1
|
Cheballah K, Mitiche L, Fontàs C, Sahmoune A. Efficient chromium(VI) removal using trioctylmethylammonium salicylate as the carrier in polymer inclusion membranes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53497-53509. [PMID: 39190253 DOI: 10.1007/s11356-024-34781-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
In this study, the ionic liquid (IL) trioctylmethylammonium salicylate (TOMAS) was prepared and incorporated into a polymer inclusion membrane (PIM) based on cellulose triacetate (CTA) as the polymer for the removal of Cr(VI). Various parameters including the effect of membrane composition (plasticizer and carrier concentration) as well as variables affecting both the feed phase and receiving solution have been investigated. Optimal results were achieved with a PIM made of 50% CTA and 50% TOMAS (% in mass) without the addition of any plasticizer. Using this PIM, Cr(VI) was effectively transported from a feed solution consisting of 10 mg L-1 Cr(VI) in 0.01 mol L-1 NaNO3 at pH = 2, to a receiving solution containing 0.1 mol L-1 NaOH. The transport of Cr(VI) was not affected by the presence of other metals, such as Cr(III), Cd(II), Zn(II), Cu(II), and Ni(II), and a selective recovery rate of 93.61% for both single-ion and mixed-ion solutions after 24 h of processing was obtained. Finally, the stability of the membrane was also investigated, with a slight decrease in efficiency observed after 5 days of reuse.
Collapse
Affiliation(s)
- Karima Cheballah
- Laboratoire de Physique Et Chimie Des Matériaux (LPCM), Université Mouloud Mammeri, Route de Hasnaoua, 15000, Tizi-Ouzou, Algeria
| | - Lynda Mitiche
- Laboratoire de Physique Et Chimie Des Matériaux (LPCM), Université Mouloud Mammeri, Route de Hasnaoua, 15000, Tizi-Ouzou, Algeria
| | - Clàudia Fontàs
- Department of Chemistry, University of Girona, C/ Maria Aurelia Capmany 69, 17003, Girona, Spain
| | - Amar Sahmoune
- Laboratoire de Physique Et Chimie Des Matériaux (LPCM), Université Mouloud Mammeri, Route de Hasnaoua, 15000, Tizi-Ouzou, Algeria.
| |
Collapse
|
2
|
Sánchez-Fortún M, Carrasco JL, Díez S, Amouroux D, Tessier E, López-Carmona S, Sanpera C. Temporal mercury dynamics throughout the rice cultivation season in the Ebro Delta (NE Spain): An integrative approach. ENVIRONMENTAL RESEARCH 2024; 250:118555. [PMID: 38412914 DOI: 10.1016/j.envres.2024.118555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024]
Abstract
During the last few decades, inputs of mercury (Hg) to the environment from anthropogenic sources have increased. The Ebro Delta is an important area of rice production in the Iberian Peninsula. Given the industrial activity and its legacy pollution along the Ebro river, residues containing Hg have been transported throughout the Ebro Delta ecosystems. Rice paddies are regarded as propitious environments for Hg methylation and its subsequent incorporation to plants and rice paddies' food webs. We have analyzed how Hg dynamics change throughout the rice cultivation season in different compartments from the paddies' ecosystems: soil, water, rice plants and fauna. Furthermore, we assessed the effect of different agricultural practices (ecological vs. conventional) associated to various flooding patterns (wet vs. mild alternating wet and dry) to the Hg levels in rice fields. Finally, we have estimated the proportion of methylmercury (MeHg) to total mercury in a subset of samples, as MeHg is the most bioaccumulable toxic form for humans and wildlife. Overall, we observed varying degrees of mercury concentration over the rice cultivation season in the different compartments. We found that different agricultural practices and flooding patterns did not influence the THg levels observed in water, soil or plants. However, Hg concentrations in fauna samples seemed to be affected by hydroperiod and we also observed evidence of Hg biomagnification along the rice fields' aquatic food webs.
