1
|
Faridy N, Torabi E, Pourbabaee AA, Osdaghi E, Talebi K. Unveiling six novel bacterial strains for fipronil and thiobencarb biodegradation: efficacy, metabolic pathways, and bioaugmentation potential in paddy soil. Front Microbiol 2024; 15:1462912. [PMID: 39502414 PMCID: PMC11536974 DOI: 10.3389/fmicb.2024.1462912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Soil bacteria offer a promising approach to bioremediate pesticide contamination in agricultural ecosystems. This study investigated the potential of bacteria isolated from rice paddy soil for bioremediating fipronil and thiobencarb, common agricultural pesticides. Methods Bacterial isolates capable of degrading fipronil and thiobencarb were enriched in a mineral salt medium. A response surface methodology with a Box-Behnken design was utilized to optimize pesticide degradation with the isolated bacteria. Bioaugmentation tests were performed in paddy soils with varying conditions. Results and discussion Six strains, including single isolates and their mixture, efficiently degraded these pesticides at high concentrations (up to 800 µg/mL). Enterobacter sp., Brucella sp. (alone and combined), and a mixture of Stenotrophomonas sp., Bordetella sp., and Citrobacter sp. effectively degraded fipronil and thiobencarb, respectively. Notably, a single Pseudomonas sp. strain degraded a mixture of both pesticides. Optimal degradation conditions were identified as a slightly acidic pH (6-7), moderate pesticide concentrations (20-50 µg/mL), and a specific inoculum size. Bioaugmentation assays in real-world paddy soils (sterile/non-sterile, varying moisture) demonstrated that these bacteria significantly increased degradation rates (up to 14.15-fold for fipronil and 5.13-fold for thiobencarb). The study identifies these novel bacterial strains as promising tools for bioremediation and bioaugmentation strategies to tackle fipronil and thiobencarb contamination in paddy ecosystems.
Collapse
Affiliation(s)
- Nastaran Faridy
- Department of Plant Protection, Faculty of Agriculture, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ehssan Torabi
- Department of Plant Protection, Faculty of Agriculture, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ahmad Ali Pourbabaee
- Department of Soil Science, Faculty of Agriculture, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ebrahim Osdaghi
- Department of Plant Protection, Faculty of Agriculture, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Khalil Talebi
- Department of Plant Protection, Faculty of Agriculture, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
2
|
Faridy N, Torabi E, Pourbabaee AA, Osdaghi E, Talebi K. Efficacy of novel bacterial consortia in degrading fipronil and thiobencarb in paddy soil: a survey for community structure and metabolic pathways. Front Microbiol 2024; 15:1366951. [PMID: 38812693 PMCID: PMC11133635 DOI: 10.3389/fmicb.2024.1366951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Fipronil (FIP) and thiobencarb (THIO) represent widely utilized pesticides in paddy fields, presenting environmental challenges that necessitate effective remediation approaches. Despite the recognized need, exploring bacterial consortia efficiently degrading FIP and THIO remains limited. Methods This study isolated three unique bacterial consortia-FD, TD, and MD-demonstrating the capability to degrade FIP, THIO, and an FIP + THIO mixture within a 10-day timeframe. Furthermore, the bioaugmentation abilities of the selected consortia were evaluated in paddy soils under various conditions. Results Sequencing results shed light on the consortia's composition, revealing a diverse bacterial population prominently featuring Azospirillum, Ochrobactrum, Sphingobium, and Sphingomonas genera. All consortia efficiently degraded pesticides at 800 µg/mL concentrations, primarily through oxidative and hydrolytic processes. This metabolic activity yields more hydrophilic metabolites, including 4-(Trifluoromethyl)-phenol and 1,4-Benzenediol, 2-methyl-, for FIP, and carbamothioic acid, diethyl-, S-ethyl ester, and Benzenecarbothioic acid, S-methyl ester for THIO. Soil bioaugmentation tests highlight the consortia's effectiveness, showcasing accelerated degradation of FIP and THIO-individually or in a mixture-by 1.3 to 13-fold. These assessments encompass diverse soil moisture levels (20 and 100% v/v), pesticide concentrations (15 and 150 µg/g), and sterile conditions (sterile and non-sterile soils). Discussion This study offers an understanding of bacterial communities adept at degrading FIP and THIO, introducing FD, TD, and MD consortia as promising contenders for bioremediation endeavors.
