass Spectrometric and Cell-Based Assays. Biomolecules 2024; 14:1285. [PMID: 39456218 PMCID: PMC11505650 DOI: 10.3390/biom14101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
A comprehensive metabolite profiling of the medicinal plant Silene viridiflora using an UHPLC-ESI-MS/MS method is described for the first time. A total of 71 compounds were identified and annotated, the most common of which were flavonoids, triterpene glycosides, and ecdysteroids. The three major compounds schaftoside, 26-hydroxyecdysone, and silviridoside can be chosen as the markers for the assessment of the quality of S. viridiflora preparations. The methanol extract and a variety of metabolites identified in S. viridiflora were screened for their cytotoxic and Wnt pathway-inhibiting activities against triple-negative breast cancer (TNBC), the deadliest form of cancer in women. 2-Deoxy-20-hydroxyecdysone with submicromolar IC50 was identified as a result. The structure-activity relationship derived from the data from the in vitro proliferation assay showed that the hydroxyl group present at position C-2 of steroid core reduces the ecdysteroids' cytotoxicity against cancer cells.
Collapse
Affiliation(s)
- Nilufar Z. Mamadalieva
- Institute of the Chemistry of Plant Substances, Uzbekistan Academy of Sciences, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan
- Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, National Research University, Kori Niyazov Str. 39, Tashkent 100000, Uzbekistan
- Department of Pharmacy and Chemistry, Faculty of Medicine, Alfraganus University, Tashkent 100190, Uzbekistan
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland;
| | - Alexey Koval
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland;
| | - Maksud M. Dusmuratov
- Department of Organic Synthesis, Faculty of Industrial Pharmacy, Tashkent Pharmaceutical Institute, Oybek Str. 45, Tashkent 100015, Uzbekistan;
| | - Hidayat Hussain
- International Joint Laboratory of Medicinal Food Development and Health Products Creation, Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze 274000, China;
| | - Vladimir L. Katanaev
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland;
| |
Collapse
|
3
|
Han L, Gu H, Lu W, Li H, Peng WX, Ling Ma N, Lam SS, Sonne C. Progress in phytoremediation of chromium from the environment. CHEMOSPHERE 2023; 344:140307. [PMID: 37769918 DOI: 10.1016/j.chemosphere.2023.140307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
As chromium (Cr) in ecosystems affects human health through food chain exposure, phytoremediation is an environmentally friendly and efficient way to reduce chromium pollution in the environment. Here, we review the mechanism of absorption, translocation, storage, detoxification, and regulation of Cr in plants. The Cr(VI) form is more soluble, mobile, and toxic than Cr(III), reflecting how various valence states of Cr affect environmental risk characteristics, physicochemical properties, toxicity, and plant uptake. Plant root's response to Cr exposure leads to reactive oxygen species (ROS) generation and apoptosis. Cell wall immobilization, vacuole compartmentation, interaction of defense proteins and organic ligand with Cr, and removal of reactive oxygen species by antioxidants continue plant life. In addition, the combined application of microorganisms, genetic engineering, and the addition of organic acids, nanoparticles, fertilization, soil amendments, and other metals could accelerate the phytoremediation process. This review provides efficient methods to investigate and understand the complex changes of Cr metabolism in plants. Preferably, fast-growing, abundantly available biomass species should be modified to mitigate Cr pollution in the environment as these green and efficient remediation technologies are necessary for the protection of soil and water ecology.
