1
|
Zheng X, Lin H, Du D, Li G, Alam O, Cheng Z, Liu X, Jiang S, Li J. Remediation of heavy metals polluted soil environment: A critical review on biological approaches. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116883. [PMID: 39173222 DOI: 10.1016/j.ecoenv.2024.116883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/03/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
Heavy metals (HMs) pollution is a globally emerging concern. It is difficult to cost-effectively combat such HMs polluted soil environments. The efficient remediation of HMs polluted soil is crucial to protect human health and ecological security that could be carried out by several methods. Amidst, biological remediation is the most affordable and ecological. This review focused on the principles, mechanisms, performances, and influential factors in bioremediation of HMs polluted soil. In microbial remediation, microbes can alter metallic compounds in soils. They transform these compounds into their metabolism through biosorption and bioprecipitation. The secreted microbial enzymes act as transformers and assist in HMs immobilization. The synergistic microbial effect can further improve HMs removal. In bioleaching, the microbial activity can simultaneously produce H2SO4 or organic acids and leach HMs. The production of acids and the metabolism of bacteria and fungi transform metallic compounds to soluble and extractable form. The key bioleaching mechanisms are acidolysis, complexolysis, redoxolysis and bioaccumulation. In phytoremediation, hyperaccumulator plants and their rhizospheric microbes absorb HMs by roots through absorption, cation exchange, filtration, and chemical changes. Then they exert different detoxification mechanisms. The detoxified HMs are then transferred and accumulated in their harvestable tissues. Plant growth-promoting bacteria can promote phytoremediation efficiency; however, use of chelants have adverse effects. There are some other biological methods for the remediation of HMs polluted soil environment that are not extensively practiced. Finally, the findings of this review will assist the practitioners and researchers to select the appropriate bioremediation approach for a specific soil environment.
Collapse
Affiliation(s)
- Xiaojun Zheng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongjun Lin
- Jiangsu Xianghe Agricultural Development Co. LTD, Lianyungang, Jiangsu 222048, China
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Guanlin Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ohidul Alam
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zheng Cheng
- Jiangsu Xianghe Agricultural Development Co. LTD, Lianyungang, Jiangsu 222048, China
| | - Xinlin Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shan Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Jian Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
2
|
Cicero-Fernandez D, Expósito-Camargo JA, Peña-Fernandez M. Efficacy of Juncus maritimus floating treatment saltmarsh as anti-contamination barrier for saltwater aquaculture pollution control. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:2811-2826. [PMID: 35638789 DOI: 10.2166/wst.2022.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Floating treatment saltmarsh (FTS) is a new concept proposed to name floating treatment wetlands made of estuarine halophytes especially engineered for the control of contamination in brackish and saline waterbodies. The first full-scale FTS was implemented in 2018 to create an anti-contamination barrier for saline aquaculture wastewater treatment in an estuarine tidal lagoon. Results of a two-year investigation validated 'Phytobatea' modular technology for floating wetlands implementation and operation. Juncus maritimus crossflow FTS efficiency on main mariculture wastewater constituents' removal under low hydraulic retention time was remarkable, i.e., total phosphorus (86%), total suspended solids (82%), biochemical oxygen demand (78%), total organic carbon (55%), turbidity (53%), Escherichia coli (30%), and dissolved oxygen increased (19%). Key features of the native halophyte Juncus maritimus were determined to ensure 75-100% survival under high water salinities up to 38 g/L. A scientific literature review confirmed strategic sectors' growing interest in Juncus maritimus as raw material, supporting its possible cultivation as an added-value by-product within integrated aquaculture systems. Plants' root systems colonization by crabs, shrimps, and young individuals of the critically endangered European eel (Anguilla anguilla), revealed the role of FTS for biodiversity conservation, and its potential as functional habitat, nursery, and refuge for aquatic fauna species in contaminated waterbodies.