Collapse
Affiliation(s)
- Nastaran Faridy
- Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ehssan Torabi
- Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ahmad Ali Pourbabaee
- Department of Soil Science, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ebrahim Osdaghi
- Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Khalil Talebi
- Department of Plant Protection, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
3
|
Buscaroli E, Lavrnić S, Blasioli S, Gentile SL, Solimando D, Mancuso G, Anconelli S, Braschi I, Toscano A. Efficient dissipation of acetamiprid, metalaxyl, S-metolachlor and terbuthylazine in a full-scale free water surface constructed wetland in Bologna province, Italy: A kinetic modeling study. ENVIRONMENTAL RESEARCH 2024; 247:118275. [PMID: 38246295 DOI: 10.1016/j.envres.2024.118275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
The study investigated the dissipation ability of a vegetated free water surface (FWS) constructed wetland (CW) in treating pesticides-contaminated agricultural runoff/drainage water in a rural area belonging to Bologna province (Italy). The experiment simulated a 0.1% pesticide agricultural water runoff/drainage event from a 12.5-ha farm by dissolving acetamiprid, metalaxyl, S-metolachlor, and terbuthylazine in 1000 L of water and pumping it into the CW. Water and sediment samples from the CW were collected for 4 months at different time intervals to determine pesticide concentrations by multiresidue extraction and chromatography-mass spectrometry analyses. In parallel, no active compounds were detected in the CW sediments during the experimental period. Pesticides dissipation in the wetland water compartment was modeled according to best data practices by fitting the data to Single First Order (SFO), First Order Multi-Compartment (FOMC) and Double First Order in Parallel (DFOP) kinetic models. SFO (except for metalaxyl), FOMC and DFOP kinetic models adequately predicted the dissipation for the four investigated molecules, with the DFOP kinetic model that better fitted the observed data. The modeled distribution of each pesticide between biomass and water in the CW highly correlated with environmental indexes as Kow and bioconcentration factor. Computed DT50 by DFOP model were 2.169, 8.019, 1.551 and 2.047 days for acetamiprid, metalaxyl, S-metolachlor, and terbuthylazine, respectively. Although the exact degradation mechanisms of each pesticide require further study, the FWS CW was found to be effective in treating pesticides-contaminated agricultural runoff/drainage water within an acceptable time. Therefore, this technology proved to be a valuable tool for mitigating pesticides runoff occurring after intense rain events.
Collapse
Affiliation(s)
- Enrico Buscaroli
- Alma Mater Studiorum - University of Bologna, Department of Agricultural and Food Sciences, Viale G. Fanin 40-50, 40127 Bologna, Italy
| | - Stevo Lavrnić
- Alma Mater Studiorum - University of Bologna, Department of Agricultural and Food Sciences, Viale G. Fanin 40-50, 40127 Bologna, Italy
| | - Sonia Blasioli
- Alma Mater Studiorum - University of Bologna, Department of Agricultural and Food Sciences, Viale G. Fanin 40-50, 40127 Bologna, Italy
| | | | - Domenico Solimando
- Consorzio di Bonifica Canale Emiliano Romagnolo, Via E. Masi 8, 40137 Bologna, Italy
| | - Giuseppe Mancuso
- Alma Mater Studiorum - University of Bologna, Department of Agricultural and Food Sciences, Viale G. Fanin 40-50, 40127 Bologna, Italy
| | - Stefano Anconelli
- Consorzio di Bonifica Canale Emiliano Romagnolo, Via E. Masi 8, 40137 Bologna, Italy
| | - Ilaria Braschi
- Alma Mater Studiorum - University of Bologna, Department of Agricultural and Food Sciences, Viale G. Fanin 40-50, 40127 Bologna, Italy.
