1
|
Wang C, Ye J, Liang L, Cui X, Kong L, Li N, Cheng Z, Peng W, Yan B, Chen G. Application of MXene-based materials in Fenton-like systems for organic wastewater treatment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160539. [PMID: 36464059 DOI: 10.1016/j.scitotenv.2022.160539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Recently, Fenton-like systems have been widely explored and applied for the removal of organic matter from wastewater. Two-dimensional (2D) MXene-based materials exhibit excellent adsorption and catalysis capacity for organic pollutants removal, which has been reported widely. However, there is no summary on the application of MXene-based materials in Fenton-like systems for organic matter removal. In this review, four types of MXene-based materials were introduced, including 2D MXene, MXene/Metal complex, MXene/Metal oxide complex, and MXene/3D carbon material complex. In addition, the Fenton-like system usually consists of adsorption and degradation processes. The oxidation process might contain hydrogen peroxide (H2O2) or persulfate (PS) oxidants. This review summarizes the performance and mechanisms of organic pollutants adsorption and oxidants activation by MXene-based materials systematically. Finally, the existing problems and future research directions of MXene-based materials are proposed in Fenton-like wastewater treatment systems.
Collapse
Affiliation(s)
- Chuanbin Wang
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, PR China
| | - Jingya Ye
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, PR China
| | - Lan Liang
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, PR China
| | - Xiaoqiang Cui
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, PR China
| | - Lingchao Kong
- School of Environmental Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Ning Li
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, PR China; Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, PR China.
| | - Zhanjun Cheng
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, PR China
| | - Wenchao Peng
- Department of Chemical Engineering, Tianjin University, Tianjin 300350, PR China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, PR China
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, PR China; School of Science, Tibet University, Lhasa 850012, PR China.
| |
Collapse
|
2
|
Tan X, Chen H, Shi L, Lu Q, Qi S, Yi C, Yang B. Non-thermal Plasma Synergizes High-Alkalinity Hydroxyapatite Supported RhFe Bimetallic Catalyst for Direct Catalytic Decomposition of N2O at Low Temperature. Catal Letters 2023. [DOI: 10.1007/s10562-023-04269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
3
|
Dong Q, Dong H, Li Y, Xiao J, Xiang S, Hou X, Chu D. Degradation of sulfamethazine in water by sulfite activated with zero-valent Fe-Cu bimetallic nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128601. [PMID: 35255337 DOI: 10.1016/j.jhazmat.2022.128601] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
In this work, zero-valent Fe-Cu bimetallic nanoparticles were synthesized using a facile method, and applied to activate sulfite for the degradation of sulfamethazine (SMT) from the aqueous solution. The key factors influencing SMT degradation were investigated, namely the theoretical loading of Cu, Fe-Cu catalyst dosage, sulfite concentration and initial solution pH. The experimental results showed that the Fe-Cu/sulfite system exhibited a much better performance in SMT degradation than the bare Fe0/sulfite system. The mechanism and possible degradation pathway of SMT in Fe-Cu/sulfite system were revealed. The reactive radicals that played a dominant role in the SMT degradation process were •OH and SO4•-, while the loading of Cu induced the synergistic effect between Fe and Cu. The redox cycle between Cu(I)/Cu(II) remarkably contributed to the conversion of Fe(III) to Fe(II), greatly enhancing the catalytic performance of Fe-Cu bimetal. In real groundwater applications, the Fe-Cu/sulfite system also exhibited satisfactory SMT degradation. The 30-day aging tests of Fe-Cu particles demonstrated that the aging of catalyst was not obviously affecting the removal of SMT. Furthermore, the reusability of catalyst was evidenced by the recycling experiments. This study provides a promising application of bimetal activated sulfite for enhanced contaminant degradation in groundwater.