Collapse
Affiliation(s)
- Moisès Sánchez-Fortún
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), University of Barcelona, Barcelona, Spain.
| | - Josep Lluís Carrasco
- Biostatistics, Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain.
| | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, E-08034, Barcelona, Spain.
| | - David Amouroux
- Université de Pau et des Pays de L'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, France.
| | - Emmanuel Tessier
- Université de Pau et des Pays de L'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, France.
| | - Sophie López-Carmona
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; UFR Sciences et Techniques, Université de Nantes, Nantes, France.
| | - Carola Sanpera
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
3
|
Marrugo-Madrid S, Marrugo-Negrete J, Queralt I, Palet C, Díez S. Evaluation of novel biomass-derived materials as binding layers for determining labile mercury in water by diffusive gradient in thin-films technique. Talanta 2024; 267:125227. [PMID: 37826996 DOI: 10.1016/j.talanta.2023.125227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
In this work, several binding gels were successfully prepared in Diffusive Gradient in Thin-film (DGT) that targeted the inclusion of novel biomass-derived materials for the determination of the labile fraction of mercury (Hg) in water. First, five biomass-derived materials were tested and the descending order as a function of the average percentage of Hg removal in solution was feathers > biochar > cork > canola meal > rice husk. The best two materials were treated and pulverized into powder to be embedded in a hydrogel; and so, feathers were pyrolyzed preserving the sulfur contained in their keratin structure (FBC), and biochar (BC) was modified and pyrolyzed with sublimated sulfur (SBC) to increase the Hg sorption sites in its structure. Analysis by Energy Dispersive X-ray fluorescence (EDXRF) spectrometry confirmed that the different pyrolysis procedures increased sulfur absorption successfully. The efficiency of the new gels (BC, SBC and FBC) in agarose was evaluated by comparative Hg uptake tests, showing a larger efficacy in the following order: SBC > BC > FBC. To assess the suitability of their application in freshwater environments, novel DGT devices were also evaluated to determine their diffusion coefficients (D). This test was conducted under controlled laboratory conditions, with particular focus on the potential competence of trace elements (Mn, Cu, Zn, Ni, Pb, Cd and As), which are commonly present in natural waters affected by mining. A stronger linear relationship between the Hg uptake by binding layers and the deployment time were obtained for the DGT devices with SBC (R2 = 0.948) vs. BC (R2 = 0.885). Therefore, the D obtained for Hg were 8.94 × 10-6 cm2 s-1 for DGT-SBC and 5.12 × 10-6 cm2 s-1 for DGT-BC devices at 25 °C, both within the same order of magnitude reported by previous studies. The good performance obtained by DGT-SBC devices is a promising result and indicates the potential for valorization of waste materials in the DGT technique.
Collapse
Affiliation(s)
- Siday Marrugo-Madrid
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, E-08034, Barcelona, Spain; Department of Chemistry, Faculty of Sciences, University of Cordoba, Montería, Colombia
| | - José Marrugo-Negrete
- Department of Chemistry, Faculty of Sciences, University of Cordoba, Montería, Colombia
| | - Ignasi Queralt
- Department of Geosciences, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, E-08034, Barcelona, Spain
| | - Cristina Palet
- GTS-UAB Research Group, Department of Chemistry, Faculty of Sciences, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Sergi Díez
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, E-08034, Barcelona, Spain.
| |
Collapse
|
4
|
Oliveira VH, Fonte BA, Costa F, Sousa AI, Henriques B, Pereira E, Dolbeth M, Díez S, Coelho JP. The effect of Zostera noltei recolonization on the sediment mercury vertical profiles of a recovering coastal lagoon. CHEMOSPHERE 2023; 345:140438. [PMID: 37852379 DOI: 10.1016/j.chemosphere.2023.140438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/07/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Mercury's extreme toxicity and persistence in the environment justifies a thorough evaluation of its dynamics in ecosystems. Aveiro Lagoon (Portugal) was for decades subject to mercury effluent discharges. A Nature-based Solution (NbS) involving Zostera noltei re-colonization is being tested as an active ecosystem restoration measure. To study the effect of Zostera noltei on the sediment contaminant biogeochemistry, seasonal (summer/winter) sediment, interstitial water and labile mercury vertical profiles were made in vegetated (Transplanted and Natural seagrass meadows) and non-vegetated sites (Bare-bottom area). While no significant differences (p > 0.05) were observed in the sedimentary phase, Zostera noltei presence reduced the reactive/labile mercury concentrations in the top sediment layers by up to 40% when compared to non-vegetated sediment, regardless of season. No differences were found between vegetated meadows, highlighting the fast recovery of the contaminant regulation ecosystem function provided by the plants after re-colonization and its potential for the rehabilitation of historically contaminated ecosystems.