Collapse
Affiliation(s)
- D Cicero-Fernandez
- Asociación RIA, Oficina 210, Centro Municipal de Empresas, Polígono de Trascueto, Revilla de Camargo 39600, Spain E-mail:
| | - J A Expósito-Camargo
- Asociación RIA, Oficina 210, Centro Municipal de Empresas, Polígono de Trascueto, Revilla de Camargo 39600, Spain E-mail:
| | - M Peña-Fernandez
- Asociación RIA, Oficina 210, Centro Municipal de Empresas, Polígono de Trascueto, Revilla de Camargo 39600, Spain E-mail:
| |
Collapse
|
3
|
Li W, Zhang Z, Sun B, Hu S, Wang D, Hu F, Li H, Xu L, Jiao J. Combination of plant-growth-promoting and fluoranthene-degrading microbes enhances phytoremediation efficiency in the ryegrass rhizosphere. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6068-6077. [PMID: 32989700 DOI: 10.1007/s11356-020-10937-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Plant- and/or microbe-based systems can provide a cost-effective, sustainable means to remove contaminants from soil. Microbe-assisted phytoremediation has potential utility for polycyclic aromatic hydrocarbons such as fluoranthene (Flu) removal from soils; however, the efficiency varies with the plant and microbes used. This study evaluated the Flu removal efficiency in a system with ryegrass (Lolium multiflorum), an IAA-producing Arthrobacter pascens strain (ZZ21), and/or a Flu-degrading Bacillus cereus strain (Z21). Strain ZZ21 significantly enhanced the growth of ryegrass. Ryegrass in combination with both strains (FIP) was the most effective method for Flu removal. By day 60, 74.9% of the Flu was depleted in the FIP treatment, compared with 21.1% in the control (CK), 63.7% with ryegrass alone (P), 69.0% for ryegrass with ZZ21 (IP), and 72.6% for ryegrass with Z21 (FP). FIP treatment promoted ryegrass growth, accelerated Flu accumulation in plants, and increased soil microbial counts. Microbial carbon utilization was significantly higher in soil in the FIP than with the CK treatment. Principal component analysis of the distribution of carbon substrate utilization showed that microbial functional profiles diverged among treatments, and this divergence became more profound at day 60 than day 30. Microbial inoculation significantly enhanced microbial utilization of phenols. Microbes in the FIP soil dominantly utilized amines/amides and phenols at day 30 but shifted to carbohydrates by day 60. Together, the combination of IAA-producing microbes and Flu-degrading microbes could promote plant growth, facilitate Flu degradation, and change soil microbial functional structure.
Collapse
Affiliation(s)
- Weiming Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210014, People's Republic of China
- Nanjing Institute of Vegetable Science, Nanjing, 210042, People's Republic of China
| | - Zhen Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Zhenjiang Hydrology and Water Resources Survey Bureau of Jiangsu Province, Zhenjiang, 212028, People's Republic of China
| | - Bin Sun
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210014, People's Republic of China
| | - Shuijin Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Dongsheng Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Nanjing Institute of Vegetable Science, Nanjing, 210042, People's Republic of China
| | - Feng Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210014, People's Republic of China
| | - Huixin Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210014, People's Republic of China
| | - Li Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210014, People's Republic of China.
| | - Jiaguo Jiao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210014, People's Republic of China.