Collapse
Affiliation(s)
- Qixia Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Yangju Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Junyang Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shuxue Xiang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xiuzhen Hou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Dongdong Chu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
4
|
Nemati F, Rezaie M, Tabesh H, Eid K, Xu G, Ganjali MR, Hosseini M, Karaman C, Erk N, Show PL, Zare N, Karimi-Maleh H. Cerium functionalized graphene nano-structures and their applications; A review. ENVIRONMENTAL RESEARCH 2022; 208:112685. [PMID: 34999024 DOI: 10.1016/j.envres.2022.112685] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/20/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Graphene-based nanomaterials with remarkable properties, such as good biocompatibility, strong mechanical strength, and outstanding electrical conductivity, have dramatically shown excellent potential in various applications. Increasing surface area and porosity percentage, improvement of adsorption capacities, reduction of adsorption energy barrier, and also prevention of agglomeration of graphene layers are the main advantages of functionalized graphene nanocomposites. On the other hand, Cerium nanostructures with remarkable properties have received a great deal of attention in a wide range of fields; however, in some cases low conductivity limits their application in different applications. Therefore, the combination of cerium structures and graphene networks has been widely invesitaged to improve properties of the composite. In order to have a comprehensive information of these nanonetworks, this research reviews the recent developments in cerium functionalized graphene derivatives (graphene oxide (GO), reduced graphene oxide (RGO), and graphene quantum dot (GQD) and their industrial applications. The applications of functionalized graphene derivatives have also been successfully summarized. This systematic review study of graphene networks decorated with different structure of Cerium have potential to pave the way for scientific research not only in field of material science but also in fluorescent sensing, electrochemical sensing, supercapacitors, and catalyst as a new candidate.
Collapse
Affiliation(s)
- Fatemeh Nemati
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran; Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Rezaie
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Hadi Tabesh
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Kamel Eid
- Gas Processing Center (GPC), College of Engineering, Qatar University, Doha, 2713, Qatar
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin, 130022, China; China University of Science and Technology of China, Anhui, 230026, China
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Morteza Hosseini
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran.
| | - Ceren Karaman
- Akdeniz University, Department of Electricity and Energy, Antalya, 07070, Turkey.
| | - Nevin Erk
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkey
| | - Pau-Loke Show
- Department of Biochemical Engineering, University of Nottingham Malaysia, Malaysia
| | - Najmeh Zare
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China.
| |
Collapse
|
5
|
Wang J, Tang J. Fe-based Fenton-like catalysts for water treatment: Preparation, characterization and modification. CHEMOSPHERE 2021; 276:130177. [PMID: 33714147 DOI: 10.1016/j.chemosphere.2021.130177] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/06/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Fenton reaction based on hydroxyl radicals () is effective for environment remediation. Nevertheless, the conventional Fenton reaction has several disadvantages, such as working at acidic pH, producing iron-containing sludge, and the difficulty in catalysts reuse. Fenton-like reaction using solid catalysts rather than Fe2+ has received increasing attention. To date, Fe-based catalysts have received increasing attention due to their earth abundance, good biocompatibility, comparatively low toxicity and ready availability, it is necessary to review the current status of Fenton-like catalysts. In this review, the recent advances in Fe-based Fenton-like catalysts were systematically analyzed and summarized. Firstly, the various preparation methods were introduced, including template-free methods (precipitation, sol gel, impregnation, hydrothermal, thermal, and others) and template-based methods (hard-templating method and soft-templating method); then, the characterization techniques for Fe-based catalysts were summarized, such as X-ray diffraction (XRD), Brunauer, Emmett and Teller (BET), SEM (scanning electron microscopy)/TEM (transmission electron microscopy)/HRTEM (high-resolution TEM), FTIR (Fourier transform infrared spectroscopy)/Raman, XPS (X-ray photoelectron spectroscopy), 57Fe Mössbauer spectroscopy etc.; thirdly, some important conventional Fe-based catalysts were introduced, including iron oxides and oxyhydroxides, zero-valent iron (ZVI) and iron disulfide and oxychloride; fourthly, the modification strategies of Fe-based catalysts were discussed, such as microstructure controlling, introduction of support materials, construction of core-shell structure and incorporation of new metal-containing component; Finally, concluding remarks were given and the future perspectives for further study were discussed. This review will provide important information to further advance the development and application of Fe-based catalysts for water treatment.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing, 100084, PR China.