Collapse
Affiliation(s)
- Lingzhuo Han
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haiping Gu
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wenjie Lu
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hanyin Li
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Wan-Xi Peng
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Nyuk Ling Ma
- BIOSES Research Interest Group, Faculty of Science & Marine Environment, 21030, Universiti Malaysia Terengganu, Malaysia; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, Roskilde, DK-4000, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
4
|
Saud S, Wang D, Fahad S, Javed T, Jaremko M, Abdelsalam NR, Ghareeb RY. The impact of chromium ion stress on plant growth, developmental physiology, and molecular regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:994785. [PMID: 36388512 PMCID: PMC9651928 DOI: 10.3389/fpls.2022.994785] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 05/27/2023]
Abstract
In recent years, heavy metals-induced soil pollution has increased due to the widespread usage of chromium (Cr) in chemical industries. The release of Cr into the environment has reached its peak causing hazardous environmental pollution. Heavy metal-induced soil pollution is one of the most important abiotic stress affecting the dynamic stages of plant growth and development. In severe cases, it can kill the plants and their derivatives and thereby pose a potential threat to human food safety. The chromium ion effect on plants varies and depends upon its severity range. It mainly impacts the numerous regular activities of the plant's life cycle, by hindering the germination of plant seeds, inhibiting the growth of hypocotyl and epicotyl parts of the plants, as well as damaging the chloroplast cell structures. In this review article, we tried to summarize the possible effects of chromium-induced stress on plant growth, developmental physiology, biochemistry, and molecular regulation and provided the important theoretical basis for selecting remedial plants in chromium-induced contaminated soils, breeding of low toxicity tolerant varieties, and analyzing the mechanism of plant resistance mechanisms in response to heavy metal stress.
Collapse
Affiliation(s)
- Shah Saud
- College of Life Sciences, Linyi University, Linyi, China
| | - Depeng Wang
- College of Life Sciences, Linyi University, Linyi, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering, Smart-Health Initiative and Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Nader R. Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Rehab Y. Ghareeb
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, New Borg El Arab, Egypt
| |
Collapse
|
5
|
Liu H, Yuan R, Sarkodie EK, Tang J, Jiang L, Miao B, Liu X, Zhang S. Insight into functional microorganisms in wet–dry conversion to alleviate the toxicity of chromium fractions in red soil. Front Microbiol 2022; 13:977171. [PMID: 36033890 PMCID: PMC9399814 DOI: 10.3389/fmicb.2022.977171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Soil contamination with potentially toxic element such as chromium (Cr) poses a threat to the environment and human health. The environmental toxicity of Cr is related not only to the total Cr content but also to the distribution of Cr fractions. In this study, laboratory simulation experiments were conducted to explore the characteristics of Cr fractions and responses of the functional microbial community during dynamic leaching and static drying processes. The results showed that acid-soluble Cr and reducible Cr transformed into other relatively stable fractions under dry conditions, and ammonium nitrogen promoted the transformation. Nitrate-nitrogen was significantly positively correlated with Cr fractions in the wet stage (p < 0.05), while ammonium nitrogen showed the same relation in the dry process. Analysis of the microbial community showed that the bacterial and fungal genera Flavihumibacter, Altererythrobacter, Methylobacillus, Flavisolibacter, Lysobacter, and Cladosporium were related to the Cr fractions (acid-soluble Cr, reducible Cr, and oxidizable Cr) under wet conditions, while the microbial genera Ellin6067, MND1, and Ramlibacter were related to Cr fractions under dry conditions. Moreover, the proliferation of the functional microbial genera Methylobacillus, Ellin6067, and MND1 related to Cr fractions in the wet–dry conversion process alleviated the environmental toxicity of Cr. These findings provide useful information for the remediation of Cr-contaminated soils by monitoring the distribution fractions of Cr and the functional microbial community under wet–dry conditions.