Collapse
Affiliation(s)
- V H Oliveira
- ECOMARE - Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal.
| | - B A Fonte
- ECOMARE - Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal
| | - F Costa
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - A I Sousa
- ECOMARE - Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal
| | - B Henriques
- LAQV-REQUIMTE- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - E Pereira
- LAQV-REQUIMTE- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - M Dolbeth
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Novo Edifício Do Terminal de Cruzeiros Do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - S Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, E-08034, Barcelona, Spain
| | - J P Coelho
- ECOMARE - Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565, Gafanha da Nazaré, Portugal
| |
Collapse
|
5
|
Marrugo-Madrid S, Salas-Moreno M, Gutiérrez-Mosquera H, Salazar-Camacho C, Marrugo-Negrete J, Díez S. Assessment of dissolved mercury by diffusive gradients in thin films devices in abandoned ponds impacted by small scale gold mining. ENVIRONMENTAL RESEARCH 2022; 208:112633. [PMID: 34973194 DOI: 10.1016/j.envres.2021.112633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
In order to fulfil the Minamata Convention on Mercury, it is necessary to monitor the Hg contamination in freshwater ecosystems nearby artisanal and small scale gold mining (ASGM) areas. Since most of these ASGM communities are located in remote areas, a convenient method for sampling, preserving and transporting samples is needed. In this study we evaluated the feasibility of the diffusive gradient in thin-films (DGT) technique to detect and quantify the labile fraction of Hg and other metals (Pb, Cu, Zn, Cd, Ni, Mn and Cr) in a hard-to-reach gold mining district in the state of Chocó, Colombia. We deployed DGT at sampling sites along the Atrato river and abandoned mining ponds (AMPs) which were deserted in different periods since 1997 to 2019 (6-15 years). In average, the labile THg concentrations in AMPs (148.9 ± 43.2 ng L-1) were a 50% higher than in the river water (99.9 ± 37.4 ng L-1). In the ponds, no significant differences were found in labile Hg with respect abandonment period. Labile Ni (0.9-493.1), Mn (1.33-11.48), Cu (0.030-2.233), and Zn (0.67-10.29) (in μg L-1) were found in higher amounts than for the rest of metals. Labile concentrations of metals are related with their downstream proximity to gold mining activities, being higher in devices deployed close to ASGM sites. Moreover, this study demonstrates the feasibility of the DGT technique to sample, transport, storage, and preserve labile Hg from hard-to-reach ASGM areas.
Collapse
Affiliation(s)
- Siday Marrugo-Madrid
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, E-08034, Barcelona, Spain
| | - Manuel Salas-Moreno
- Faculty of Natural Sciences, Department of Biology, Universidad Tecnológica del Chocó, Quibdó, Colombia
| | - Harry Gutiérrez-Mosquera
- Faculty of Natural Sciences, Department of Biology, Universidad Tecnológica del Chocó, Quibdó, Colombia
| | - Carlos Salazar-Camacho
- Faculty of Natural Sciences, Department of Biology, Universidad Tecnológica del Chocó, Quibdó, Colombia
| | | | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, E-08034, Barcelona, Spain.