| | - Juntao Tang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
6
|
Taoufik N, Boumya W, Achak M, Sillanpää M, Barka N. Comparative overview of advanced oxidation processes and biological approaches for the removal pharmaceuticals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112404. [PMID: 33780817 DOI: 10.1016/j.jenvman.2021.112404] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/26/2021] [Accepted: 03/13/2021] [Indexed: 05/12/2023]
Abstract
Nowadays, pharmaceuticals are the center of significant environmental research due to their complex and highly stable bioactivity, increasing concentration in the water streams and high persistence in aquatic environments. Conventional wastewater treatment techniques are generally inadequate to remove these pollutants. Aiming to tackle this issue effectively, various methods have been developed and investigated on the light of chemical, physical and biological procedures. Increasing attention has recently been paid to the advanced oxidation processes (AOPs) as efficient methods for the complete mineralization of pharmaceuticals. Their high operating costs compared to other processes, however, remain a challenge. Hence, this review summarizes the current and state of art related to AOPs, biological treatment and their effective exploitation for the degradation of various pharmaceuticals and other emerging molecules present in wastewater. The review covers the last decade with a particular focus on the previous five years. It is further envisioned that this review of advanced oxidation methods and biological treatments, discussed herein, will help readers to better understand the mechanisms and limitations of these methods for the removal of pharmaceuticals from the environment. In addition, we compared AOPs and biological treatments for the disposal of pharmaceuticals from the point of view of cost, effectiveness, and popularity of their use. The exploitation of coupling AOPs and biological procedures for the degradation of pharmaceuticals in wastewater was also presented. It is worthy of note that an integrated AOPs/biological system is essential to reach the complete degradation of pharmaceuticals; other advantages of this hybrid technique involve low energy cost, an efficient degradation process and generation of non-toxic by-products.
Collapse
Affiliation(s)
- Nawal Taoufik
- Sultan Moulay Slimane University of Beni Mellal, Research Group in Environmental Sciences and Applied Materials (SEMA), FP Khouribga, Morocco.
| | - Wafaa Boumya
- Sultan Moulay Slimane University of Beni Mellal, Research Group in Environmental Sciences and Applied Materials (SEMA), FP Khouribga, Morocco
| | - Mounia Achak
- Science Engineer Laboratory for Energy, National School of Applied Sciences, Chouaïb Doukkali University, El Jadida, Morocco; Chemical & Biochemical Sciences, Green Process Engineering, CBS, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
| | - Noureddine Barka
- Sultan Moulay Slimane University of Beni Mellal, Research Group in Environmental Sciences and Applied Materials (SEMA), FP Khouribga, Morocco.