Collapse
Affiliation(s)
- Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Ruiling Yuan
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Emmanuel Konadu Sarkodie
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Jiahui Tang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Bo Miao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Siyuan Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
- *Correspondence: Siyuan Zhang,
| |
Collapse
|
6
|
Bourhane Z, Lanzén A, Cagnon C, Ben Said O, Mahmoudi E, Coulon F, Atai E, Borja A, Cravo-Laureau C, Duran R. Microbial diversity alteration reveals biomarkers of contamination in soil-river-lake continuum. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126789. [PMID: 34365235 DOI: 10.1016/j.jhazmat.2021.126789] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 05/21/2023]
Abstract
Microbial communities inhabiting soil-water-sediment continuum in coastal areas provide important ecosystem services. Their adaptation in response to environmental stressors, particularly mitigating the impact of pollutants discharged from human activities, has been considered for the development of microbial biomonitoring tools, but their use is still in the infancy. Here, chemical and molecular (16S rRNA gene metabarcoding) approaches were combined in order to determine the impact of pollutants on microbial assemblages inhabiting the aquatic network of a soil-water-sediment continuum around the Ichkeul Lake (Tunisia), an area highly impacted by human activities. Samples were collected within the soil-river-lake continuum at three stations in dry (summer) and wet (winter) seasons. The contaminant pressure index (PI), which integrates Polycyclic aromatic hydrocarbons (PAHs), alkanes, Organochlorine pesticides (OCPs) and metal contents, and the microbial pressure index microgAMBI, based on bacterial community structure, showed significant correlation with contamination level and differences between seasons. The comparison of prokaryotic communities further revealed specific assemblages for soil, river and lake sediments. Correlation analyses identified potential "specialist" genera for the different compartments, whose abundances were correlated with the pollutant type found. Additionally, PICRUSt analysis revealed the metabolic potential for pollutant transformation or degradation of the identified "specialist" species, providing information to estimate the recovery capacity of the ecosystem. Such findings offer the possibility to define a relevant set of microbial indicators for assessing the effects of human activities on aquatic ecosystems. Microbial indicators, including the detection of "specialist" and sensitive taxa, and their functional capacity, might be useful, in combination with integrative microbial indices, to constitute accurate biomonitoring tools for the management and restoration of complex coastal aquatic systems.
Collapse
Affiliation(s)
- Zeina Bourhane
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS 5254, Pau, France
| | - Anders Lanzén
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110 Pasaia, Gipuzkoa, Spain; IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Christine Cagnon
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS 5254, Pau, France
| | - Olfa Ben Said
- Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte, LBE, Tunisia
| | - Ezzeddine Mahmoudi
- Laboratoire de Biosurveillance de l'Environnement, Faculté des Sciences de Bizerte, LBE, Tunisia
| | - Frederic Coulon
- Cranfield University, School of Water, Energy and Environment, Cranfield MK430AL, UK
| | - Emmanuel Atai
- Cranfield University, School of Water, Energy and Environment, Cranfield MK430AL, UK
| | - Angel Borja
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110 Pasaia, Gipuzkoa, Spain; King Abdulaziz University, Faculty of Marine Sciences, Jeddah, Saudi Arabia
| | | | - Robert Duran
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS 5254, Pau, France.
| |
Collapse
|
7
|
Nie G, Zhong M, Cai J, Yang X, Zhou J, Appiah C, Tang M, Wang X, Feng G, Huang L, Zhang X. Transcriptome characterization of candidate genes related to chromium uptake, transport and accumulation in Miscanthus sinensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112445. [PMID: 34182199 DOI: 10.1016/j.ecoenv.2021.112445] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/12/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Miscanthus sinensis is a C4 perennial grass species that is widely used as forage, ornamental grass and bioenergy crop due to its broad adaption and great biological traits. Recent studies indicated that M. sinensis could also grow in marginal lands which were contaminated with heavy metals, and exhibited important ecological restoration potential. In this study, transcriptome characterization of candidate genes related to chromium (Cr) uptake, transport and accumulation in M. sinensis were employed to investigate the molecular mechanism of plant tolerance to heavy metal stress. The result showed that following treatment of 200 mg/L of Cr, plant roots could accumulate most Cr and localize mainly in cell walls and soluble fractions, whereas Cr in stems and leaves was primarily in soluble fractions. A total of 83,645 differentially expressed genes (DEGs) were obtained after the treatment. Many genes involved in heavy metal transport, metal ion chelation and photosynthesis were found to be Cr-induced DEGs. Co-expression and weighted correlation network analysis revealed that Glutathion metabolism and ABC transporters pathways play an important role in Cr tolerance of M. sinensis. A hypothesis schematic diagram for the Cr uptake, transport and accumulation of M. sinensis cells were suggested, which could provide a molecular and genetic basis for future candidate genes validation and breeding of such crops.