| |
Collapse
|
6
|
Separation of Mercury(II) from Industrial Wastewater through Polymer Inclusion Membranes with Calix[4]pyrrole Derivative. MEMBRANES 2022; 12:membranes12050492. [PMID: 35629819 PMCID: PMC9147343 DOI: 10.3390/membranes12050492] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023]
Abstract
Polymer membranes with immobilized ligands are encouraging alternatives for the removal of toxic metal ions from aquatic waste streams, including industrial wastewater, in view of their high selectivity, stability, removal efficacy and low energy demands. In this study, polymer inclusion membranes (PIMs) based on cellulose triacetate, with a calix[4]pyrrole derivative as an ion carrier, were tested for their capability to dispose mercury (Hg(II)) ions from industrial wastewater. The impacts were assessed relative to carrier content, the quantity of plasticizer in the membrane, the hydrocholoric acid concentration in the source phase, and the character of the receiving phase on the performance of Hg(II) elimination. Optimally designed PIMs could be an interesting option for the industrial wastewater treatment due to the high removal efficiency of Hg(II) and great repeatability.
Collapse
|
7
|
Maiphetlho K, Chimuka L, Tutu H, Richards H. Technical design and optimisation of polymer inclusion membranes (PIMs) for sample pre-treatment and passive sampling - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149483. [PMID: 34426342 DOI: 10.1016/j.scitotenv.2021.149483] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/14/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
This review reports on the increasing interest in technical designs, calibration, and application of PIM-based devices in sample pre-treatment and passive sampling in environmental water monitoring from 2010 to 2021. With regards to passive sampling, devices are calibrated in a laboratory setup using either a dip-in or flow-through approach before environmental application. In sample preparation, the device set-ups can be offline, online or in a continuous flow separation device connected to a flow injection analysis system. The PIMs have also demonstrated potential in both these offline and online separations; however, there is still a draw-back of low diffusion coefficients obtained in these PIM set-ups. Electro-driven membrane (EME) extraction has demonstrated better performance as well as improved analyte flux. Critical in electro-driven membrane extraction is applying correct voltage that may not compromise the PIM performance due to leaching of components to the aqueous solutions. Further, besides different PIM configurations and designs being developed, PIM based extractions are central to PIM components (base polymer, carrier and plasticizer). As such, recent studies have also focused on improving PIM stability by investigating use of various PIM components, incorporating nano additives into the PIM composition, and investigating novel green PIM synthetic routes. All these aspects are covered in this review. Further, some recent studies that have demonstrated the ability to eliminate effects of flow patterns and membrane biofouling in PIM based applications are also included.
Collapse
Affiliation(s)
- Kgomotso Maiphetlho
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag X3, WITS, 2050 Johannesburg, South Africa
| | - Luke Chimuka
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag X3, WITS, 2050 Johannesburg, South Africa
| | - Hlanganani Tutu
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag X3, WITS, 2050 Johannesburg, South Africa
| | - Heidi Richards
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag X3, WITS, 2050 Johannesburg, South Africa.
| |
Collapse
|
8
|
Lando G, Gomez-Laserna O, Proverbio E, Khaskhoussi A, Iannazzo D, Plutino MR, De Stefano C, Bretti C, Cardiano P. Towards a rational design of materials for the removal of environmentally relevant cations: polymer inclusion membranes (PIMs) and surface-modified PIMs for Sn 2+ sequestration in aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51072-51087. [PMID: 33977428 DOI: 10.1007/s11356-021-14328-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
This work is focused on the design and preparation of polymer inclusion membranes (PIMs) for potential applications for stannous cation sequestration from water. For this purpose, the membranes have been synthesized employing two polymeric matrices, namely, polyvinylchloride (PVC) and cellulose triacetate (CTA), properly enriched with different plasticizers. The novelty here proposed relies on the modification of the cited PIMs by selected extractants expected to interact with the target cation in the membrane bulk or onto its surface, as well as in the evaluation of their performances in the sequestration of tin(II) in solution through chemometric tools. The composition of both the membrane and the solution for each trial was selected by means of a D-Optimal Experimental Design. The samples such prepared were characterized by means of TG-DTA, DSC, and static contact angles investigations; their mechanical properties were studied in terms of tensile strength and elastic modulus, whereas their morphology was checked by SEM. The sequestering ability of the PIMs toward stannous cation was studied by means of kinetic and isotherm experiments using DP-ASV. The presence of tin in the membranes after the sequestration tests was ascertained by μ-ED-XRF mapping on selected samples.
