1
|
Pu Z, Bai J, Zhang Q, Tian K, Yang W, Zhao YW. Ecological water replenishment through optimal allocation of lake water in water-scarce areas based on channel selection and replenishment period: A case study of China's Baiyangdian Lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177340. [PMID: 39510281 DOI: 10.1016/j.scitotenv.2024.177340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Ecological water replenishment (EWR) greatly improves a lake's hydrodynamics and water quality, and has become a common means of ecological restoration. The replenishment inflow channels, inflow period, and volume allocation are the main factors affecting the benefits of EWR. However, water scarcity often makes it difficult to achieve the optimal EWR allocation. Unfortunately, EWR schemes based on multi-scenario simulation are highly subjective. To develop more objective EWR allocation schemes and fully exploit the available water in areas with a water scarcity, we constructed a two-dimensional hydrodynamic and water quality simulation model for China's Baiyangdian Lake. Using the model, we developed a comprehensive impact index to identify optimal inflow channels for the lake, and determined the EWR period based on the water-level deficit and water quality. By selecting the EWR channels and inflow period, we constructed an optimal EWR allocation model with water quality and water level as the objectives and cost as the constraint. We found that the optimal EWR inflow channels were the Fu, Pu, and Tang rivers, that the lake's EWR period should be from January to April, and that the proportion of water provided by the three rivers to maximize the lake's comprehensive benefits was 62.1 %. The EWR optimization scheme significantly improved the lake's water level and water quality. The model therefore provides important insights for optimizing lake restoration via EWR in areas with a water scarcity.
Collapse
Affiliation(s)
- Zaohong Pu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jie Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Tianjin River Chief System Affairs Center, Tianjin 300202, China
| | - Qilong Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Kai Tian
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Faculty of Chemistry and Environment Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Wei Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yan-Wei Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
2
|
Peng K, Dong R, Qin B, Cai Y, Deng J, Gong Z. Macroinvertebrate Response to Internal Nutrient Loading Increases in Shallow Eutrophic Lakes. BIOLOGY 2023; 12:1247. [PMID: 37759646 PMCID: PMC10525641 DOI: 10.3390/biology12091247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
In eutrophic lakes, even if external loading is controlled, internal nutrient loading delays the recovery of lake eutrophication. When the input of external pollutants is reduced, the dissolved oxygen environment at the sediment interface improves in a season without algal blooms. As an important part of lake ecosystems, macroinvertebrates are sensitive to hypoxia caused by eutrophication; however, how this change affects macroinvertebrates is still unknown. In this study, we analysed the monitoring data of northern Lake Taihu from 2007 to 2019. After 2007, the external loading of Lake Taihu was relatively stable, but eutrophication began to intensify after 2013, and the nutrients in the sediments also began to decline, which was related to the efficient use of nutrients by algal blooms. The community structure and population density of macroinvertebrates showed different responses in different stages. In particular, the density of oligochaetes and the Shannon-Wiener index showed significant differences in their response to different stages, and their sensitivity to eutrophication was significantly reduced. Under eutrophication conditions dominated by internal loading, frequent hypoxia occurs at the sediment interface only when an algal bloom erupts. When there is no bloom, the probability of sediment hypoxia is significantly reduced under the disturbance of wind. Our results indicate that the current method for evaluating lake eutrophication based on oligochaetes and the Shannon-Wiener diversity index may lose its sensitivity.
Collapse
Affiliation(s)
- Kai Peng
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China; (K.P.); (R.D.); (B.Q.); (J.D.); (Z.G.)
| | - Rui Dong
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China; (K.P.); (R.D.); (B.Q.); (J.D.); (Z.G.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Qin
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China; (K.P.); (R.D.); (B.Q.); (J.D.); (Z.G.)
- School of Geography & Ocean Science, Nanjing University, 163 Xianlin Street, Nanjing 210023, China
| | - Yongjiu Cai
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China; (K.P.); (R.D.); (B.Q.); (J.D.); (Z.G.)
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241000, China
| | - Jianming Deng
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China; (K.P.); (R.D.); (B.Q.); (J.D.); (Z.G.)
| | - Zhijun Gong
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China; (K.P.); (R.D.); (B.Q.); (J.D.); (Z.G.)
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
3
|
Zhang X, Cheng G, Xu S, Bi Y, Jiang C, Ma S, Wang D, Zhuang X. Temporal and spatial changes of water quality in intensively developed urban rivers and water environment improvement: a case study of the Longgang River in Shenzhen, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99454-99472. [PMID: 37610547 DOI: 10.1007/s11356-023-28995-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 07/22/2023] [Indexed: 08/24/2023]
Abstract
The water quality status, spatial and temporal change processes, and water environment improvement process of urban rivers are valuable lessons to be learned under the sustainable development strategy. This study aims to reveal the water environment improvement process of intensively developed urban rivers, elucidate the spatial and temporal distribution characteristics of major pollutants, and provide recommendations for their water environment management. Water quality data from eight monitoring sites (2007-2020) in the Longgang River basin in Shenzhen, China, and comprehensive pollution index method (CPI), modified comprehensive pollution index method (M-CPI), and Pearson correlation analysis method were used for comprehensive analysis. The study shows that TN, TP, NH3-N, and COD have the greatest influence on the water quality of Longgang River, with the average pollution contribution of 53.39%, 14.49%, 11.66%, and 4.92%, in order. In 2015-2020, the water quality of the main stream of the Longgang River in the wet season was worse than that in the dry season, while the water quality of the tributaries Dingshan River and the Huangsha River in the dry season was worse than the wet season. The spatial distribution characteristics based on M-CPI indicate that the water quality of the lower reaches of Longgang River, the tributaries Dingshan River and Huangsha River, is relatively poor. In addition, the water environment improvement process of Longgang River can be divided into 3 stages: engineering stage (2007-2013, rating changed from heavily polluted to basically qualified), bottleneck stage (2013-2017, rating fluctuated slightly above and below basically qualified), and ecological restoration stage (2017-2020, rating reached qualified in 2019).
Collapse
Affiliation(s)
- Xupo Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gong Cheng
- Environmental Engineering Center, Shenzhen Academy of Environmental Sciences, Shenzhen, 518001, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yeliang Bi
- School of Water Conservancy and Hydroelectric Power, Hebei University of Engineering, Handan, 056038, China
| | - Cancan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuanglong Ma
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dongsheng Wang
- Yangtze River Delta Research Center for Eco Environment Sciences, Yiwu, 322000, China
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Yuan H, Chen P, Liu E, Yu J, Tai Z, Li Q, Wang H, Cai Y. Terrestrial sources regulate the endogenous phosphorus load in Taihu Lake, China after exogenous controls: Evidence from a representative lake watershed. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:118016. [PMID: 37121007 DOI: 10.1016/j.jenvman.2023.118016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/03/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
Identifying phosphorus (P) sources and contributions from terrestrial sources is important for clean water and eutrophication management in lake watersheds. However, this remains challenging owing to the high complexity of P transport processes. The concentrations of different P fractions in the soils and sediments from Taihu Lake, a representative freshwater lake watershed, were obtained using sequential extraction procedure. The dissolved phosphate (PO4-P) and alkaline phosphatase activity (APA) in the lake's water were also surveyed. The results showed that different P pools in the soil and sediments displayed different ranges. Higher concentrations of P fractions were measured in the solid soils and sediments from the northern and western regions of the lake watershed, indicating a larger input of P from exogenous sources, including agriculture runoff and industrial effluent from the river. Generally, higher Fe-P and Ca-P concentrations of up to 399.5 and 481.4 mg/kg were detected in soils and lake sediments, respectively. Similarly, the lake's water had higher concentrations of PO4-P and APA in the northern region. A significant positive correlation was found between Fe-P in the soil and PO4-P concentrations in the water. Statistical analysis indicated that appropriately 68.75% P was retained in the sediment from terrigenous sources, and 31.25% P experienced dissolution and shifted to the solution phase in the water-sediment ecosystems. The dissolution and release in Fe-P in the soils were responsible for the increase of Ca-P in the sediment after the afflux of soils into the lake. These findings suggest that soil runoff predominantly controls P occurrence in lake sediments as an exogenous source. Generally, the strategy of reducing terrestrial inputs from agricultural soil discharge is still an important step in P management at the catchment scale of lakes.