| |
Collapse
|
7
|
Yang X, Zou R, Tang K, Andersen HR, Angelidaki I, Zhang Y. Degradation of metoprolol from wastewater in a bio-electro-Fenton system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145385. [PMID: 33736124 DOI: 10.1016/j.scitotenv.2021.145385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/05/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Advanced oxidation processes (AOPs) have been intensely studied for the removal of refractory pollutants because of the strong oxidizing capacity of hydroxyl radical. One of the emerging AOP methods gaining increased attention is bio-electro-Fenton (BEF) which can generate hydroxyl radical in-situ in the cathode chamber using the energy harvested by exoelectrogenic bacteria in the anode. In this study, the feasibility of BEF technology for the removal of metoprolol, a typical micropollutant widely found in the water environment, was for the first time investigated. It was found that applied voltage and working pH had a significant effect on removal efficiency while Fe2+ dosage as catalyst showed a little effect. Besides removal by hydroxyl radical, metoprolol might be adsorbed on the surface of the reactor, electrode, and precipitated with iron sludge, especially at neutral pH. In a batch experiment with a supplied voltage of 0.2 V, pH 3, and a Fe2+ dose of 0.2 mM, the removal rate of metoprolol in the BEF for the synthetic wastewater and the real effluent from the secondary sediment tank was 66% and 55% within 12 h, respectively. A possible degradation pathway was proposed. Then the removal of metoprolol in a continuous flow BEF system was further studied at different hydraulic retention times (HRTs) of 2, 4, and 6 h, about 77%, 92%, and 95% removal was observed. A toxicity test (less than 20% inhibition on bioluminescence) during treatment and energy cost analysis (5.269 × 10-3 kWh/order/m3) in treating 10 μg/L of metoprolol containing wastewater effluent at continuous flow mode implied that the proposed BEF has a potential for wastewater treatment.
Collapse
Affiliation(s)
- Xiaoyong Yang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Rusen Zou
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Kai Tang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Henrik Rasmus Andersen
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| |
Collapse
|
8
|
Wang J, Tang J. Fe-based Fenton-like catalysts for water treatment: Catalytic mechanisms and applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115755] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Gao Q, Cui Y, Wang S, Liu B, Liu C. Efficient activation of peroxymonosulfate by Co-doped mesoporous CeO 2 nanorods as a heterogeneous catalyst for phenol oxidation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27852-27863. [PMID: 33517528 DOI: 10.1007/s11356-021-12605-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Sulfate radical-based advanced oxidation processes have received considerable attentions in the remediation of organic pollutants due to their high oxidation ability. In this study, a novel Co3O4/CeO2 catalyst was fabricated and employed as a peroxymonosulfate (PMS) activator to generate SO4•- for phenol degradation. The Co3O4/CeO2 catalyst exhibited a good catalytic performance at a wide pH range of 3.4 to 10.8, and 100% phenol (20 mg/L) was removed within 50-min reaction under optimal conditions with 0.2 g/L catalyst and 2.0 g/L PMS at room temperature. The transformation products and total organic carbon during the degradation process were also determined. The quenching experiments and electron paramagnetic resonance spectra revealed that sulfate radical (SO4•-) rather than other species such as singlet oxygen (1O2) and hydroxyl radical (•OH) was primarily responsible for phenol degradation in the Co3O4/CeO2/PMS system, and a rational mechanism was proposed. Moreover, the recycling experiments as well as low cobalt leaching concentration manifested satisfactory reusability and stability. The effects of various inorganic anions and natural organic matter in real water matrix on phenol oxidation were further evaluated. We believe that the Co3O4/CeO2 composites have promising applications of PMS activation for the degradation of organic pollutants in wastewater treatment.