| |
Collapse
|
4
|
Mayer‐Pinto M, Ledet J, Crowe TP, Johnston EL. Sublethal effects of contaminants on marine habitat-forming species: a review and meta-analysis. Biol Rev Camb Philos Soc 2020; 95:1554-1573. [PMID: 32614143 PMCID: PMC7689725 DOI: 10.1111/brv.12630] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/24/2022]
Abstract
Contaminants may affect ecosystem functioning by reducing the fitness of organisms and these impacts may cascade through ecosystems, particularly if the sensitive organisms are also habitat-forming species. Understanding how sub-lethal effects of toxicants can affect the quality and functions of biogenic habitats is critical if we are to establish effective guidelines for protecting ecosystems. We carried out a global systematic review and meta-analysis critically evaluating contaminant effects on properties of habitat-formers linked to ecosystem functioning. We reviewed a total of 95 publications. However, 40% of publications initially captured by the literature search were identified as having flaws in experimental design and ~11% did not present results in an appropriate way and thus were excluded from the quantitative meta-analysis. We quantitatively reviewed 410 studies from 46 publications, of which 313 (~76%) were on plants and seaweeds, that is macro-algae, saltmarsh plants and seagrasses, 58 (~14%) studied corals and 39 (~10%) looked at toxicant impacts on bivalves, with 70% of those on mussels and the remaining studies on oysters. Response variables analysed were photosynthetic efficiency, amount of chlorophyll a (as a proxy for primary production) and growth of plants, seaweeds and corals as well as leaf area of plants. We also analysed filtration, growth and respiration rates of bivalves. Our meta-analysis found that chemical contaminants have a significant negative impact on most of the analysed functional variables, with the exception of the amount of chlorophyll a. Metals were the most widely harmful type of contaminant, significantly decreasing photosynthetic efficiency of kelps, leaf area of saltmarsh plants, growth of fucoids, corals and saltmarsh plants and the filtration rates of bivalves. Organic contaminants decreased the photosynthetic efficiency of seagrass, but had no significant effects on bivalve filtration. We did not find significant effects of polycyclic aromatic hydrocarbons on any of the analysed functional variables or habitat-forming taxa, but this could be due to the low number of studies available. A meta-regression revealed that relationships between concentrations of metal contaminants and the magnitude of functional responses varied with the type of metal and habitat-former. Increasing concentrations of contaminants significantly increased the negative effects on the photosynthetic efficiency of habitat-formers. There was, however, no apparent relationship between ecologically relevant concentrations of metals and effect sizes of photosynthetic efficiency of corals and seaweeds. A qualitative analysis of all relevant studies found slightly different patterns when compared to our quantitative analysis, emphasising the need for studies to meet critical inclusion criteria for meta-analyses. Our study highlights links between effects of contaminants at lower levels of organisation (i.e. at the biochemical and/or physiological level of individuals) and ecological, large-scale impacts, through effects on habitat-forming species. Contaminants can clearly reduce the functioning of many habitat-forming marine species. We therefore recommend the adoption of routine measures of functional endpoints in monitoring and conservation programs to complement structural measures.
Collapse
Affiliation(s)
- Mariana Mayer‐Pinto
- Centre for Marine Scince and Innovation, Evolution & Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South Wales2052Australia
- Sydney Institute of Marine SciencesMosmanNew South Wales2088Australia
| | - Janine Ledet
- Centre for Marine Scince and Innovation, Evolution & Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South Wales2052Australia
| | - Tasman P. Crowe
- Earth Institute and School of Biology & Environmental Science, Science Centre WestUniversity College DublinBelfieldDublin 4Ireland
| | - Emma L. Johnston
- Centre for Marine Scince and Innovation, Evolution & Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South Wales2052Australia
| |
Collapse
|
5
|
Brzeszcz J, Kapusta P, Steliga T, Turkiewicz A. Hydrocarbon Removal by Two Differently Developed Microbial Inoculants and Comparing Their Actions with Biostimulation Treatment. Molecules 2020; 25:E661. [PMID: 32033085 PMCID: PMC7036810 DOI: 10.3390/molecules25030661] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 01/21/2023] Open
Abstract
Bioremediation of soils polluted with petroleum compounds is a widely accepted environmental technology. We compared the effects of biostimulation and bioaugmentation of soil historically contaminated with aliphatic and polycyclic aromatic hydrocarbons. The studied bioaugmentation treatments comprised of the introduction of differently developed microbial inoculants, namely: an isolated hydrocarbon-degrading community C1 (undefined-consisting of randomly chosen degraders) and a mixed culture C2 (consisting of seven strains with well-characterized enhanced hydrocarbon-degrading capabilities). Sixty days of remedial treatments resulted in a substantial decrease in total aliphatic hydrocarbon content; however, the action of both inoculants gave a significantly better effect than nutrient amendments (a 69.7% decrease for C1 and 86.8% for C2 vs. 34.9% for biostimulation). The bioaugmentation resulted also in PAH removal, and, again, C2 degraded contaminants more efficiently than C1 (reductions of 85.2% and 64.5%, respectively), while biostimulation itself gave no significant results. Various bioassays applying different organisms (the bacterium Vibrio fischeri, the plants Sorghum saccharatum, Lepidium sativum, and Sinapis alba, and the ostracod Heterocypris incongruens) and Ames test were used to assess, respectively, potential toxicity and mutagenicity risk after bioremediation. Each treatment improved soil quality, however only bioaugmentation with the C2 treatment decreased both toxicity and mutagenicity most efficiently. Illumina high-throughput sequencing revealed the lack of (C1) or limited (C2) ability of the introduced degraders to sustain competition from indigenous microbiota after a 60-day bioremediation process. Thus, bioaugmentation with the bacterial mixed culture C2, made up of identified, hydrocarbon-degrading strains, is clearly a better option for bioremediation purposes when compared to other treatments.