Collapse
Affiliation(s)
- Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Panyu Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250359, China
| | - Jianghua Yu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Ziqiu Tai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Qiang Li
- Department of Soil Science, University of Wisconsin-Madison, 53706, Madison, WI, USA
| | - Haixiang Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yiwei Cai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
5
|
Hao A, Kobayashi S, Chen F, Yan Z, Torii T, Zhao M, Iseri Y. Exploring invertebrate indicators of ecosystem health by focusing on the flow transitional zones in a large, shallow eutrophic lake. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82717-82731. [PMID: 37328726 PMCID: PMC10349724 DOI: 10.1007/s11356-023-28045-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/29/2023] [Indexed: 06/18/2023]
Abstract
The river-lake transitional zone provides a unique environment for the biological community and can reduce pollution inputs in lake ecosystems from their catchments. To explore environmental conditions with high purification potential in Lake Taihu and indicator species, we examined the river-to-lake changes in water and sediment quality and benthic invertebrate communities in the transitional zone of four regions. The spatial variations in the environment and invertebrate community observed in this study followed the previously reported patterns in Taihu; the northern and western regions were characterized by higher nutrient concentrations in water, higher heavy metal concentrations in sediment, and higher total invertebrate density and biomass dominated by pollution-tolerant oligochaetes and chironomids. Although nutrient concentrations were low and transparency was high in the eastern region, the taxon richness was the lowest there, which disagreed with the previous findings and might be due to a poor cover of macrophytes in this study. The river-to-lake change was large in the southern region for water quality and the invertebrate community. Water circulation induced by strong wind-wave actions in the lake sites of the southern region is assumed to have promoted photosynthetic and nutrient uptake activities and favored invertebrates that require well-aerated conditions such as polychaetes and burrowing crustaceans. Invertebrates usually adapted to brackish and saline environments are suggested to be indicators of a well-circulated environment with active biogeochemical processes and a less eutrophic state in Taihu, and wind-wave actions are key to maintaining such a community and natural purifying processes.
Collapse
Affiliation(s)
- Aimin Hao
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Sohei Kobayashi
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China.
| | - Fangbo Chen
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Zhixiong Yan
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Takaaki Torii
- Laboratory of Molecular Reproductive Biology, Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka City, Shizuoka, Japan
- Institute of Environmental Ecology, Environmental Ecology Division, Idea Consultants Inc., Yaizu City, Shizuoka, Japan
| | - Min Zhao
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Yasushi Iseri
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| |
Collapse
|
6
|
He Y, Wang X, Zhang Z. Polycyclic aromatic hydrocarbons (PAHs) in a sediment core from Lake Taihu and their associations with sedimentary organic matter. J Environ Sci (China) 2023; 129:79-89. [PMID: 36804244 DOI: 10.1016/j.jes.2022.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/02/2022] [Accepted: 09/10/2022] [Indexed: 06/18/2023]
Abstract
Sediment core is the recorder of polycyclic aromatic hydrocarbon (PAH) pollutions and the associated sedimentary organic matter (SOM), acting as crucial supports for pollution control and environmental management. Here, the sedimentary records of PAHs and SOM in the past century in Lake Taihu, China, were reconstructed from a 50-cm sediment core. On the one hand, the presence of PAHs ranged from 8.99 to 199.2 ng/g. Vertically, PAHs declined with the depth increased, and the sedimentation history of PAHs was divided into two stages with a discontinuity at 20 cm depth. In composition, PAHs in the sediment core were dominated by three-ring PAHs (44.6% ± 9.1%, mean ± standard deviation), and were followed by four-ring (27.0% ± 3.3%), and five-ring (12.1% ± 4.0%) PAHs. In toxicity assessment, the sedimentary records of benzo[a]pyrene-based toxic equivalency were well described by an exponential model with R-square of 0.95, and the environmental background toxic value was identified as 1.62 ng/g. On the other hand, different components of SOM were successfully identified by n-alkane markers (p < 0.01) and the variations of SOM were well explained (84.6%). A discontinuity of SOM was recognized at 22 cm depth. Association study showed that the sedimentary PAHs were associated with both anthropogenic and biogenic SOM (p < 0.05) with explained variances for most individual PAHs of 60%. It indicated the vertical distributions of PAHs were driven by sedimentary SOM. Therefore, environmental processes such as biogenic factors should attract more attentions as well as PAH emissions to reduce the impacts of PAHs.
Collapse
Affiliation(s)
- Yong He
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Xiangyu Wang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zhaobin Zhang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Mao Z, Cao Y, Gu X, Cai Y, Chen H, Zeng Q, Jeppesen E. Effects of nutrient reduction and habitat heterogeneity on benthic macroinvertebrate assemblages in a large shallow eutrophic lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161538. [PMID: 36640891 DOI: 10.1016/j.scitotenv.2023.161538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
The Taihu Lake ecosystem has been subjected to numerous anthropogenic stressors during the past decades, leading to substantial changes in nutrient dynamics and habitat quality. For instance, the northwestern lake bays receive large amounts of nutrient-rich wastewater and have frequently experienced algal blooms, while the eastern lake region is still dominated by submersed macrophytes. Such changes in environmental characteristics can greatly impact benthic macroinvertebrate communities. We used a 15-year monitoring data series collected by the Taihu Laboratory for Lake Ecosystem Research to examine the spatial and temporal variations of the benthic invertebrate fauna and evaluate its status and trends. We found that three major communities could be distinguished based on taxonomic group composition and abundance, and these corresponded well with three lake habitat types: algal-dominated, macrophyte-dominated, and open-lake zone. An analysis of temporal trends showed major changes in the macroinvertebrates during the study period, largely driven by a lake-wide and significant decline in the abundance of pollution-tolerant taxa. The spatial and temporal variations of macroinvertebrate communities were mainly explained by nutrients (e.g., total nitrogen and ammonium concentrations) and habitat factors (e.g., sediment substrates and macrophyte biomass) as indicated by Random Forests regression, but the major drivers of macroinvertebrate density differed among the three lake zones at the temporal scale. Moreover, our findings suggest that benthic invertebrates were more sensitive to the improvement of the lake's environmental conditions than the pelagic community was. This study provides insights into the responses of macroinvertebrates to ecological dynamics in lakes and highlights the importance of continued monitoring for tracking long-term changes.