Collapse
Affiliation(s)
- Gang Nie
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Minyi Zhong
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiabang Cai
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinying Yang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Zhou
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Charlotte Appiah
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyu Tang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xia Wang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangyan Feng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linkai Huang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinquan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
8
|
Bacterial inoculant-assisted phytoremediation of heavy metal-contaminated soil: Inoculant development and the inoculation effects. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00804-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Pradas Del Real AE, Pérez-Sanz A, García-Gonzalo P, Castillo-Michel H, Gismera MJ, Lobo MC. Evaluating Cr behaviour in two different polluted soils: Mechanisms and implications for soil functionality. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 276:111073. [PMID: 32916546 DOI: 10.1016/j.jenvman.2020.111073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/09/2020] [Accepted: 07/09/2020] [Indexed: 05/22/2023]
Abstract
This work investigates the mechanisms determining Cr speciation and availability in two different soils polluted with two chromium sources (an industrial sludge, highly polluted with Cr, and Cr(VI) solution) and the influence of these parameters on the recovery of the soil functions related with biological quality and plant growth. The experiment was carried out in greenhouse conditions using 36 pots of 17 kg for the growth of Silene vulgaris for 21 months. Logistic Regression Model using Lasso estimator shows that soil organic matter (SOM) and pH control Cr availability in studied soils. In soils treated with the sludge, X ray Absorption spectroscopy showed that Cr was present as Cr(III), biological quality indicators increased and plants were able to grow. However, in soils polluted with Cr(VI), Cr availability was significantly different in the two soils. In the alkaline and poor in organic matter soil, 12% of Cr(VI) remained in the soil leading to the decrease of soil quality indicators and the total inhibition of plant growth. In the neutral soil, Cr(VI) was totally reduced to Cr(III) by soil organic matter (SOM), quality indicators were not affected and plants grown properly. Infrared Spectroscopy showed that different functional groups reacted with Cr in the two soils. This study highlights the importance to understand the mechanisms underlaying Cr redox and adsorption reactions in Cr polluted soils as they determine the potential recovery of the functions related with biological quality indicators and plant growth. The methodology proposed allows this study in complex soil samples at realistic concentrations and may be useful for risk assessment and for the planning of managing strategies in Cr polluted soils.
Collapse
Affiliation(s)
- A E Pradas Del Real
- Department of Agroenvironmental Research, IMIDRA, Alcalá de Henares, 28800, Madrid, Spain.
| | - A Pérez-Sanz
- Department of Agroenvironmental Research, IMIDRA, Alcalá de Henares, 28800, Madrid, Spain
| | - P García-Gonzalo
- Department of Agroenvironmental Research, IMIDRA, Alcalá de Henares, 28800, Madrid, Spain
| | - H Castillo-Michel
- ID21, European Synchrotron Radiation Facility (ESRF), CS 40220, 38043, Grenoble, Cedex 9, France
| | - M J Gismera
- Department of Analytical Chemistry and Instrumental Analysis, Faculty of Sciences, Universidad Autónoma de Madrid, Francisco Tomas yValiente,7, E-28049, Madrid, Spain
| | - M C Lobo
- Department of Agroenvironmental Research, IMIDRA, Alcalá de Henares, 28800, Madrid, Spain
| |
Collapse
|
10
|
Gortares-Maroyoqui P, Ulloa-Mercado RG, Ríos-Vázquez NJ, Breton-Deval L, Macarie H, Poggi-Varaldo HM, Sastre-Conde I. Advances in environmental biotechnology and engineering 2018. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28463-28468. [PMID: 32654035 DOI: 10.1007/s11356-020-09377-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Pablo Gortares-Maroyoqui
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, CP, 8500, Ciudad Obregón, Sonora, Mexico
| | - Ruth Gabriela Ulloa-Mercado
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, CP, 8500, Ciudad Obregón, Sonora, Mexico
| | - Nidia Josefina Ríos-Vázquez
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de Febrero 818 Sur, CP, 8500, Ciudad Obregón, Sonora, Mexico
| | - Luz Breton-Deval
- CATEDRAS-CONACYT, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Hervé Macarie
- IRD, Aix Marseille Univ, Avignon Université, CNRS, IMBE, Marseille, France
| | - Hector Mario Poggi-Varaldo
- Environmental Biotechnology and Renewable Energies R&D, Group, Dept. Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, C. P. 07360, 14-740, 07000, Mexico City, Mexico
| | - Isabel Sastre-Conde
- SEMILLA-INAGEA, Calle Babieca no. 2, 07198 Son Ferriol , Balearic Islands, Palma, Spain.