Collapse
Affiliation(s)
- Gabriele Lando
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy.
| | - Olivia Gomez-Laserna
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48080, Bilbao, Spain
| | - Edoardo Proverbio
- Department of Engineering, University of Messina, Contrada Di Dio, 98166, Messina, Italy
| | - Amani Khaskhoussi
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Via Giuseppe Giusti 9, 50121, Firenze, Italy
| | - Daniela Iannazzo
- Department of Engineering, University of Messina, Contrada Di Dio, 98166, Messina, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN-CNR, O.U. Palermo, c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Concetta De Stefano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Clemente Bretti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Paola Cardiano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| |
Collapse
|
9
|
Galceran J, Gao Y, Puy J, Leermakers M, Rey-Castro C, Zhou C, Baeyens W. Speciation of Inorganic Compounds in Aquatic Systems Using Diffusive Gradients in Thin-Films: A Review. Front Chem 2021; 9:624511. [PMID: 33889563 PMCID: PMC8057345 DOI: 10.3389/fchem.2021.624511] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/02/2021] [Indexed: 11/22/2022] Open
Abstract
The speciation of trace metals in an aquatic system involves the determination of free ions, complexes (labile and non-labile), colloids, and the total dissolved concentration. In this paper, we review the integrated assessment of free ions and labile metal complexes using Diffusive Gradients in Thin-films (DGT), a dynamic speciation technique. The device consists of a diffusive hydrogel layer made of polyacrylamide, backed by a layer of resin (usually Chelex-100) for all trace metals except for Hg. The best results for Hg speciation are obtained with agarose as hydrogel and a thiol-based resin. The diffusive domain controls the diffusion flux of the metal ions and complexes to the resin, which strongly binds all free ions. By using DGT devices with different thicknesses of the diffusive or resin gels and exploiting expressions derived from kinetic models, one can determine the labile concentrations, mobilities, and labilities of different species of an element in an aquatic system. This procedure has been applied to the determination of the organic pool of trace metals in freshwaters or to the characterization of organic and inorganic complexes in sea waters. The concentrations that are obtained represent time-weighted averages (TWA) over the deployment period.
Collapse
Affiliation(s)
- Josep Galceran
- Departament de Química, Universitat de Lleida and AGROTECNIO-CERCA, Lleida, Spain
| | - Yue Gao
- Analytical, Environmental and Geo-Chemistry Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jaume Puy
- Departament de Química, Universitat de Lleida and AGROTECNIO-CERCA, Lleida, Spain
| | - Martine Leermakers
- Analytical, Environmental and Geo-Chemistry Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Carlos Rey-Castro
- Departament de Química, Universitat de Lleida and AGROTECNIO-CERCA, Lleida, Spain
| | - Chunyang Zhou
- Analytical, Environmental and Geo-Chemistry Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Willy Baeyens
- Analytical, Environmental and Geo-Chemistry Department, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
10
|
Yao H, Zhao Y, Lin CJ, Yi F, Liang X, Feng X. Development of a novel composite resin for dissolved divalent mercury measurement using diffusive gradients in thin films. CHEMOSPHERE 2020; 251:126231. [PMID: 32169713 DOI: 10.1016/j.chemosphere.2020.126231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/09/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
In this work, a composite resin gel incorporating thiol-modified metal double hydroxide (TM-MDH) nanoparticles is developed for application in diffusive gradients in thin films (DGT) devices to sample and concentrate divalent Hg (Hg(II)) in water and sediment samples. The DGT device uses the TM-MDH resin as a sorption layer and an agarose gel as a diffusive layer. Complete digestion of the TM-MDH resin after sampling can be achieved in 5 mL of 12 N HCl solution for 30 min for direct aqueous Hg(II) analysis. The recovery of Hg(II) uptake onto the resin in aqueous solution reaches 95.4 ± 1.9%. The effect of ionic strength and pH on the performance of DGT device for Hg(II) is assessed. It is found that there is no significant difference on Hg(II) uptake over a pH range of 3.5-8.5 and an ionic strength range of 1-500 mM NaCl. The diffusion coefficient of Hg(II) at 25 °C was estimated to be 9.48 × 10-6 cm2/s at 50 μg/L solution. The sorption capacity of TM-MDH-DGT for Hg(II) reaches 41.0 μg/cm2. Field validations performed in reservoir water and in contaminated paddy soil demonstrate that the developed TM-MDH DGT device can accurately determine Hg(II) concentrations in these samples and outperform traditional sampling methods for both high and low Hg(II) concentrations.