| | - Attilio Toscano
- Alma Mater Studiorum - University of Bologna, Department of Agricultural and Food Sciences, Viale G. Fanin 40-50, 40127 Bologna, Italy
| |
Collapse
|
4
|
Han L, Xu H, Wang Q, Liu X, Li X, Wang Y, Nie J, Liu M, Ju C, Yang C. Deciphering the degradation characteristics of the fungicides imazalil and penflufen and their effects on soil bacterial community composition, assembly, and functional profiles. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132379. [PMID: 37643571 DOI: 10.1016/j.jhazmat.2023.132379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
The adsorption-desorption and degradation characteristics of two widely applied fungicides, imazalil and penflufen, and the responses of soil bacterial diversity, structure, function, and interaction after long-term exposure were systemically studied in eight different soils. The adsorption ability of imazalil in soil was significantly higher than that of penflufen. Both imazalil and penflufen degraded slowly in most soils following the order: imazalil > penflufen, with soil pH, silt, and clay content being the potential major influencing factors. Both imazalil and penflufen obviously inhibited the soil microbial functional diversity, altered the soil bacterial community and decreased its diversity. Although exposure to low and high concentrations of imazalil and penflufen strengthened the interactions among the soil bacterial communities, the functional diversity of the co-occurrence network tended to be simple at high concentrations, especially in penflufen treatment. Both imazalil and penflufen markedly disturbed soil nitrogen cycling, especially penflufen seriously inhibited most nitrogen cycling processes, such as nitrogen fixation and nitrification. Meanwhile, sixteen and ten potential degradative bacteria of imazalil and penflufen, respectively, were found in soils, including Kaistobacter and Lysobacter. Collectively, the long-term application of imazalil and penflufen could cause residual accumulation in soils and subsequently result in serious negative effects on soil ecology.
Collapse
Affiliation(s)
- Lingxi Han
- College of Horticulture, Qingdao Agricultural University, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China.
| | - Han Xu
- College of Horticulture, Qingdao Agricultural University, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Qianwen Wang
- Central Laboratory, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoli Liu
- College of Horticulture, Qingdao Agricultural University, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Xiaoming Li
- College of Horticulture, Qingdao Agricultural University, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Yiran Wang
- College of Horticulture, Qingdao Agricultural University, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China.
| | - Mingyu Liu
- College of Horticulture, Qingdao Agricultural University, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Chao Ju
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Congjun Yang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
5
|
Liu H, Liu M, Chen K, Shan M, Li Y. Fertilization can modify the enantioselective persistence of penthiopyrad in relation to the co-influence on soil ecological health. ENVIRONMENTAL RESEARCH 2023; 224:115514. [PMID: 36801231 DOI: 10.1016/j.envres.2023.115514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Penthiopyrad is a widely used chiral fungicide for controlling rust and Rhizoctonia diseases. Development of optically pure monomers is an important strategy to realize amount reduction and increment effects of penthiopyrad, wherein, fertilizers as the co-exiting nutrient supplement may alter the enantioselective residues of penthiopyrad in soil. In our study, influences of urea, phosphate, potash, NPK compound, organic granular, vermicompost and soya bean cake fertilizers on enantioselective persistence of penthiopyrad were fully evaluated. This study demonstrated that R-(-)-penthiopyrad dissipated faster than S-(+)-penthiopyrad during 120 days. High pH, available nitrogen, invertase activities and reduced available phosphorus, dehydrogenase, urease, catalase activities were situated to benefit removing the concentrations of penthiopyrad and weakening enantioselectivity in soil. With respect to the impact of different fertilizers on soil ecological indicators, vermicompost contributed to enhanced pH. Urea and compound fertilizer played an absolute advantage in promoting available nitrogen. All fertilizers didn't go against available phosphorus. Dehydrogenase responded negatively to phosphate, potash and organic fertilizers. Urea increased invertase, besides, it and compound fertilizer both diminished urease activity. The catalase activity was not activated by organic fertilizer. Based on all the findings, soil application of urea and phosphate fertilizers was recommended and considered as a better option to exhibit high efficiency for the dissipation of penthiopyrad. The combined environmental safety estimation can effectively guide the treatment of fertilization soils in line with the nutrition requirements and pollution regulation from penthiopyrad.