| |
Collapse
|
11
|
Assessing Chromium Contamination in Red Soil: Monitoring the Migration of Fractions and the Change of Related Microorganisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082835. [PMID: 32326110 PMCID: PMC7215348 DOI: 10.3390/ijerph17082835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/05/2020] [Accepted: 04/14/2020] [Indexed: 12/23/2022]
Abstract
The improper stacking of chromium (Cr) slag poses a great threat to the environment and human health. The toxicity of Cr in soil is not only related to its total amount, but also to its fractions. A simulated experiment was conducted in laboratory to assess the environmental risk of Cr fractions migration and distribution in red soil. The results showed the content of acid-soluble and reducible Cr significantly decreased (P < 0.05) in top layer but increased in middle and substratum layers over time. This indicated that acid-soluble and reducible Cr migrated downward with time and the relative mobility of acid-soluble Cr (0.038 mg/kg·d·m) was higher than that of reducible Cr (0.028 mg/kg·d·m). Furthermore, correlation analysis between microbial community and chromium fraction showed the relative abundance of Lysobacter, Flavihumibacter, Flavisolbacter, and Altererythrobacter was significantly (P < 0.05) correlated with acid-soluble and reducible fractions. Thus, these microorganisms might be evaluators to assess the migration of acid-soluble and reducible fractions in red soil. In summary, this study provided a new comprehension on remediation of Cr-contaminated soil by monitoring the migration of acid-soluble and reducible fractions and the changes of related microbial groups.
Collapse
|
12
|
Ma L, Luo S, Xu S, Chang C, Tian L, Zhang J, Zhou X, Shi S, Tian C. Different Effects of Wild and Cultivated Soybean on Rhizosphere Bacteria. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261719060109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
13
|
Muszyńska E, Labudda M, Kral A. Ecotype-Specific Pathways of Reactive Oxygen Species Deactivation in Facultative Metallophyte Silene Vulgaris (Moench) Garcke Treated with Heavy Metals. Antioxidants (Basel) 2020; 9:E102. [PMID: 31991666 PMCID: PMC7070611 DOI: 10.3390/antiox9020102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 12/31/2022] Open
Abstract
This research aimed to indicate mechanisms involved in protection against the imbalanced generation of reactive oxygen species (ROS) during heavy metals (HMs) exposition of Silene vulgaris ecotypes with different levels of metal tolerance. Specimens of non-metallicolous (NM), calamine (CAL), and serpentine (SER) ecotypes were treated in vitro with Zn, Pb, and Cd ions applied simultaneously in concentrations that reflected their contents in natural habitats of the CAL ecotype (1× HMs) and 2.5- or 5.0-times higher than the first one. Our findings confirmed the sensitivity of the NM ecotype and revealed that the SER ecotype was not fully adapted to the HM mixture, since intensified lipid peroxidation, ultrastructural alternations, and decline in photosynthetic pigments' content were ascertained under HM treatment. These changes resulted from insufficient antioxidant defense mechanisms based only on ascorbate peroxidase (APX) activity assisted (depending on HMs concentration) by glutathione-S-transferase (GST) and peroxidase activity at pH 6.8 in the NM ecotype or by GST and guaiacol-type peroxidase in the SER one. In turn, CAL specimens showed a hormetic reaction to 1× HMs, which manifested by both increased accumulation of pigments and most non-enzymatic antioxidants and enhanced activity of catalase and enzymes from the peroxidase family (with the exception of APX). Interestingly, no changes in superoxide dismutase activity were noticed in metallicolous ecotypes. To sum up, the ROS scavenging pathways in S. vulgaris relied on antioxidants specific to the respective ecotypes, however the synthesis of polyphenols was proved to be a universal reaction to HMs.