Collapse
Affiliation(s)
- Joanna Brzeszcz
- Department of Microbiology, Oil and Gas Institute–National Research Institute, ul. Lubicz 25A, 31-503 Krakow, Poland;
| | - Piotr Kapusta
- Department of Microbiology, Oil and Gas Institute–National Research Institute, ul. Lubicz 25A, 31-503 Krakow, Poland;
| | - Teresa Steliga
- Department of Reservoir Fluid Production Technology, Oil and Gas Institute–National Research Institute, ul. Lubicz 25 A, 31-503 Krakow, Poland;
| | - Anna Turkiewicz
- Department of Microbiology, Oil and Gas Institute–National Research Institute, ul. Lubicz 25A, 31-503 Krakow, Poland;
| |
Collapse
|
6
|
Hawrot-Paw M, Ratomski P, Mikiciuk M, Staniewski J, Koniuszy A, Ptak P, Golimowski W. Pea cultivar Blauwschokker for the phytostimulation of biodiesel degradation in agricultural soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34594-34602. [PMID: 31650476 PMCID: PMC6892767 DOI: 10.1007/s11356-019-06347-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Phytoremediation is a cost-effective and ecologically friendly process that involves the use of plants to uptake, accumulate, translocate, stabilize, or degrade pollutants. The present study was conducted to demonstrate the potential of pea (Pisum sativum L. spp. sativum) cultivar Blauwschokker to phytostimulate biodiesel degradation in an agricultural soil, considering the influence of biological remediation on selected physiological parameters of plants and the amount and activity of soil microflora. Biodiesel was spiked into soil in dose of 50 g kg-1 of dry mass soil. The results of the study showed that the rate of biodiesel degradation in the vegetated soil was higher than that occurring by natural attenuation. At the same time, biodiesel showed a positive effect on the growth, development, and activity of soil bacteria and fungi. Moreover, the obtained results showed an improvement in physiological parameters of plants, including an increase in chlorophyll a and total chlorophyll content and higher relative water content in leaves in the presence of biodiesel.
Collapse
Affiliation(s)
- Małgorzata Hawrot-Paw
- Department of Renewable Energy Sources Engineering, Papieża Pawła VI 1, 71-459, Szczecin, Poland.