Collapse
Affiliation(s)
- Zhigang Mao
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yong Cao
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA
| | - Xiaohong Gu
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Huaiyin Normal University, Huaiyin 223300, China.
| | - Yongjiu Cai
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Huihui Chen
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingfei Zeng
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Erik Jeppesen
- Department of Bioscience, Aarhus University, Aarhus C 8000C, Denmark; Sino-Danish Centre for Education and Research, Beijing 100049, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara 06800, Turkey; Institute of Marine Sciences, Middle East Technical University, Mersin 33731, Turkey
| |
Collapse
|
8
|
Mao Z, Cao Y, Gu X, Zeng Q, Chen H, Jeppesen E. Response of zooplankton to nutrient reduction and enhanced fish predation in a shallow eutrophic lake. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2750. [PMID: 36151866 DOI: 10.1002/eap.2750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/30/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
As a key link between top-down regulators and bottom-up factors, zooplankton responds sensitively to environmental variations and provides information on the ecological state of freshwater systems. Although the response of zooplankton to anthropogenic pressures and fluctuating natural conditions, such as nutrient loading and climate change, has been extensively examined, findings have varied markedly. The mechanistic basis for the correlation between environmental variability and the zooplankton community is still debated, particularly for subtropical eutrophic lakes. We used two methods to analyze physicochemical and selected biological variables derived from long-term monitoring of Lake Taihu, a subtropical shallow lake in China. We first applied random forest regression to examine how changes in zooplankton were related to a set of environmental variables on interannual time scales. Then we used the results to guide the construction of a conceptual model for piecewise structural equation modeling (pSEM) to quantify more precisely the zooplankton-environment relationship. Zooplanktivorous fish and nutrient concentrations were the most important predictors of long-term trends in zooplankton in RF regression. Intensification of planktivorous fish predation led to a lower zooplankton biomass and smaller individuals through the removal of larger crustaceans. Moreover, suppression of zooplankton can in part be explained by increases in inedible algae, triggered by a combination of reduced nutrient concentrations and weakened grazer control. These results were also confirmed in the pSEM, which further indicated that top-down regulators might be more important than bottom-up factors for the zooplankton community in Lake Taihu. Our results suggest that stocking of filter-feeding fish in the lake did not meet the expectation that they would control algae, but that the use of biomanipulation measures considering both water quality and fishery management seems promising. This study offers insights into how indicator metrics of zooplankton can improve our understanding of the associations between plankton communities and ecosystem alterations.
Collapse
Affiliation(s)
- Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Yong Cao
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, Illinois, USA
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- Huaiyin Normal University, Huaiyin, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Erik Jeppesen
- Department of Bioscience, Aarhus University, Silkeborg, Denmark
- Sino-Danish Centre for Education and Research, Beijing, China
- Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Turkey
- Institute of Marine Sciences, Middle East Technical University, Mersin, Turkey
| |
Collapse
|
9
|
Wang Y, Li B, Yang G. Stream water quality optimized prediction based on human activity intensity and landscape metrics with regional heterogeneity in Taihu Basin, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:4986-5004. [PMID: 35978234 DOI: 10.1007/s11356-022-22536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The driving effects of landscape metrics on water quality have been acknowledged widely, however, the guiding significance of human activity intensity and landscape metrics based on reference conditions for water environment management remains to be explored. Thus, we used the self-organized map, long- and short-term memory (LSTM) algorithm, and geographic detectors to simulate the response of human activity intensity and landscape metrics to water quality in Taihu Lake Basin, China. Fitting results of LSTM displayed that the accuracy was acceptable, and scenario 2 (regional heterogeneity) was more efficient than scenario 1 (regional consistent) in the improvement of water quality. In the driving analysis for the reference conditions, clusters I and II (urban agglomeration areas) were mainly affected by the amount of production wastewater per unit of developed land and the amount of livelihood wastewater per unit of developed land, respectively. Their optimal values were 0.09 × 103 t/km2 (reduction of 35.71%) and 0.2 × 103 t/km2 (reduction of 4.76%). Cluster III (agricultural production areas) was mainly affected by interference intensity, and the optimal value was 2.17 (increased 38.22%), and cluster IV (ecological forest areas) was mainly affected by the fragmentation of cropland, and the optimal value was 1.14 (reduction of 1.72%). The research provides a reference for the prediction of water quality response and presents an ecological and economic sustainability way for watershed governance.
Collapse
Affiliation(s)
- Ya'nan Wang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Nanjing, University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Bing Li
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Nanjing, University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Guishan Yang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
- College of Nanjing, University of Chinese Academy of Sciences, Nanjing, 211135, China.
| |
Collapse
|
10
|
Trends in Research on Forest Ecosystem Services in the Most Recent 20 Years: A Bibliometric Analysis. FORESTS 2022. [DOI: 10.3390/f13071087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Forest resources and the flow of ecosystem services they provide play a key role in supporting national and regional economies, improving people’s lives, protecting biodiversity, and mitigating the impacts of climate change. Based on the ISI (Institute of Scientific Information) Web of Science (WoS) database, we used a bibliometric approach to analyze the research status, evolution process, and hotspots of forest ecosystem services (FES) from a compilation of 8797 documents published between 1997 and 2019. The results indicated that: (1) research on forest ecosystem services has developed rapidly over the past 23 years. Institutions in the United States and other developed countries have significantly contributed to undertake research on the topic of ecosystem services. (2) The 11 hotpot key focus areas of completed research were payments for ecosystem services, biodiversity conservation, forest governance, ecosystem approaches, climate change, nitrogen, ecosystem management, pollination, cities, ecological restoration, and policy. (3) The trade-off relationships among ecosystem services, ecosystem resilience and stability have become the research frontier in this field. (4) Future research on FES will likely focus on the formation and evolution mechanism of ecosystem services; the interaction, feedback and intrinsic connections of ecosystem services at different scales; analysis of the trade-offs and synergies; unified evaluation standards, evaluation systems, model construction and scenario analyses; in-depth studies of the internal correlation mechanism between forest ecosystem services and human wellbeing; and realization of cross-disciplinary and multi-method integration in sustainable forest management and decision-making.
Collapse
|
11
|
Kamilya T, Gautam RK, Muthukumaran S, Navaratna D, Mondal S. Technical advances on current research trends and explore the future scope on nutrient recovery from waste-streams: a review and bibliometric analysis from 2000 to 2020. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49632-49650. [PMID: 35597831 DOI: 10.1007/s11356-022-20895-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
An exponentially growing global population has led to an increase in nutrient pollution in different aqueous bodies. Although different processes have successfully removed nutrients from wastewater on a large scale, a limited number of studies have been reported on efficiency, cost-effectiveness, and future potential of physical, chemical, and biological nutrient recovery methods to overcome the depletion of natural resources. Therefore, researchers need to understand current research trends by applying different approaches to investigate higher efficient nutrient recovery technologies. In this article, the research patterns and in-depth review of various nutrient recovery processes have been circumscribed with the application of bibliometric and attractive index (AAI) vs. activity index (AI) analysis. The performance, advantages, limitations, and future prospects of different nutrient recovery methods have also been addressed. More than 70% of study publications were published in the last decade in chemical and biological processes, which might be related to more rigorous effluent quality rules and increasing water pollution. The future prediction in the field of nutrient recovery has been predicted using S-curve analysis, and it was found that the number of publications in the saturated state in chemical methods was highest. However, the growth rate of the biological-based nutrient recovery methods is greater, which may be because of their huge research scope, cost-effectiveness, and easy operation methods. This study can assist researchers in understanding the current research scenario in nutrient recovery techniques and provide the research scope in nutrient recovery from wastewater in the future.
Collapse
Affiliation(s)
- Tuhin Kamilya
- Department of Earth and Environmental Studies, National Institute of Technology Durgapur, West Bengal, India
| | - Rajneesh Kumar Gautam
- Institute for Sustainable Industries & Liveable Cities, College of Engineering and Science, Victoria University, Melbourne, Australia
| | - Shobha Muthukumaran
- Institute for Sustainable Industries & Liveable Cities, College of Engineering and Science, Victoria University, Melbourne, Australia
| | - Dimuth Navaratna
- Institute for Sustainable Industries & Liveable Cities, College of Engineering and Science, Victoria University, Melbourne, Australia
| | - Sandip Mondal
- Department of Earth and Environmental Studies, National Institute of Technology Durgapur, West Bengal, India.
| |
Collapse
|
12
|
Gao Y, Fan K, Lai Z, Wang C, Li H, Liu Q. A comprehensive review of the circulation of microplastics in aquatic ecosystem using scientometric method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30935-30953. [PMID: 35099690 DOI: 10.1007/s11356-022-18837-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Nowadays, the extensive application of microplastics (MPs) has led to the gradual accumulation of toxicity in aquatic environment and caused potential harm to aquatic organisms and human life, which has become a hot issue of worldwide concern. Although MPs show inert or sublethal toxicity in many cases, its long-term existence can still cause harmful ecological effects. However, to our knowledge, there is a lack of comprehensive literature on the current research hotspots, circulation process, and future development trend of MPs in aquatic ecosystem. This study aims to comprehend the current research hotspots and future development trend in the field of the MPs in aquatic ecosystem using scientometric method. And the circulation process of MPs in aquatic ecosystem is also investigated. The results indicate the most of the current publications on MPs in aquatic ecosystems focus on the formation and harmful properties of MPs. The current research hotspots mainly include the causes of the formation of MPs, the extent of contamination, deposition phenomena, and the toxicity and harm caused to aquatic organisms and humans after ingestion. And the future trends in the researches related to MPs mainly include the study of microplastic cycling processes in aquatic and terrestrial ecosystems, as well as the effective collection of microplastics and their conversion into valuable carbon sources. This review has filled in the knowledge gap in the field of MPs research in aquatic ecosystem to some extent and plays a guiding role in the future researches.