Collapse
Affiliation(s)
- Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland;
| | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland;
| | - Adam Kral
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland;
| |
Collapse
|
14
|
Muszyńska E, Labudda M, Kamińska I, Górecka M, Bederska-Błaszczyk M. Evaluation of heavy metal-induced responses in Silene vulgaris ecotypes. PROTOPLASMA 2019; 256:1279-1297. [PMID: 31044286 PMCID: PMC6713691 DOI: 10.1007/s00709-019-01384-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/15/2019] [Indexed: 05/13/2023]
Abstract
Silene vulgaris is a pseudometallophyte that spontaneously occurs in various ecological niches. Therefore, three ecotypes of this species representing calamine (CAL), serpentine (SER), and non-metallicolous (NM) populations were investigated in this study. Owing to the presence of Pb or Ni ions in natural habitats from metallicolous populations originated, we used these metals as model stressors to determine the survival strategy of tested ecotypes and analyze metal distribution at various levels of organism organization. We focused on growth tolerance, non-enzymatic antioxidants, and photosynthetic apparatus efficiency as well as anatomical and ultrastructural changes occurred in contrasting ecotypes exposed in vitro to excess amounts of Pb2+ and Ni2+. Although Ni application contributed to shoot culture death, the study revealed that the mechanisms of Pb detoxification differed between ecotypes. The unspecific reaction of both metallicolous specimens relied on the formation of effective mechanical barrier against toxic ion penetration, while the Pb appearance in the protoplasts led to the activation of ecotype-specific intracellular defense mechanisms. Hence, the response of CAL and SER ecotypes was almost unchanged under Pb treatment, whereas the reaction of NM one resulted in growth disturbances and physiological alternations. Moreover, both metallicolous ecotypes exhibited increase generation of reactive oxygen species (ROS) in leaves, even before the harmful ions got into these parts of plants. It may implicate the potential role of ROS in CAL and SER adaptation to heavy metals and, for the first time, indicate on integral function of ROS as signaling molecules in metal-tolerant species.
Collapse
Affiliation(s)
- Ewa Muszyńska
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776, Warsaw, Poland.
| | - Mateusz Labudda
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776, Warsaw, Poland
| | - Iwona Kamińska
- Unit of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture, Al. 29-Listopada 54, 31-425, Krakow, Poland
| | - Mirosława Górecka
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776, Warsaw, Poland
| | - Magdalena Bederska-Błaszczyk
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776, Warsaw, Poland
| |
Collapse
|
15
|
Song Z, Fang L, Wang J, Zhang C. Use of biogas solid residue from anaerobic digestion as an effective amendment to remediate Cr(VI)-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:13041-13053. [PMID: 30895546 DOI: 10.1007/s11356-019-04786-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Chromium (Cr) is one of the most common metal pollutants and has thus attracted considerable attention. In this study, we investigated the potential use of biogas solid residue (BSR) from anaerobic digestion as an effective amendment to decrease the bioavailability of Cr in Cr(VI)-polluted soil using pot experiments. Compared to the no-addition treatment, the addition of BSR (treatments-50, 100, and 150 g kg-1 soil) increased the soil nutrient levels, microbial diversity and activities, and decreased the redox potential (Eh). BSR treatment of Cr(VI)-contaminated soil caused a reduction in soil Cr(VI) concentration (16.6-52.1%) and the exchangeable Cr proportion (15.2-52.4%), thereby decreasing the available Cr for uptake by plants. BSR treatments resulted in a reduction in the Cr contents of the roots and aboveground biomass of pakchoi plants. The Cr(VI) content in treated soils decreased with increasing BSR addition, with 150 g kg-1 being the most efficient application. The relative abundance of Cr-reducing groups, such as Pseudomonas, Microbacterium, and Bacillus, increased with the increase in BSR application. The enhancement of soil Cr(VI) immobilization by the addition of the BSR was mostly attributed to the simultaneous effect of organic matter addition, stimulation of microorganisms, and reduced Eh value. Organic matter contributed more to the variation in Cr. The presence of BSR decreased the bioavailability of Cr in the soil and, therefore, lowered the potential mobilization of Cr(VI) from the soils. Our results demonstrated that BSR application may offer a potentially promising solution for enhancing agricultural production in Cr-contaminated soils.