| | - Patryk Ratomski
- Department of Renewable Energy Sources Engineering, Papieża Pawła VI 1, 71-459, Szczecin, Poland
| | - Małgorzata Mikiciuk
- Department of Plant Physiology and Biochemistry, West Pomeranian University of Technology, Słowackiego 17, 71-434, Szczecin, Poland
| | - Jacek Staniewski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Adam Koniuszy
- Department of Renewable Energy Sources Engineering, Papieża Pawła VI 1, 71-459, Szczecin, Poland
| | - Piotr Ptak
- Department of Plant Physiology and Biochemistry, West Pomeranian University of Technology, Słowackiego 17, 71-434, Szczecin, Poland
| | - Wojciech Golimowski
- Department of Agroengineering and Quality Analysis, Wrocław University of Economics, Komandorska 180/120, 53-345, Wrocław, Poland
| |
Collapse
|
7
|
Luo J, He M, Qi S, Wu J, Gu XS. Effect of planting density and harvest protocol on field-scale phytoremediation efficiency by Eucalyptus globulus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11343-11350. [PMID: 29417481 DOI: 10.1007/s11356-018-1427-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/29/2018] [Indexed: 06/08/2023]
Abstract
The phytoremediation efficiency of multi-metal-polluted sites in an electronic waste recycling town by Eucalyptus globulus was evaluated through a series of 2-year field experiments. Different initial planting densities (2500, 5000, and 10,000 plants per ha), coppice rotations, and harvesting position (5 or 30 cm above the ground) protocols were designed to improve the remediation potential of the species. There were unnoticeable variations in metal concentrations and distribution characteristics in plant tissues in a low and medium planting-density field during the experimental period. At the end of the experiment, total biomass production per hectare in different protocols displayed a wide range with maximum yield produced in high density, moderate harvesting, and coppice rotation protocol being 2.9 times higher than the minimum yield. The moderate harvest protocol performed with medium planting density was the optimal Cd and Cu decontamination technique. Although the high planting-density field without coppice rotation had the strongest potential for Pb decontamination, it would take more time to remove other metals for the multi-metal-polluted soil decontamination. Considering the remediation efficiency and maintainability of the cultivation system, the moderate harvest protocol performed with the medium planting density was commended for phytoremediation of e-waste recycling impacted area.
Collapse
Affiliation(s)
- Jie Luo
- College of Resources and Environment, Yangtze University, 111 University Road, Wuhan, People's Republic of China.
- China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China.
| | - Mei He
- College of Resources and Environment, Yangtze University, 111 University Road, Wuhan, People's Republic of China
| | - Shihua Qi
- China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China
| | - Jian Wu
- China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China
| | - Xiaowen Sophie Gu
- The University of Melbourne, Grattan Street Parkville, Melbourne, VIC, 3010, Australia
| |
Collapse
|
8
|
Fernandes JP, Almeida CMR, Andreotti F, Barros L, Almeida T, Mucha AP. Response of microbial communities colonizing salt marsh plants rhizosphere to copper oxide nanoparticles contamination and its implications for phytoremediation processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 581-582:801-810. [PMID: 28069300 DOI: 10.1016/j.scitotenv.2017.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 06/06/2023]
Abstract
This study aimed to investigate Cu oxide nanoparticles (CuO NP) effect on microbial communities associated with salt marsh plants (Halimione portulacoides and Pragmites australis) rhizosphere and its implications for phytoremediation processes. Experiments were conducted, under controlled conditions, over one week. Rhizosediment soaked in the respective elutriate (a simplified natural medium) with or without plants, was doped with CuO NP or with Cu in ionic form. Microbial community in rhizosediments was characterized in terms of abundance (by DAPI) and structure (by ARISA). Metal uptake by plants was evaluated by measuring Cu in plant tissues (by atomic absorption spectroscopy). Results revealed significant metal uptake but only in plant roots, which was significantly lower (H. portulacoides) or not significant (P. australis) when the metal was in NP form. Microbial community structure was significantly changed by the treatment (absence/presence of Cu, ionic Cu or CuO NP) as showed by multivariate analysis of ARISA profiles and confirmed by analysis of similarities (Global test - one way ANOSIM). Moreover, in P. australis rhizosediments microbial abundance, bacterial richness and diversity indexes were significantly affected (increased or decreased) due to metal presence whereas in H. portulacoides rhizosediment microbial abundance showed a significant decrease, particularly when the metal was in NP form. Accordingly, Cu presence affected the response of the rhizosphere microbial community and in some cases that response was significantly different when Cu was in NP form. The response of the microbial communities to Cu NP might also contribute to the lower metal accumulation by plants when the metal was in this form. So, Cu NP may cause disturbances in ecosystems functions, ultimately affecting phytoremediation processes. These facts should be considered regarding the use of appropriate salt marshes plants to remediate moderately impacted areas such as estuaries, where NPs can be found.
Collapse
Affiliation(s)
- Joana P Fernandes
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - C Marisa R Almeida
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Federico Andreotti
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Agriculture and Environment Sciences, Faculty of Agriculture, University of Milan, Italy
| | - Leandro Barros
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Tânia Almeida
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Ana P Mucha
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|