Collapse
Affiliation(s)
- Yuan Gao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, 510380, China
| | - Keyu Fan
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, Tianjin Agricultural University, Tianjin, 300384, China
| | - Zini Lai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, 510380, China
| | - Chao Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, 510380, China
| | - Haiyan Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, 510380, China
| | - Qianfu Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Guangzhou, 510380, China.
| |
Collapse
|
13
|
Abstract
Geological heritage represents and brings together geological elements of great local and global relevance. It also promotes conservation and sustainable use. This study aims to perform a bibliometric analysis of the contributions that address the topics of geological heritage and geosites, using the Scopus and Web of Science databases for the knowledge of trends and research focuses in this area. The methodology consists of: (i) the preparation of the idea and gathering information from a search on the subjects of interest (geoheritage and geosites); (ii) the merging of the databases and applying automated conversions; and (iii) the analysis of the results and the literature review. The first phase of the work identified 2409 and 1635 documents indexed in Scopus and WoS, respectively. The merged global database (2565 documents) identified the following words as analysis topics: geoconservation, geotourism, geopark, and geodiversity. The analysis also revealed the top five countries in scientific contributions as Italy (12.1%), Spain (8.77%), China (5.67%), Portugal (5.35%), and Brazil (5.31%). Finally, most of the publications focus on the characterisation, assessment, and development of geosite initiatives. The main lines of action and contributions to the topics (7.91%) highlight the fact that geoscientists worldwide value geosites for geoconservation and geotourism strategies.
Collapse
|
14
|
Ni J, Steinberger-Wilckens R, Jiang S, Xu M, Wang Q. Novel study on microbial fuel cells via a comprehensive bibliometric and dynamic approach. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:13-27. [PMID: 33975416 DOI: 10.1515/reveh-2020-0123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Microbial fuel cells (MFCs) are eco-friendly and useful bioelectrical devices that harness the natural metabolisms of microbes to produce electrical power directly from organic materials. In this study, a bibliometric analysis is conducted to evaluate MFC research from 2001 to 2018 on the basis of the Science Citation Index Expanded database. Overall, MFC research has experienced a dramatic increase over last 18 years, with an exponential growth in the accumulated number of publications. Most publications are closely related to the industrialization and commoditization of MFCs, along with environmental issues, which are currently the biggest global challenges in MFC studies. A small proportion (4.34%) of the scientific journals published more than half (54.34%) of the total articles in the MFC field. Articles from the top 10 countries/regions accounted for the majority (83.16%) of the total articles, clearly indicating that advanced MFC technologies are currently dominated by these countries/regions. Moreover, an increasing number of MFC researchers are considering two-chamber and three-chamber MFC reactions. In particular, they are focusing on environmental technology instead of merely improving the efficiency of electricity generation. Materials research in the MFC field is still a popular area worldwide, and many researchers have focused on novel and eco-friendly cathode and anode developments. Meanwhile, only a few MFC studies are concerned with biological research.
Collapse
Affiliation(s)
- Jin Ni
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, China
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK
| | - Robert Steinberger-Wilckens
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK
| | - Shanxue Jiang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, China
| | - Mingyue Xu
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Qunhui Wang
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
15
|
Research Characteristics on Cyanotoxins in Inland Water: Insights from Bibliometrics. WATER 2022. [DOI: 10.3390/w14040667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Eutrophication is a long-standing ecological and environmental problem, and the severity of harmful algal blooms continues to increase, causing large economic losses globally. One of the most important hazards created by harmful algal blooms is the production of cyanotoxins. This study aimed to analyze the characteristics and development trends of cyanotoxin research through bibliometric analysis. A total of 3265 publications from 1990 to 2020 on cyanotoxins were retrieved from the Science Citation Index (SCI) Expanded database, Web of Science. Over the past 30 years, most research has been concentrated in China (21.4%) and the USA (21.3%). Throughout the study period, microcystin was the focus of the research, accounting for 86% of the total number of publications. A word frequency analysis revealed that as people became more aware of drinking water safety and the construction of large-scale water conservation facilities, “reservoirs” and “rivers” became hot words for researchers, while “lakes” have always been important research objects. Nonmetric multidimensional scaling (NMDS) analysis of studies from the five countries with the largest numbers of publications showed that Chinese researchers typically associate eutrophication with Microcystis, while research subjects in other countries are more extensive and balanced. The development of cyanotoxin research around the world is not even, and we need to push for more research on major lakes that are outside of North America, Europe and China.
Collapse
|
16
|
BARBOSA FABIANAG, LANARI MARIANNA. Bibliometric analysis of peer-reviewed literature on the Patos Lagoon, southern Brazil. AN ACAD BRAS CIENC 2022; 94:e20210861. [DOI: 10.1590/0001-3765202220210861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/18/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
| | - MARIANNA LANARI
- Federal University of Rio Grande, Brazil; University of Southern Denmark, Denmark
| |
Collapse
|
17
|
Adeoye RI, Okaiyeto K, Oguntibeju OO. Global mapping of research outputs on nanoparticles with peroxidase mimetic activity from 2010–2019. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.2020841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Raphael Idowu Adeoye
- Enzymology and Drug Design Unit, Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| | - Kunle Okaiyeto
- Phytomedicine and Phytochemistry Group, Oxidative Stress Research Centre, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Oluwafemi Omoniyi Oguntibeju
- Phytomedicine and Phytochemistry Group, Oxidative Stress Research Centre, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| |
Collapse
|
18
|
Xu X, Ni J, Xu J. Incorporating a constructed wetland system into a water pollution emissions permit system: a case study from the Chaohu watershed, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61526-61546. [PMID: 34184222 DOI: 10.1007/s11356-021-14418-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
Water pollution emissions permit systems (WPEPS) and constructed wetland systems (CWS) are widely but independently used to balance regional economic development and ecosystem health. In this paper, a watershed scale framework that incorporates a CWS into a WPEPS is proposed for regional economic and ecosystem health sustainability. A strategy that integrates three allocation principles: per capita emissions, economic utility, and water quality contributions, is established for the initial CWS-incorporated WPEPS emissions permit allocations. To quantitatively verify the effectiveness of the CWS-incorporated WPEPS, a bi-level optimization model is formulated, in which fuzzy random variables are employed to describe the system uncertainties. The model is then applied to a practical case in the Chaohu watershed, China, to assess the effects of changing watershed management targets, from which practical insights are obtained on the initial emissions permit allocation strategies and the CWS coordination effects. It has proved that the integrated watershed management of the CWS-incorporated WPEPS is more able to rationally allocate the limited water pollution emissions permits and better balance the Chaohu watershed economic development to ensure ecological health sustainability. The CWS-incorporated WPEPS model under uncertainty can be used to guide local governments when formulating their sustainable watershed management strategies.