Collapse
Affiliation(s)
- Qiang Gao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, 810008, People's Republic of China
| | - Yuchen Cui
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Shuaijun Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Bin Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
| | - Chenguang Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
| |
Collapse
|
10
|
Lin CC, Cheng YJ. Effectiveness of using nanoscale zero-valent iron and hydrogen peroxide in degrading sulfamethazine in water. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Zhou S, Kong L, Yan C, Zhou Y, Qiu X, Liu C. Rhodamine B dye is efficiently degraded by polypropylene-based cerium wet catalytic materials. RSC Adv 2020; 10:26813-26823. [PMID: 35515759 PMCID: PMC9055495 DOI: 10.1039/d0ra03965a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/05/2020] [Indexed: 12/03/2022] Open
Abstract
Polypropylene-based cerium wet catalytic materials (Ce/PPNW-g-PAA) were prepared through ultraviolet grafting and ion exchange technology. They were used as effective and reusable heterogeneous catalysts for rhodamine B (RhB) degradation. The physicochemical properties of Ce/PPNW-g-PAA were characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), specific surface area measurements (BET), and X-ray photoelectron spectroscopy (XPS). The catalytic capacity of the Ce/PPNW-g-PAA-H2O2 system for the removal of RhB was tested in comparison with several other systems, which demonstrated that Ce/PPNW-g-PAA effectively promoted the oxidation and degradation of RhB by catalytic wet H2O2 oxidation. The results of the RhB degradation showed that Ce/PPNW-g-PAA exhibited excellent degradation performance by achieving a high removal rate for RhB (97.5%) at an initial RhB concentration of 100 mg L-1, H2O2 dosage of 5.0 mmol, Ce/PPNW-g-PAA dosage of 0.15 g L-1, and initial pH of 5.0 at 298 K. The degradation of RhB by Ce/PPNW-g-PAA conformed to the first-order kinetic reaction model. Consecutive experiments performed with the Ce/PPNW-g-PAA sample showed little activity decay, further confirming the high stability of the catalyst. In addition, the possible degradation mechanism of RhB was also investigated by XPS and electron paramagnetic resonance. The results suggested that Ce3+ and hydroxyl radical played important roles during the RhB degradation process.
Collapse
Affiliation(s)
- Sen Zhou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences 388 Lumo Road Wuhan 430074 P. R. China
| | - Lin Kong
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences 388 Lumo Road Wuhan 430074 P. R. China
| | - Chunjie Yan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences 388 Lumo Road Wuhan 430074 P. R. China
| | - Yunfei Zhou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences 388 Lumo Road Wuhan 430074 P. R. China
| | - Xiumei Qiu
- Key Laboratory of Rare Mineral Exploration and Utilization, Ministry of Land and Resources, Hubei Geological Research Laboratory 9 Gutian Five Road Wuhan 430034 P. R. China
| | - Chen Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences 388 Lumo Road Wuhan 430074 P. R. China
| |
Collapse
|
12
|
Wang J, Zhuan R. Degradation of antibiotics by advanced oxidation processes: An overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:135023. [PMID: 31715480 DOI: 10.1016/j.scitotenv.2019.135023] [Citation(s) in RCA: 453] [Impact Index Per Article: 90.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 05/03/2023]
Abstract
Antibiotics are becoming emerging contaminants due to their extensive production and consumption, which have caused hazards to the ecological environment and human health. Various techniques have been studied to remove antibiotics from water and wastewater, including biological, physical and chemical methods. Among them, advanced oxidation processes (AOPs) have received increasing attention due to their fast reaction rate and strong oxidation capability, which are effective for the degradation of antibiotics in aquatic environments. In this review paper, a variety of AOPs, such as Fenton or Fenton-like reaction, ozonation or catalytic ozonation, photocatalytic oxidation, electrochemical oxidation, and ionizing radiation were briefly introduced, including their principles, characteristics, main influencing factors and applications. The current applications of AOPs for the degradation of antibiotics in water and wastewater were analyzed and summarized, the concluding remarks were given and their future perspectives and challenges were discussed.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China.
| | - Run Zhuan
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
13
|
Wang S, Wang J. Kinetics of PMS activation by graphene oxide and biochar. CHEMOSPHERE 2020; 239:124812. [PMID: 31521932 DOI: 10.1016/j.chemosphere.2019.124812] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/01/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Carbon-based materials have been studied as metal-free catalyst for persulfate activation. At present, the activation performance of carbon materials for persulfate is usually characterized by the removal efficiency of organic pollutants. However, the kinetics of persulfate activation by carbon materials has not been investigated. In this study, the kinetics of peroxymonosulfate (PMS) activation by reduced graphene oxide (RGO) and sludge-derived biochar (BC) were investigated. The experimental results showed that the kinetics of PMS activation followed the two-phase kinetic model (fast phase (a1) and slow phase (a2)). In the absence of organic pollutants, the a1 and a2 were calculated to be 0.320 and 0.0471 min-1 for BC, respectively, and 0.322 and 0.0850 min-1 for RGO, respectively. Based on the characterization of BC and RGO, it can be concluded that the fast phase was mainly due to the formation of surface-bound active species. Competitive adsorption between PMS and targeted pollutants decreased the kinetic constant for the first phase (a1) and the kinetic constant for the second phase (a2) for both BC and RGO. The value of a1 and a2 increased for BC after the addition of phenol, due to the enhanced PMS activation by surface adsorbed phenol. The increase of phenol concentration decreased slightly the value of a1 and a2. The increase of PMS concentration increased significantly the value of a1 and a2. The decrease of a1 and a2 in repeated use of carbon materials could be due to the decrease of oxygen-containing functional groups and defect intensity.