Collapse
Affiliation(s)
- Heng Yao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, People's Republic of China
| | - Yujie Zhao
- Agro-Environmental Protection Institute Ministry of Agriculture, Tianjin 300191, People's Republic of China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, TX, USA; Department of Civil & Environmental Engineering, Lamar University, Beaumont, TX, USA.
| | - Fengjiao Yi
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, People's Republic of China
| | - Xuefeng Liang
- Agro-Environmental Protection Institute Ministry of Agriculture, Tianjin 300191, People's Republic of China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, People's Republic of China.
| |
Collapse
|
11
|
Bretier M, Dabrin A, Billon G, Mathon B, Miège C, Coquery M. To what extent can the biogeochemical cycling of mercury modulate the measurement of dissolved mercury in surface freshwaters by passive sampling? CHEMOSPHERE 2020; 248:126006. [PMID: 32000038 DOI: 10.1016/j.chemosphere.2020.126006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/26/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Mercury (Hg) is a pollutant of global concern owing to its great toxicity even at very low concentrations. Its toxicity depends on its chemical forms evidencing the importance to study its speciation. Dissolved Hg (Hg(d)) and methylmercury (MeHg(d)) monitoring in surface freshwaters represents a great challenge because of their very low concentrations and substantial temporal variability at different timescales. The Hg(d) temporal variability depends on the environmental conditions such as the hydrology, water temperature, redox potential (Eh), and solar photo cycle. Passive samplers represent an alternative to improve the assessment of Hg(d) and MeHg(d) concentrations in surface freshwaters by integrating their temporal variability. An original sampling strategy was designed to assess the relevance of 3-mercaptopropyl DGT (Diffusive Gradient in Thin films) to integrate in situ the temporal variations of labile Hg (Hg(DGT)) and MeHg (MeHg(DGT)) concentrations. This strategy was implemented on two rivers to study the dynamics of Hg(d), Hg(DGT), MeHg(d) and MeHg(DGT) at diurnal and annual timescales. We evidenced that Hg(DGT) and MeHg(DGT) concentrations were generally consistent with discrete sampling measurements of Hg(d) and MeHg(d) in dynamic surface freshwaters. However, Hg(DGT) concentrations were overestimated (2-16 times higher) in case of low flow or low water depth, low suspended particulate matter (SPM) concentrations and elevated daily photoperiod. The most probable hypothesis is that such conditions promoted Hg0 production, and resulted in Hg0 uptake by DGT. Thus, attention should be paid when interpreting Hg(DGT) concentrations in surface freshwaters in environmental conditions that could promote Hg0 production.
Collapse
Affiliation(s)
- M Bretier
- INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, 5 Rue de La Doua, F-69625, Villeurbanne Cedex, France
| | - A Dabrin
- INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, 5 Rue de La Doua, F-69625, Villeurbanne Cedex, France.