Collapse
Affiliation(s)
- Xiaoyue Xu
- Uncertainty Decision-Making Laboratory, Sichuan University, 610064, Chengdu, People's Republic of China
| | - Jingneng Ni
- Uncertainty Decision-Making Laboratory, Sichuan University, 610064, Chengdu, People's Republic of China
- Department of Mathematics and Physics, Hefei University, 230601, Hefei, People's Republic of China
| | - Jiuping Xu
- Uncertainty Decision-Making Laboratory, Sichuan University, 610064, Chengdu, People's Republic of China.
- State Key, Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, 610064, Chengdu, People's Republic of China.
| |
Collapse
|
19
|
Li L, Sun F, Liu Q, Zhao X, Song K. Development of regional water quality criteria of lead for protecting aquatic organism in Taihu Lake, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112479. [PMID: 34224968 DOI: 10.1016/j.ecoenv.2021.112479] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/06/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Lead is a widely distributed priority controlled heavy metals in aquatic system, its toxicity to aquatic organisms affected by water quality parameters. This study investigated the acute toxicity of lead (Pb) to the aquatic organisms in Taihu Lake under various water hardness, corresponding regional water quality criteria were derived. The acute toxicity experimental results revealed that the toxicity of Pb to aquatic organisms increased with water hardness. The Pb toxicity has a highest toxicity at water hardness 50 mg/L (expressed as CaCO3), especially for Palaemon modestus where the 96 h LC50 value was 0.024 mg/L. The hazardous concentration for 5% of biological species (HC5) values were determined via species sensitivity distribution (SSD) method as 94.0 μg/L, 222.3 μg/L and 375.8 μg/L for Pb at water hardness 50, 150, and 250 mg/L, respectively. The assessment factor (AF) value was set at 2, followed by the current SSD framework where European commission recommend a fixed AF of 5-1. Thus, the predicted no effect concentration (PNEC) values was 47.0 μg/L, 111.2 μg/Land 187.9 μg/L at water hardness 50, 150, and 250 mg/L, respectively. Meanwhile, the short-term water quality criteria of Pb for Taihu lake aquatic organisms were derived as 111.2 μg/L at water hardness 150 mg CaCO3/L. The long-term water quality criteria were derived as 4.3 μg/L by using acute/chronic ratio 51.29. When the derived value was used for Taihu Lake, 2.7% of the sampling sites in Taihu Lake was exceeded this criterion. The results of this study can provide technical methods and basic information for deriving Pb regional water quality criteria for protecting native aquatic organisms, in China.
Collapse
Affiliation(s)
- Lu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Fuhong Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qun Liu
- School of Materials Science and Chemical Engineering, Anhui Jianzhu University, Hefei 230022, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
20
|
Xie Y, Li X, Hu X, Hu X. The landscape of academic articles in environmental footprint family research: A bibliometric analysis during 1996–2018. ECOLOGICAL INDICATORS 2020; 118:106733. [DOI: 10.1016/j.ecolind.2020.106733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
21
|
Research hotspots and current challenges of lakes and reservoirs: a bibliometric analysis. Scientometrics 2020. [DOI: 10.1007/s11192-020-03453-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Heterogeneity in Ecosystem Service Values: Linking Public Perceptions and Environmental Policies. SUSTAINABILITY 2020. [DOI: 10.3390/su12031217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
One way of linking research and environmental policies is to increase public participation and identify ecosystem services valued by society, but the reasons influencing ecosystem values can vary. Our study investigates the reasons influencing ecosystem service values at the third largest freshwater lake in China, Lake Tai (Taihu). We interviewed 257 rural and 257 urban respondents in four cities and their respective rural regions surrounding the lake. Respondents were more willing to pay to protect a provisioning ecosystem service than a cultural ecosystem service, and those emotionally attached to the lake may value it more highly. There is also spatial heterogeneity in respondents’ ecosystem values. Rural communities ranked directly used ecosystem services higher than urban communities. The city that respondents lived in also significantly affected the amount they were willing to pay for ecosystem services. Identifying potential reasons behind ecosystem service values can provide insights into linking public perception and policy making, helping to form environmental policies that reflect societal values.
Collapse
|
23
|
Mao Z, Gu X, Cao Y, Zhang M, Zeng Q, Chen H, Shen R, Jeppesen E. The Role of Top-Down and Bottom-Up Control for Phytoplankton in a Subtropical Shallow Eutrophic Lake: Evidence Based on Long-Term Monitoring and Modeling. Ecosystems 2020. [DOI: 10.1007/s10021-020-00480-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Spatiotemporal Variations in Seston C:N:P Stoichiometry in a Large Eutrophic Floodplain Lake (Lake Taihu): Do the Sources of Seston Explain Stoichiometric Flexibility? WATER 2019. [DOI: 10.3390/w12010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although sources of seston are much more complicated in lakes compared to oceans, the influences of different sources on the spatiotemporal variations in seston stoichiometry are still underexplored, especially in large eutrophic floodplain lakes. Here, we investigated seston stoichiometric ratios across a typical large eutrophic floodplain lake (Lake Taihu, East China) over one year. In addition, we used the n-alkane proxies to examine the influence of the seston source on seston stoichiometry variation. Throughout the study, the average value of the C:N:P ratio of 143:19:1 across Lake Taihu was close to the canonical lake’s ratios (166:20:1). Similar to other eutrophic lakes, seston C:N ratios varied the least across all environments, but C:P and N:P ratios varied widely and showed a strong decreasing trend in ratios of N:P and C:P from growing season to senescence season. This seasonal change was mainly associated with the decreasing contribution from algal-derived materials in seston pools because the non-algal dominated seston exhibited significantly lower ratios than algal-dominated seston. Furthermore, the spatial heterogeneity of stoichiometric ratios was also related to the seston source. During the senescence season, the terrestrial-dominated seston from agricultural watershed exhibited the lowest ratios in estuary sites compared with other areas. Statistically, the predictive power of environmental variables on stoichiometric ratios was strongly improved by adding n-alkanes proxies. Apart from source indicators, particulate phosphorus (PP) contents also partly explained the spatiotemporal variations in stoichiometric ratios. This study, thus, highlights the utility of multiple-combined n-alkane proxies in addition to simple C:N ratios to get more robust source information, which is essential for interpreting the spatiotemporal variations in seston stoichiometric ratios among eutrophic floodplain lakes and other freshwater ecosystems.
Collapse
|
25
|
Zhang Y, Yang J, Simpson SL, Wang Y, Zhu L. Application of diffusive gradients in thin films (DGT) and simultaneously extracted metals (SEM) for evaluating bioavailability of metal contaminants in the sediments of Taihu Lake, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109627. [PMID: 31509782 DOI: 10.1016/j.ecoenv.2019.109627] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/24/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
The toxicities of heavy metals in sediments are related to their bioavailability, which is critical for deriving reliable sediment quality guidelines. To evaluate the bioavailability of the metals (Cd, Cu, Ni, Pb and Zn), sediments were collected from Taihu Lake, one of the largest and most important freshwater lakes in China. Concentrations of simultaneously extracted metals (1-M HCl extraction, CSEM) in the sediments, metals released from sediment to pore waters and accumulated by diffusive gradients in thin films (DGT, CDGT), and dissolved metals in the overlying water (COLW) were measured separately. Sediment toxicity was assessed with tubificids (Monopylephorus limosus) and chironomids (Chironomus kiiensis and Chironomus tentans). Significant relationships existed between the total metal concentrations and CSEM, CDGT, and COLW measurements (r2 = 0.43-0.95, n = 27, p < 0.001), with stronger relationships with CSEM (r2 = 0.91-0.95) than CDGT (r2 = 0.56-0.85) and COLW (r2 = 0.43-0.71). Risk quotients were derived by dividing CSEM by sediment quality guideline values (SQGVs), and by dividing both CDGT and COLW by water quality criteria (WQC). Toxicity of the sediments to the three species was better explained by the CSEM-based risk quotient than those derived from CDGT and COLW. The study indicated that DGT piston probes deployed face down in sediments did not accumulate metals in proportion to the bioavailable metal fraction that caused toxicity to these freshwater benthic organisms, and that single measurements of metals in overlying waters are not adequate for predicting risks of toxicity from sediments. The measurement of CSEM was determined to be effective for assessing the risk posed by the metals in the Taihu Lake sediments, but offered limited improvement over measurement of total metal concentrations.