Collapse
Affiliation(s)
- Shizong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
14
|
Mukhopadhyay K, Ghosh UC, Sasikumar P. Enhanced capacity of fluoride scavenging from contaminated water by nano-architectural reorientation of cerium-incorporated hydrous iron oxide with graphene oxide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:26112-26133. [PMID: 31280438 DOI: 10.1007/s11356-019-05756-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
An in situ wet chemical deposition method has been applied for the successful surface modification of Ce (IV)-incorporated hydrous Fe(III) oxide (CIHFO) with a hydrophilic graphene precursor, graphene oxide (GO). The surface area of as-prepared composite (GO-CIHFO) has enhanced (189.57 m2 g-1) compared with that of pristine CIHFO (140.711 m2 g-1) and has irregular surface morphology consisting of microcrystals (~ 2-3 nm) and mesoporous (3.5486 nm) structure. The GO-CIHFO composite shows enhanced fluoride scavenging capacity (136.24 mg F g-1) than GO (3 mg F g-1) and pristine CIHFO (32.62 mg F g-1) at pH 7.0. Also, in acidic pH range and at 323 K temperature, the Langmuir capacity of as-prepared composite is 190.61 mg F g-1. It has been observed that fluoride removal by GO-CIHFO occurs from solutions obeying pseudo-second-order kinetics and multilayer adsorption process. The film/boundary layer diffusion process is also the rate-determining step. The nature of the adsorption reaction is reasonably spontaneous and endothermic in thermodynamic sense. It was observed that 1.2 g.L-1 of GO-CIHFO dosage can effectively optimise the fluoride level of natural groundwater samples (9.05 mg L-1) to the desirable permissible limit. Reactivation of used material up to a level of 73.77% with a solution of alkaline pH has proposed reusability of nanocomposites ensuring sustainability of the proposed material as fluoride scavenger in future.
Collapse
Affiliation(s)
- Kankan Mukhopadhyay
- Department of Geology, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Uday Chand Ghosh
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Palani Sasikumar
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
15
|
Xu L, Yang Y, Li W, Tao Y, Sui Z, Song S, Yang J. Three-dimensional macroporous graphene-wrapped zero-valent copper nanoparticles as efficient micro-electrolysis-promoted Fenton-like catalysts for metronidazole removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:219-233. [PMID: 30577018 DOI: 10.1016/j.scitotenv.2018.12.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/15/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Three-dimensional macroporous graphene-wrapped zero-valent copper nanoparticles (3D-GN@Cu0) were synthesized using a self-assembly process of liquid-phase reduction and characterized by field emission scanning electron microscopy, nitrogen adsorption/desorption isotherms, X-ray diffraction, Raman spectrum analysis, and X-ray photoelectron spectroscopy. The catalytic activity of 3D-GN@Cu0 was evaluated in view of the effects of various systems, the pH value, catalyst dosage, initial metronidazole concentration and temperature, and it showed a high efficiency for removing metronidazole with saturated dissolved oxygen (without adding extra H2O2) in a wide range of pH value from 3.2 to 9.8. Combined with the results of dissolved oxygen activation, determination of reactive oxidizing species, and X-ray photoelectron spectroscopy (XPS) analysis, the surface-bounded ·OHads formed by the reaction of the in situ generation H2O2 with 3D-GN@Cu0 was mainly responsible for the removal of metronidazole. The charge distribution and electrostatic potential (ESP) of 3D-GN@Cu0 further illustrated the distribution and transfer of electrons on the catalyst surface, which predicted a micro-electrolysis-promoted Fenton-like reaction mechanism.