Collapse
Affiliation(s)
- Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, People's Republic of China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, People's Republic of China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, People's Republic of China
| | - Jie Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, People's Republic of China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, People's Republic of China
| | - Chao Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, People's Republic of China.
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, People's Republic of China.
| |
Collapse
|
16
|
Identification of Salt and Drought Biochemical Stress Markers in Several Silene vulgaris Populations. SUSTAINABILITY 2019. [DOI: 10.3390/su11030800] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This study attempted to determine short-term responses to drought and salt stress in different Silene vulgaris genotypes and to identify potential abiotic stress biochemical indicators in this species. Four populations from contrasting habitats were subjected to drought and three levels of salinity under controlled greenhouse conditions. The determination of several growth parameters after the stress treatments allowed for ranking the tolerance to stress of the four analyzed populations on the basis of their relative degree of stress-induced growth inhibition. This was then correlated with changes in the leaf levels of monovalent ions (Na+, Cl−, and K+), photosynthetic pigments (chlorophylls a and b, carotenoids), osmolytes (total soluble sugars, proline), and non-enzymatic antioxidants (total phenolic compounds and flavonoids). Despite the observed differences, all four populations appeared to be relatively tolerant to both stress conditions, which in general did not cause a significant degradation of photosynthetic pigments and did not generate oxidative stress in the plants. Drought and salinity tolerance in S. vulgaris was mostly dependent on the use of Na+ and K+ for osmotic adjustment under stress, a mechanism that appeared to be constitutive, and not stress-induced, since relatively high concentrations of these cations (without reaching toxic levels) were also present in the leaves of control plants. The inhibition of additional transportation of toxic ions to the leaves, in response to increasing external salinity, seemed to be a relevant mechanism of tolerance, specifically to salt stress, whereas accumulation of soluble sugars under drought conditions may have contributed to tolerance to drought.
Collapse
|
17
|
The Role of the Rhizosphere and Microbes Associated with Hyperaccumulator Plants in Metal Accumulation. AGROMINING: FARMING FOR METALS 2018. [DOI: 10.1007/978-3-319-61899-9_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Xu L, Yi M, Yi H, Guo E, Zhang A. Manure and mineral fertilization change enzyme activity and bacterial community in millet rhizosphere soils. World J Microbiol Biotechnol 2017; 34:8. [PMID: 29236189 DOI: 10.1007/s11274-017-2394-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/05/2017] [Indexed: 11/27/2022]
Abstract
Fertilization is a key agricultural practice for increasing millet yields and influencing soil properties, enzyme activities and rhizosphere bacterial communities. High throughput Illumina sequencing of the 16S rDNA was applied to compare the bacterial community structures and diversities among six different soil samples. The experiments involved the following: no fertilizer (CK), phosphate (P) and potassium (K) plus organic manure (M) (PKM), nitrogen (N) and K plus M (NKM), NPM, NPK and NPKM fertilization. The results showed that the NPKM fertilization of the millet field had a maximal yield of 3617 kg ha-1 among the six different treatments. The abundances of the Actinobacteria and Bacteroidetes phyla, especially the Devosia, Mycobacterium, Opitutus and Chitinophaga genera, were higher in NPKM than those in the other samples. Redundancy analysis showed that the soil organic matter (SOM), available phosphorus (AP), and urease (UR) activity were significantly correlated with bacterial communities, while SOM and AP were strongly correlated with soil enzyme activities. Pearson's correlation showed that the available nitrogen was strongly correlated with Devosia and Mycobacterium, and SOM was strongly correlated with Opitutus and Chitinophaga. Besides, catalase was significantly related to Iamia, the UR was significantly related to Devosia, phosphatase was significantly related to Luteimonas and Chitinophaga. Based on the soil quality and millet yield, NPKM treatment was a better choice for the millet field fertilization practices. These findings provide a better understanding of the importance of fertilization in influencing millet yield, soil fertility and microbial diversity, and they lead to a choice of scientific fertilization practices for sustainable development of the agroecosystem.