Collapse
Affiliation(s)
- Yanfeng Zhang
- Tianjin Key Laboratory of Remediation & Pollution Control for Urban Ecological Environment, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jinxi Yang
- Tianjin Key Laboratory of Remediation & Pollution Control for Urban Ecological Environment, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Stuart L Simpson
- Environment Contaminant Mitigation & Biotechnology, CSIRO Land and Water, Lucas Heights, NSW, 2234, Australia
| | - Yuanyuan Wang
- Tianjin Key Laboratory of Remediation & Pollution Control for Urban Ecological Environment, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Lingyan Zhu
- Tianjin Key Laboratory of Remediation & Pollution Control for Urban Ecological Environment, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
26
|
Long-Term Spatial and Temporal Monitoring of Cyanobacteria Blooms Using MODIS on Google Earth Engine: A Case Study in Taihu Lake. REMOTE SENSING 2019. [DOI: 10.3390/rs11192269] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As cyanobacteria blooms occur in many types of inland water, routine monitoring that is fast and accurate is important for environment and drinking water protection. Compared to field investigations, satellite remote sensing is an efficient and effective method for monitoring cyanobacteria blooms. However, conventional remote sensing monitoring methods are labor intensive and time consuming, especially when processing long-term images. In this study, we embedded related processing procedures in Google Earth Engine, developed an operational cyanobacteria bloom monitoring workflow. Using this workflow, we measured the spatiotemporal patterns of cyanobacteria blooms in China’s Taihu Lake from 2000 to 2018. The results show that cyanobacteria bloom patterns in Taihu Lake have significant spatial and temporal differentiation: the interannual coverage of cyanobacteria blooms had two peaks, and the condition was moderate before 2006, peaked in 2007, declined rapidly after 2008, remained moderate and stable until 2015, and then reached another peak around 2017; bays and northwest lake areas had heavier cyanobacteria blooms than open lake areas; most cyanobacteria blooms primarily occurred in April, worsened in July and August, then improved after October. Our analysis of the relationship between cyanobacteria bloom characteristics and environmental driving factors indicates that: from both monthly and interannual perspectives, meteorological factors are positively correlated with cyanobacteria bloom characteristics, but as for nutrient loadings, they are only positively correlated with cyanobacteria bloom characteristics from an interannual perspective. We believe reducing total phosphorous, together with restoring macrophyte ecosystem, would be the necessary long-term management strategies for Taihu Lake. Our workflow provides an automatic and rapid approach for the long-term monitoring of cyanobacteria blooms, which can improve the automation and efficiency of routine environmental management of Taihu Lake and may be applied to other similar inland waters.
Collapse
|
27
|
Gao Y, Yu J, Song Y, Zhu G, Paerl HW, Qin B. Spatial and temporal distribution characteristics of different forms of inorganic nitrogen in three types of rivers around Lake Taihu, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:6898-6910. [PMID: 30635880 DOI: 10.1007/s11356-019-04154-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
In order to control nitrogen (N) pollution of Lake Taihu, China, we studied the spatial and temporal distribution characteristics of inorganic N in inflowing rivers polluted by industry, agriculture, and domestic sewage during low, moderate, and high flow periods. The results showed that dissolved total nitrogen (DTN) was the main fraction of total nitrogen (TN) input from these rivers. Inflowing rivers had distinct impacts on TN, DTN, ammonium N (NH4+), and nitrate N (NO3-) concentrations of Lake Taihu during the low flow period. Particulate nitrogen (PN) had an impact on Lake Taihu during the three flow periods and all the three types of rivers would increase PN concentration in the lake. Rivers polluted by agriculture had the greatest impact on Lake Taihu's TN, DTN, NO3-, and dissolved inorganic N (DIN) concentrations, while rivers polluted by industry had the greatest impact on NH4+ concentration. Therefore, agriculture and industry should be key targets for nutrient reductions. The in-lake N concentrations were higher than those of inflowing rivers during moderate and high flow periods.
Collapse
Affiliation(s)
- Yongxia Gao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing, 210044, China.
| | - Jianghua Yu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Yuzhi Song
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Guangwei Zhu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Hans W Paerl
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC, 28557, USA
| | - Boqiang Qin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| |
Collapse
|
28
|
Visualization and Analysis of Mapping Knowledge Domain of Urban Vitality Research. SUSTAINABILITY 2019. [DOI: 10.3390/su11040988] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mapping knowledge domain (MKD) is an important research technology in bibliometrics. It provides a visual perspective for researchers and helps researchers to clearly understand the general situations of specific research fields. Presently, MKD has been widely used in fields such as ecology and transportation safety. In this paper, we conduct a systematically bibliometric analysis of the development trend on urban vitality research by using VOSviewer software, and this work is based on the related articles published in the Science Citation Index Expanded (SCIE) and Social Sciences Citation Index (SSCI) between 1998 and 2018. In the implementation, we firstly introduce the annual numbers of articles, source journals, highly cited papers, and production countries relating to urban vitality research. Then, we adopt a keywords co-occurrence analysis to explore the topic distribution, research frontiers, and research trends of urban vitality research intuitively. Overall, the Mapped Knowledge Domain method has proved to be an effective way to assess research trends in specific disciplines and to contribute to researchers and governments with respect to management and decision-making on issues of science.
Collapse
|
29
|
Gonçalves MCP, Kieckbusch TG, Perna RF, Fujimoto JT, Morales SAV, Romanelli JP. Trends on enzyme immobilization researches based on bibliometric analysis. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.09.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Effects of climatically-modulated changes in solar radiation and wind speed on spring phytoplankton community dynamics in Lake Taihu, China. PLoS One 2018; 13:e0205260. [PMID: 30289946 PMCID: PMC6173452 DOI: 10.1371/journal.pone.0205260] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 09/21/2018] [Indexed: 11/19/2022] Open
Abstract
Many studies have focused on the interactive effects of temperature increases due to global warming and nutrient enrichment on phytoplankton communities. Recently, non-temperature effects of climate change (e.g., decreases in wind speed and increases in solar radiation) on large lakes have received increasing attention. To evaluate the relative contributions of both temperature and non-temperature effects on phytoplankton communities in a large eutrophic subtropical shallow lake, we analyzed long-term monitoring data from Lake Taihu, China from 1997 to 2016. Results showed that Lake Taihu’s spring phytoplankton biovolume and composition changed dramatically over this time frame, with a change in dominant species. Stepwise multiple linear regression models indicated that spring phytoplankton biovolume was strongly influenced by total phosphorus (TP), light condition, wind speed and total nitrogen (TN) (radj2 = 0.8, p < 0.01). Partial redundancy analysis (pRDA) showed that light condition accounted for the greatest variation of phytoplankton community composition, followed by TP and wind speed, as well as the interactions between TP and wind speed. Our study points to the additional importance of non-temperature effects of climate change on phytoplankton community dynamics in Lake Taihu.