| | - G Billon
- Univ. Lille, CNRS, UMR 8516, LASIR, Laboratoire de Spectrochimie Infrarouge et Raman, F-59000, Lille, France
| | - B Mathon
- INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, 5 Rue de La Doua, F-69625, Villeurbanne Cedex, France
| | - C Miège
- INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, 5 Rue de La Doua, F-69625, Villeurbanne Cedex, France
| | - M Coquery
- INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, 5 Rue de La Doua, F-69625, Villeurbanne Cedex, France
| |
Collapse
|
12
|
Elias G, Díez S, Zhang H, Fontàs C. Development of a new binding phase for the diffusive gradients in thin films technique based on an ionic liquid for mercury determination. CHEMOSPHERE 2020; 245:125671. [PMID: 31883501 DOI: 10.1016/j.chemosphere.2019.125671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/22/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Determining bioavailable trace concentrations of mercury (Hg) in water is still a challenging analytical task. In this study, we report a methodology for determining labile Hg in natural waters using newly developed sorbents. Silicon dioxide at a nanoparticle range (Si-np) and cellulose powder at a microparticle range (Cel-p), both modified with the ionic liquid trioctylmethylammonium thiosalicylate (TOMATS), have been tested as sorbents (sorb-TOMATS) for Hg(II) uptake from solution. These novel sorb-TOMATS materials were characterized, and parameters affecting the uptake were examined. A similar Hg(II) uptake efficiency (97%) and binding capacity (9 mg Hg/g) was obtained for both sorb-TOMATS, while only a 25% of Hg(II) was taken up using non-impregnated materials. Moreover, these sorb-TOMATS were effectively embedded in agarose gel and were tested as a novel binding phase for the Diffusive Gradients in Thin Films (DGT) technique. Research revealed Si(np)-TOMATS sorbent as a suitable binding phase in the DGT technique for Hg(II) measurements, since it also allowed the efficient elution of the bound Hg(II). This new binding phase showed strong linear correlation between the accumulated Hg(II) mass and deployment time, which is in agreement with the DGT principle. In summary, this novel sorbent has a great potential to improve Hg monitoring in natural waters when integrated it in the DGT design.
Collapse
Affiliation(s)
- Gemma Elias
- Chemistry Department, University of Girona, C/ Maria Aurèlia Capmany, 69, 17003, Girona, Spain; Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Sergi Díez
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Clàudia Fontàs
- Chemistry Department, University of Girona, C/ Maria Aurèlia Capmany, 69, 17003, Girona, Spain.
| |
Collapse
|
13
|
González-Albarrán R, de Gyves J, Rodríguez de San Miguel E. Influence of some physicochemical parameters on the passive sampling of copper (II) from aqueous medium using a polymer inclusion membrane device. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113474. [PMID: 31859125 DOI: 10.1016/j.envpol.2019.113474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/02/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Recently polymer inclusion membranes (PIMs) have been proposed as materials for passive sampling, nonetheless a theoretical base to describe the mass transfer process through those materials, under such conditions of monitoring, has not been elucidated. Under the assumption that: (i) the transport of the metal ion occurs at steady state conditions, (ii) the concentration gradients are linear, and (iii) the kinetics of the chemical reactions in the extraction process on the membrane are elemental; an equation for the passive sampling of copper (II) using a PIM system containing Kelex-100 as carrier is derived. The prediction capacity of this sampler under different conditions of temperature, metal concentration, flow velocity, ionic strength and pH is analyzed as well. Among the dependencies of the PIM on the physicochemical conditions, effects of concentration, temperature and flow velocity tend to increment copper (II) flux across the membrane, being the parameter temperature the one with the most pronounced effect at T ≥ 30 °C. Ionic strength had no great effect on passive sampler response, however the sampler is dependent on the acidity of the medium. The comparable metal ion concentrations estimated from the PIM sampler to those obtained by direct measurements of the sampling medium suggest that PIMs can be robust materials when used as passive sampler devices.
Collapse
Affiliation(s)
- René González-Albarrán
- Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, CdMx, Mexico
| | - Josefina de Gyves
- Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, CdMx, Mexico
| | - Eduardo Rodríguez de San Miguel
- Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, CdMx, Mexico.