Collapse
Affiliation(s)
- Lejin Xu
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Yujia Yang
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Wuyang Li
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Yujie Tao
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Zengguang Sui
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Jun Yang
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China.
| |
Collapse
|
16
|
Lin CC, Wu MS. Feasibility of using UV/H2O2 process to degrade sulfamethazine in aqueous solutions in a large photoreactor. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.08.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Wan Z, Wang J. Fenton oxidation of municipal secondary effluent: comparison of Fe/Ce-RGO (reduced graphene oxide) and Fe 2+ as catalysts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31358-31367. [PMID: 30196458 DOI: 10.1007/s11356-018-3150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
The advanced treatment of municipal secondary effluent by heterogeneous and homogeneous Fenton processes using Fe/Ce-RGO (reduced graphene oxide) and Fe2+ as catalysts was studied and compared. Sulfamethazine (SMT) was spiked in the effluent to examine the effectiveness of the emerging contaminant removal. The Fe/Ce-RGO catalyst was characterized using a scanning electron microscope (SEM) and cycle voltammetry curves. The removal of dissolved organic carbon (DOC), soluble chemical oxygen demand (SCOD), SMT, and ultraviolet-visible spectroscopy in 254 nm (UV254) of municipal secondary effluents was examined. The DOC removal efficiency of secondary effluent (without addition of SMT) was 36.30% and 11.74% using Fe/Ce-RGO and Fe2+ as catalysts, respectively. The removal efficiency of DOC, SCOD, and SMT in heterogeneous Fenton process was higher than that in homogeneous Fenton process. The changes of three-dimensional excitation-emission matrix (3DEEM) fluorescence, soluble microbial products (SMPs), humic acids, and UV254 were determined, and the results indicated that UV254, aromatic proteins, and humic acids decreased rapidly in both processes; however, polysaccharides and protein-like substances were difficult to degrade. Although some toxic substances produced after Fenton-like treatment, the biodegradability of the treated effluent was enhanced.
Collapse
Affiliation(s)
- Zhong Wan
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Energy Science Building, Beijing, 100084, People's Republic of China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Energy Science Building, Beijing, 100084, People's Republic of China.
- Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
18
|
Ce1-xFexO2-δ catalysts for catalytic methane combustion: Role of oxygen vacancy and structural dependence. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.12.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Lin CC, Chen YH. Feasibility of using nanoscale zero-valent iron and persulfate to degrade sulfamethazine in aqueous solutions. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.10.073] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Bai Z, Wang J, Yang Q. Iron doped fibrous-structured silica nanospheres as efficient catalyst for catalytic ozonation of sulfamethazine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10090-10101. [PMID: 29383642 DOI: 10.1007/s11356-018-1324-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/17/2018] [Indexed: 06/07/2023]
Abstract
Sulfonamide antibiotics are ubiquitous pollutants in aquatic environments due to their large production and extensive application. In this paper, the iron doped fibrous-structured silica (KCC-1) nanospheres (Fe-KCC-1) was prepared, characterized, and applied as a catalyst for catalytic ozonation of sulfamethazine (SMT). The effects of ozone dosage, catalyst dosage, and initial concentration of SMT were examined. The experimental results showed that Fe-KCC-1 had large surface area (464.56 m2 g-1) and iron particles were well dispersed on the catalyst. The catalyst had high catalytic performance especially for the mineralization of SMT, with mineralization ratio of about 40% in a wide pH range. With addition of Fe-KCC-1, the ozone utilization increased nearly two times than single ozonation. The enhancement of SMT degradation was mainly due to the surface reaction, and the increased mineralization of SMT was due to radical mechanism. Fe-KCC-1 was an efficient catalyst for SMT degradation in catalytic ozonation system.