Collapse
|
31
|
Dong H, Wei Y, Xie C, Zhu X, Sun C, Fu Q, Pan L, Wu M, Guo Y, Sun J, Shen H, Ye J. Structural and functional analysis of two novel somatostatin receptors identified from topmouth culter (Erythroculter ilishaeformis). Comp Biochem Physiol C Toxicol Pharmacol 2018; 210:18-29. [PMID: 29698686 DOI: 10.1016/j.cbpc.2018.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 12/14/2022]
Abstract
In the present study, we cloned and characterized two somatostatin (SS) receptors (SSTRs) from topmouth culter (Erythroculter ilishaeformis) designated as EISSTR6 and EISSTR7. Analysis of EISSTR6 and EISSTR7 signature motifs, 3D structures, and homology with the known members of the SSTR family indicated that the novel receptors had high similarity to the SSTRs of other vertebrates. EISSTR6 and EISSTR7 mRNA expression was detected in 17 topmouth culter tissues, and the highest level was observed in the pituitary. Luciferase reporter assay revealed that SS14 significantly inhibited forskolin-stimulated pCRE-luc promoter activity in HEK293 cells transiently expressing EISSTR6 and EISSTR7, indicating that the receptors can be activated by SS14. We also identified phosphorylation sites important for the functional activity of EISSTR6 and EISSTR7 by mutating Ser23, 43, 107, 196, 311 and Ser7, 29, 61, 222, 225 residues, respectively, to Ala, which significantly reduced the inhibitory effects of SS14 on the CRE promoter mediated by EISSTR6 and EISSTR7. Furthermore, treatment of juvenile topmouth culters with microcystin-LR or 17β-estradiol significantly affected EISSTR6 and EISSTR7 transcription in the brain, liver and spleen, suggesting that these receptors may be involved in the pathogenic mechanisms induced by endocrine disruptors. Our findings should contribute to the understanding of the structure-function relationship and evolution of the SSTR family.
Collapse
Affiliation(s)
- Haiyan Dong
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China; National-local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition of Chinese Academy of Fishery Sciences, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China.
| | - Yunhai Wei
- Department of Gastrointestinal Surgery, the Central Hospital of Huzhou, 198 Hongqi Road, Huzhou, Zhejiang 313000, PR China
| | - Chao Xie
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Xiaoxuan Zhu
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Chao Sun
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Qianwen Fu
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Lei Pan
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Mengting Wu
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Yinghan Guo
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Jianwei Sun
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Hong Shen
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Jinyun Ye
- National-local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition of Chinese Academy of Fishery Sciences, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China.
| |
Collapse
|
32
|
Zheng CL, Cotner JB, Sato C, Li G, Xu YY. Global development of the studies focused on antibiotics in aquatic systems from 1945 to 2017. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:22023-22034. [PMID: 29797202 DOI: 10.1007/s11356-018-2331-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
Antibiotics are used to fight diseases in humans and farm animals. Their residues, however, can enter aquatic environments and affect the resistance of non-target microbial strains, and the prevalence of antibiotic resistance genes (ARGs) potentially poses negative impacts on human health. In order to better understand how the studies of antibiotics have been conducted, we analyzed the publications on antibiotics in aquatic systems for the period of 1945-2017. We applied a bibliometric analysis method by coupling cluster analysis and network analysis. Results indicated that early research on antibiotics in water was mostly performed in America and Europe, while, in recent years, publications for the same subject were dominated by China and the USA. The majority of the articles were published in journal Chemosphere and the most representative subject categories of the seven sections were "Environmental science and ecology," "Chemistry," "Engineering," "Biochemistry and molecular biology," "Water resources," "Agriculture," and "Pharmacology and pharmacy." The most studied class of antibiotics was tetracyclines in wastewater. Antibiotic resistance, ARGs, Escherichia coli, and some mechanistic studies such as adsorption, toxicity, degradation, and kinetics were common topics in this field. ARGs present a major public health concern and much attention should be directed at the problems with antibiotics in the future studies of water.
Collapse
Affiliation(s)
- Chun-Li Zheng
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Ningbo Key Laboratory of Urban Environment Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, 315800, People's Republic of China
| | - James B Cotner
- Department of Ecology, Evolution and Behavior, University of Minnesota-Twin Cities, Saint Paul, MN, 55108, USA
| | - Chikashi Sato
- Department of Civil and Environmental Engineering, Idaho State University, Pocatello, ID, 83209, USA
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China.
- Ningbo Key Laboratory of Urban Environment Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, 315800, People's Republic of China.
| | - Yao-Yang Xu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China.
- Ningbo Key Laboratory of Urban Environment Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, 315800, People's Republic of China.
| |
Collapse
|
33
|
Zhang Y, Han Y, Yang J, Zhu L, Zhong W. Toxicities and risk assessment of heavy metals in sediments of Taihu Lake, China, based on sediment quality guidelines. J Environ Sci (China) 2017; 62:31-38. [PMID: 29289290 DOI: 10.1016/j.jes.2017.08.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 06/07/2023]
Abstract
The occurrence, toxicities, and ecological risks of five heavy metals (Pb, Cu, Cd, Zn and Ni) in the sediment of Taihu Lake were investigated in this study. To evaluate the toxicities caused by the heavy metals, the toxicities induced by organic contaminants and ammonia in the sediments were screened out with activated carbon and zeolite. The toxicities of heavy metals in sediments were tested with benthic invertebrates (tubificid and chironomid). The correlations between toxicity of sediment and the sediment quality guidelines (SQGs) derived previously were evaluated. There were significant correlations (p<0.0001) between the observed toxicities and the total risk quotients of the heavy metals based on SQGs, indicating that threshold effect level (TEL) and probable effect level (PEL) were reliable to predict the toxicities of heavy metals in the sediments of Taihu Lake. By contrast, the method based on acid volatile sulfides (AVS) and simultaneously extracted metals (SEM), such as ∑SEM/AVS and ∑SEM-AVS, did not show correlations with the toxicities. Moreover, the predictive ability of SQGs was confirmed by a total predicting accuracy of 77%. Ecological risk assessment based on TELs and PELs showed that the contaminations of Pb, Cu, Cd and Zn in the sediments of Taihu Lake were at relatively low or medium levels. The risks caused by heavy metals in the sediments of northern bay of the lake, which received more wastewater discharge from upper stream, were higher than other area of the lake.
Collapse
Affiliation(s)
- Yanfeng Zhang
- Tianjin Key Laboratory of Remediation & Pollution Control for Urban Ecological Environment, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300351, China.
| | - Yuwei Han
- Tianjin Key Laboratory of Remediation & Pollution Control for Urban Ecological Environment, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300351, China
| | - Jinxi Yang
- Tianjin Key Laboratory of Remediation & Pollution Control for Urban Ecological Environment, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300351, China
| | - Lingyan Zhu
- Tianjin Key Laboratory of Remediation & Pollution Control for Urban Ecological Environment, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300351, China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Wenjue Zhong
- Tianjin Key Laboratory of Remediation & Pollution Control for Urban Ecological Environment, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300351, China.
| |
Collapse
|
34
|
Zheng T, Li P, Shi Z, Liu J. Benchmarking the scientific research on wastewater-energy nexus by using bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:27613-27630. [PMID: 29134520 DOI: 10.1007/s11356-017-0696-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
With an exponential increase in urbanization and industrialization, water pollution is an inevitable consequence of relatively lagging wastewater treatment facilities. The conventional activated sludge process for wastewater treatment primarily emphasizes the removal of harmful substances to maintain increasingly stringent effluent discharged standards, which is considered an energy-intensive technique. Therefore, innovative and sustainable wastewater treatment should pay more attention to energy and resource recovery in dealing with fossil fuel depletion, global-scale energy security, and climate change. A bibliometric analysis was applied to trace wastewater-energy nexus-related research during the period 1991 to 2015, with respect to the Science Citation Index EXPANDED (SCI-EXPANDED) database. Journal of Hazardous Materials, ranking 1st in h-index (79), was the most productive journal (431, 4.5%) during the same time, followed by International Journal of Hydrogen Energy (422, 4.4%) and Water Research (393, 4.1%) journal, the latter owning a topmost journal impact factor. Though, China (2154, 22.5%) was the most productive country, while the USA with highest h-index (88) was the favorest collaborative country. The Chinese Academy of Sciences, China (241, 2.5%) produced the maximum publications. A novel method called "word cluster analysis" showed that the emerging sustainable processes and novel renewable energy application are applied in response to the desire for a net wastewater-energy nexus system. Based on different wastewater types, the emerging energy and sources recovery treatment processes of Anammox, anaerobic digestion, and microbial fuel cells gained extensive innovation. Evaluation indicators including sustainability, life cycle assessment, and environmental impact were appropriately used to dissert feasibility of the novel treatment methods in regard of renewable energy utilization, energy savings, and energy recovery. The transformation of the new concept of "broaden income source, economize on expenditures and exploit inner potential" should be generalized in order to achieve an environmentally sustainable development of wastewater-energy nexus system.