| |
Collapse
|
14
|
Elias G, Díez S, Fontàs C. System for mercury preconcentration in natural waters based on a polymer inclusion membrane incorporating an ionic liquid. JOURNAL OF HAZARDOUS MATERIALS 2019; 371:316-322. [PMID: 30856442 DOI: 10.1016/j.jhazmat.2019.03.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
In this study, we have evaluated two different ionic liquids (IL) as extractants based on the same cation (trioctylmethylammonium) but bearing the anion thiosalicylate (TOMATS) or salicylate (TOMAS). Both IL have been incorporated as carriers in polymer inclusion membranes (PIMs), and mercury (Hg) has been preconcentrated using a special device. Results show that among the tested IL, TOMATS has given better results. A PIM made of 50% cellulose triacetate, 30% TOMATS and 20% nitrophenyl octyl ether as a plasticizer enabled the effective transport of Hg to a 10-3M cysteine solution used as a stripping phase. This novel and simple PIM-device system allows the transport of Hg at low concentration levels in different types of natural waters such as rivers, groundwater and seawater without any previous treatment. Since no matrix effect was observed on Hg transport efficiency with different waters, this newly developed PIM-system could be used as a global detection system for this metal. The effect of biofilm growth on the surface of PIMs has been investigated for the first time, and no significant differences on Hg transport have been found when using a fresh PIM and a PIM deployed for 7 days in a pond.
Collapse
Affiliation(s)
- Gemma Elias
- Department of Chemistry, University of Girona, C/Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Sergi Díez
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Clàudia Fontàs
- Department of Chemistry, University of Girona, C/Maria Aurèlia Capmany 69, 17003 Girona, Spain.
| |
Collapse
|
15
|
Turull M, Komarova T, Noller B, Fontàs C, Díez S. Evaluation of mercury in a freshwater environment impacted by an organomercury fungicide using diffusive gradient in thin films. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:1475-1484. [PMID: 29107373 DOI: 10.1016/j.scitotenv.2017.10.081] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
The use of pesticides to manage pest problems for crop protection is common practice around the world, and their accumulation in soils and contamination of water bodies is a global environmental problem. In Australia, an organomercury (Hg)-based fungicide is the most popular for control of pineapple disease of sugarcane. However, the presence of Hg is of great concern because of potential adverse effects in the environment. The purpose of this work was to evaluate the residual levels of Hg in soils of sugarcane cultivation from a catchment in North Queensland (Australia). Mercury was surveyed in soils close to the Tully River at 3 different depths (100, 200 and 300mm). Additionally, total Hg (THg) and the labile fraction of Hg in water (measured by the diffusive gradient in thin film technique) were determined in the Tully River. A pristine site, the Tully Gorge National Park upstream of sugarcane fields, was selected for background Hg concentration estimation. In soils, Hg levels ranged from 18 to 264μgkg-1, with one of the soil samples being almost 10 times higher than at other sites at the surface level (199μgkg-1). Total and labile concentrations of Hg in water increased from the Hg-elevated soil sampling sites (0.085μgL-1 and 0.061μgL-1) to downstream sites (0.082μgL-1 and 0.066μgL-1), which is likely due to agricultural runoff. Indeed, except for the upstream control site, the THg concentration in water is over the limit permitted by the Australian freshwater quality guideline for protection of 99% species (0.06μgL-1). These findings point to the need to perform further research to reveal the mechanisms for release of Hg from soil and whether this might be causing important adverse effects to the Great Barrier Reef located in front of this river catchment.
Collapse
Affiliation(s)
- Marta Turull
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDÆA -CSIC), E-08034, Barcelona, Spain
| | - Tatiana Komarova
- Queensland Health Forensic and Scientific Services (QHFSS), QLD 4108, Australia
| | - Barry Noller
- University of Queensland, Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, QLD 4072, Australia
| | - Clàudia Fontàs
- Department of Chemistry, University of Girona, C/Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Sergi Díez
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDÆA -CSIC), E-08034, Barcelona, Spain.
| |
Collapse
|
16
|
Elias G, Marguí E, Díez S, Fontàs C. Polymer Inclusion Membrane as an Effective Sorbent To Facilitate Mercury Storage and Detection by X-ray Fluorescence in Natural Waters. Anal Chem 2018; 90:4756-4763. [DOI: 10.1021/acs.analchem.7b05430] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gemma Elias
- Department of Chemistry, University of Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Spain
| | - Eva Marguí
- Department of Chemistry, University of Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Spain
| | - Sergi Díez
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Clàudia Fontàs
- Department of Chemistry, University of Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Spain
| |
Collapse
|