Collapse
Affiliation(s)
- Lixia Xu
- School of Life Science, Shanxi University, Taiyuan, 030006, China.,Department of Traditional Chinese Pharmacy, Shanxi Pharmaceutical Vocational College, Taiyuan, 030031, China
| | - Min Yi
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Huilan Yi
- School of Life Science, Shanxi University, Taiyuan, 030006, China.
| | - Erhu Guo
- Institute of Millet Crops, Shanxi Academy of Agricultural Sciences, Changzhi, 046011, China.
| | - Aiying Zhang
- Institute of Millet Crops, Shanxi Academy of Agricultural Sciences, Changzhi, 046011, China
| |
Collapse
|
19
|
Hao DC, Xiao PG. Rhizosphere Microbiota and Microbiome of Medicinal Plants: From Molecular Biology to Omics Approaches. CHINESE HERBAL MEDICINES 2017. [DOI: 10.1016/s1674-6384(17)60097-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
20
|
Pradas Del Real AE, Silvan JM, de Pascual-Teresa S, Guerrero A, García-Gonzalo P, Lobo MC, Pérez-Sanz A. Role of the polycarboxylic compounds in the response of Silene vulgaris to chromium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5746-5756. [PMID: 28050761 DOI: 10.1007/s11356-016-8218-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/07/2016] [Indexed: 06/06/2023]
Abstract
This work aims to investigate the nature and the specific mechanisms by which polycarboxylic compounds participate in the tolerance of Silene vulgaris to Cr with special attention given to the rhizosphere system. This knowledge is important to use this species in the implementation of phytoremediation technologies in Cr-polluted soils. According to the results, chromium is chelated and mobilized by the citric and malic acids in plant tissues, while oxalic acid might participate in the reduction and chelation of Cr in the rhizosphere. At the applied doses, the response of both exudation rate and root exudate composition (total polyphenols and quercitin) seems to involve a rearrangement in the lignification of the plant cell wall to immobilize Cr. Quercetin-3-dirhamnosyl-galactoside and apiin (apigenin-7-O-apiosyl-glucoside) have been identified as the major polyphenols in the root exudates of S. vulgaris. The increments found in the apiin concentration in root exudates seem to be related to the protection against Cr toxicity by chelation of Cr or by free radical scavenging. Though earlier response is detected in plant tissues, results from this work together with previous studies in S. vulgaris indicate that exudation might be a regulated mechanism of protection under Cr exposition in S. vulgaris that may involve mainly Cr reduction and chelation.
Collapse
Affiliation(s)
- Ana E Pradas Del Real
- Dpto. de Investigación Agroambiental, IMIDRA, Alcalá de Henares, 28800, Madrid, Spain.
- ISTerre (Institut des Sciences de la Terre), Université Grenoble Alpes, CNRS, 38041, Grenoble Cedex 9, France.
| | - Jose Manuel Silvan
- Department of Metabolism and Nutrition, Institute of Food Science, Food Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), José Antonio Novais 10, 28040, Madrid, Spain
| | - Sonia de Pascual-Teresa
- Department of Metabolism and Nutrition, Institute of Food Science, Food Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), José Antonio Novais 10, 28040, Madrid, Spain
| | - Ana Guerrero
- Dpto. de Investigación Agroambiental, IMIDRA, Alcalá de Henares, 28800, Madrid, Spain
| | - Pilar García-Gonzalo
- Dpto. de Investigación Agroambiental, IMIDRA, Alcalá de Henares, 28800, Madrid, Spain
| | - M Carmen Lobo
- Dpto. de Investigación Agroambiental, IMIDRA, Alcalá de Henares, 28800, Madrid, Spain
| | - Araceli Pérez-Sanz
- Dpto. de Investigación Agroambiental, IMIDRA, Alcalá de Henares, 28800, Madrid, Spain
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| |
Collapse
|