Collapse
Affiliation(s)
- Tianlong Zheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China.
| | - Pengyu Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
- University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Zhining Shi
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Jianguo Liu
- College of Energy and Power Engineering, Inner Mongolia University of Technology, 49 Aiminjie, Xincheng District, Hohhot, Inner Mongolia, 010051, China
| |
Collapse
|
35
|
Lu B, Xu J, Zhang M, Pang W, Xie L. Phosphorus removal and recovery from wastewater by highly efficient struvite crystallization in an improved fluidized bed reactor. KOREAN J CHEM ENG 2017. [DOI: 10.1007/s11814-017-0203-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Jia X, Luo W, Wu X, Wei H, Wang B, Phyoe W, Wang F. Historical record of nutrients inputs into the Xin'an Reservoir and its potential environmental implication. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:20330-20341. [PMID: 28707236 DOI: 10.1007/s11356-017-9537-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/13/2017] [Indexed: 06/07/2023]
Abstract
The Xin'an Reservoir is an important water supply source and water conservation area for the Qiantang River. However, after the occurrence of the two algae blooms in 1998 and 1999, the safety of water quality has been put into question. In order to study the historical deposition of nutrients, sediment cores were collected in different regions from the Xin'an Reservoir. The stable isotopes δ13C and δ15N, nutrients, total organic carbon (TOC), and inorganic carbon (IC) in the sediment cores were determined. Radiometric methods (210Pb and 137Cs) were used to obtain sediment chronologies. Spatially, it was found that the average total nitrogen (TN) content in the upper 5 cm of sediments increased from 0.21% in the riverine zone, to 0.33%, and then to 0.57% in the lacustrine zone. The average TP content in the upper 5 cm increased from 0.67 g kg-1 in the riverine zone, to 1.03 g kg-1 in the estuary region, and then to 1.65 g kg-1 in the lacustrine zone. In addition, TOC levels showed a distinct increase from 1.42% in the bottom to 5.97% in the surface of the lacustrine zone. These results demonstrated that although primary productivity and the input of nutrients constantly increased in recent years, algae blooms rarely occurred in the Xin'an Reservoir, due to "depth effect" and an aquatic environment protection-oriented fishery policy. However, high TOC flux and high bio-available phosphorus and nitrogen in surface sediment demonstrated that the reservoir is still confronted with the potential risk of algae blooms.
Collapse
Affiliation(s)
- Xiaobin Jia
- School of Environmental and Chemical Engineering, Shanghai University, P.O. Box 144, 99Shangda Road, Baoshan, Shanghai, 200444, China
| | - Wenyun Luo
- School of Environmental and Chemical Engineering, Shanghai University, P.O. Box 144, 99Shangda Road, Baoshan, Shanghai, 200444, China
| | - Xueqian Wu
- School of Environmental and Chemical Engineering, Shanghai University, P.O. Box 144, 99Shangda Road, Baoshan, Shanghai, 200444, China
| | - Haobin Wei
- School of Environmental and Chemical Engineering, Shanghai University, P.O. Box 144, 99Shangda Road, Baoshan, Shanghai, 200444, China
| | - Baoli Wang
- Tianjin University, 92 Weijin Road, Nankai, Tianjin, 300072, China
| | - Waiwai Phyoe
- School of Environmental and Chemical Engineering, Shanghai University, P.O. Box 144, 99Shangda Road, Baoshan, Shanghai, 200444, China
| | - Fushun Wang
- School of Environmental and Chemical Engineering, Shanghai University, P.O. Box 144, 99Shangda Road, Baoshan, Shanghai, 200444, China.
- Tianjin University, 92 Weijin Road, Nankai, Tianjin, 300072, China.
| |
Collapse
|
37
|
|
38
|
Li X, Nan R. A bibliometric analysis of eutrophication literatures: an expanding and shifting focus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:17103-17115. [PMID: 28585009 DOI: 10.1007/s11356-017-9294-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 05/17/2017] [Indexed: 06/07/2023]
Abstract
This paper examined the eutrophication literatures from 1998 to 2015 using bibliometric techniques basing on the database of Science Citation Index. Bibliometric techniques, social network analysis, and mapping knowledge domains in this paper were used. The results revealed that article was the most used document type accounting for 94.79% (14,006) of the records. With the rapid development of eutrophication domain after 2004, the annual article publishing amount also grew notably in each country, with the list of US tops. International cooperation was not enough to compare with that between institutions. An author keyword analysis showed that "phosphorus," "nutrients," "nitrogen," "water quality," "phytoplankton," and "sediment" were the most popular keywords. And it was also found that climate change, life cycle assessment, and chlorophyll a appear with high frequency in recent years, indicating that the eutrophication mechanism analysis might turn from uni-factor microresearch to multi-factor macroresearch, and the eutrophication management research tends to be whole-process management research. In addition, the future focuses of research directions, including (1) eutrophication and its ecosystem response, (2) eutrophication management, (3) eutrophication and climate change interactions, (4) eutrophication monitoring and forecast, and (5) ecological restoration of eutrophication. These findings are useful for the future endeavor of eutrophication academic research.
Collapse
Affiliation(s)
- Xia Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Ruiqi Nan
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| |
Collapse
|
39
|
Zhang Y, Zhang Y, Shi K, Yao X. Research development, current hotspots, and future directions of water research based on MODIS images: a critical review with a bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15226-15239. [PMID: 28477249 DOI: 10.1007/s11356-017-9107-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
Water is essential for life as it provides drinking water and food for humans and animals. Additionally, the water environment provides habitats for numerous species and plays an important role in hydrological, nutrient, and carbon cycles. Among the existing natural resources on Earth's surface, water is the most extensive as it covers more than 70% of the Earth. To gather a comprehensive understanding of the focus of past, present, and future directions of remote sensing water research, we provide an alternative perspective on water research using moderate resolution imaging spectroradiometer (MODIS) imagery by conducting a comparative quantitative and qualitative analysis of research development, current hotspots, and future directions using a bibliometric analysis. Our study suggests that there has been a rapid growth in the scientific outputs of water research using MODIS imagery over the past 15 years compared to other popular satellites around the world. The analysis indicated that Remote Sensing of Environment was the most active journal, and "remote sensing," "imaging science photographic technology," "environmental sciences ecology," "meteorology atmospheric sciences," and "geology" are the top 5 most popular subject categories. The Chinese Academy of Sciences was the most productive institution with a total of 477 papers, and Hu CM (Chinese) was the most productive author with 76 papers. A keyword analysis indicated that "vegetation index," "evapotranspiration," and "phytoplankton" were the most active research topics throughout the study period. In addition, it is predicted that more attention will be paid to research on climate change and phenology in the future. Based on the keyword analysis and in consideration of current environmental problems, more studies should focus on the following three aspects: (1) develop methods suitable for data assimilation to fully explain climate or phenological phenomena at continental or global scales rather than at local scales; (2) accurately predict the effect of global change and human activities on evapotranspiration and the water cycle; and (3) determine the evolutionary process of the water environment (i.e., water quality, macrophytes, cyanobacteria, etc.), ascertaining its dominant factors and driving mechanisms. By focusing on these three aspects, researchers will be able to provide timely monitoring and evaluation of water quality and its response to global change and human activities.
Collapse
Affiliation(s)
- Yibo Zhang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yunlin Zhang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, People's Republic of China.
| | - Kun Shi
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, People's Republic of China
| | - Xiaolong Yao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|