Collapse
Affiliation(s)
- Zhiyong Bai
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, People's Republic of China
- School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, People's Republic of China.
- Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Qi Yang
- School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, China
| |
Collapse
|
21
|
Nidheesh PV. Graphene-based materials supported advanced oxidation processes for water and wastewater treatment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:27047-27069. [PMID: 29081041 DOI: 10.1007/s11356-017-0481-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/13/2017] [Indexed: 05/27/2023]
Abstract
Advanced oxidation processes (AOPs) received much attention in the field of water and wastewater treatment due to its ability to mineralize persistent organic pollutants from water medium. The addition of graphene-based materials increased the efficiency of all AOPs significantly. The present review analyzes the performance of graphene-based materials that supported AOPs in detail. Recent developments in this field are highlighted. A special focus has been awarded for the performance enhancement mechanism of AOPs in the presence of graphene-based materials.
Collapse
|
22
|
Tang J, Wang J. Fe3
O4
-MWCNT Magnetic Nanocomposites as Efficient Fenton-Like Catalysts for Degradation of Sulfamethazine in Aqueous Solution. ChemistrySelect 2017. [DOI: 10.1002/slct.201702249] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Juntao Tang
- Collaborative Innovation Center for Advanced Nuclear Energy Science Building, INEB; Tsinghua University; Beijing 100084 P.R. China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Science Building, INEB; Tsinghua University; Beijing 100084 P.R. China
- Beijing Key Laboratory of Radioactive Waste Treatment, INET; Tsinghua University; Beijing 100084 P.R. China
| |
Collapse
|
23
|
Wang J, Wang S. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 182:620-640. [PMID: 27552641 DOI: 10.1016/j.jenvman.2016.07.049] [Citation(s) in RCA: 591] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/29/2016] [Accepted: 07/14/2016] [Indexed: 05/18/2023]
Abstract
The pharmaceutical and personal care products (PPCPs) are emerging pollutants which might pose potential hazards to environment and health. These pollutants are becoming ubiquitous in the environments because they cannot be effectively removed by the conventional wastewater treatment plants due to their toxic and recalcitrant performance. The presence of PPCPs has received increasing attention in recent years, resulting in great concern on their occurrence, transformation, fate and risk in the environments. A variety of technologies, including physical, biological and chemical processes have been extensively investigated for the removal of PPCPs from wastewater. In this paper, the classes, functions and the representatives of the frequently detected PPCPs in aquatic environments were summarized. The analytic methods for PPCPs were briefly introduced. The removal efficiency of PPCPs by wastewater treatment plants was analyzed and discussed. The removal of PPCPs from wastewater by physical, chemical and biological processes was analyzed, compared and summarized. Finally, suggestions are made for future study of PPCPs. This review can provide an overview for the removal of PPCPs from wastewater.
Collapse
Affiliation(s)
- Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China.
| | - Shizong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
24
|
Wan Z, Wang J. Ce-Doped zero-valent iron nanoparticles as a Fenton-like catalyst for degradation of sulfamethazine. RSC Adv 2016. [DOI: 10.1039/c6ra23709f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ce-Doped zero-valent iron (Ce/Fe) nanoparticles were prepared, characterized and used as a catalyst for degradation of sulfamethazine (SMT) antibiotics in a Fenton-like process.
Collapse
Affiliation(s)
- Zhong Wan
- Collaborative Innovation Center for Advanced Nuclear Energy Technology
- Institute of Nuclear Energy Technology (INET)
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology
- Institute of Nuclear Energy Technology (INET)
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|