Collapse
Affiliation(s)
- Hui Liu
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China.
| | - Mengqi Liu
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China.
| | - Kuiyuan Chen
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China.
| | - Mei Shan
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China.
| | - Yongye Li
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
6
|
Dong S, Yan PF, Liu C, Manz KE, Mezzari MP, Abriola LM, Pennell KD, Cápiro NL. Assessing aerobic biotransformation of 8:2 fluorotelomer alcohol in aqueous film-forming foam (AFFF)-impacted soils: Pathways and microbial community dynamics. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130629. [PMID: 36630879 DOI: 10.1016/j.jhazmat.2022.130629] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Production of 8:2 fluorotelomer alcohol (8:2 FTOH) for industrial and consumer products, including aqueous film-forming foams (AFFFs) used for firefighting, has resulted in its widespread occurrence in the environment. However, the fate of 8:2 FTOH at AFFF-impacted sites remains largely unknown. Using AFFF-impacted soils from two United States Air Force Bases, microcosm experiments evaluated the aerobic biotransformation of 8:2 FTOH (extent and byproduct formation) and the dose-response on microbial communities due to 8:2 FTOH exposure. Despite different microbial communities, rapid transformation of 8:2 FTOH was observed during a 90-day incubation in the two soils, and 7:2 secondary fluorotelomer alcohol (7:2 sFTOH) and perfluorooctanoic acid (PFOA) were detected as major transformation products. Novel transformation products, including perfluoroalkane-like compounds (1H-perfluoroheptane, 1H-perfluorohexane, and perfluoroheptanal) were identified by liquid chromatography-high resolution mass spectrometry (LC-HRMS) and used to develop aerobic 8:2 FTOH biotransformation pathways. Microbial community analysis suggests that species from genus Sphingomonas are potential 8:2 FTOH degraders based on increased abundance in both soils after exposure, and the genus Afipia may be more tolerant to and/or involved in the transformation of 8:2 FTOH at elevated concentrations. These findings demonstrate the potential role of biological processes on PFAS fate at AFFF-impacted sites through fluorotelomer biotransformation.
Collapse
Affiliation(s)
- Sheng Dong
- Department of Civil and Environmental Engineering, Auburn University, Auburn, AL 36849, United States
| | - Peng-Fei Yan
- Department of Civil and Environmental Engineering, Auburn University, Auburn, AL 36849, United States
| | - Chen Liu
- School of Engineering, Brown University, Providence, RI 02912, United States
| | - Katherine E Manz
- School of Engineering, Brown University, Providence, RI 02912, United States
| | - Melissa P Mezzari
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Linda M Abriola
- School of Engineering, Brown University, Providence, RI 02912, United States
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI 02912, United States
| | - Natalie L Cápiro
- Department of Civil and Environmental Engineering, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
7
|
Singh RP, Ahsan M, Mishra D, Pandey V, Yadav A, Khare P. Ameliorative effects of biochar on persistency, dissipation, and toxicity of atrazine in three contrasting soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114146. [PMID: 34838378 DOI: 10.1016/j.jenvman.2021.114146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/26/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
The presence of atrazine a persistent herbicide in soil poses a serious threat to the ecosystem. The biochar amendment in soil altered the fate of this herbicide by modifying the soil properties. The present study examines the dissipation and toxicity of atrazine in three contrasting soils (silty clay, sandy loam, and sandy clay) without and with biochar amendment (4%). The experiment was performed for 150 days with three application rates of atrazine (4, 8, and 10 mg kg-1). The speciation and degradation of atrazine, metabolite content, microbial biomass, and enzymatic activities were evaluated in all treatments. Three kinetic models and soil enzyme index were calculated to scrutinize the degradation of atrazine and its toxicity on soil biota, respectively. The goodness of fit statistical indices suggested that the first-order double exponential decay (FODE) model best described the degradation of atrazine in silty clay soil. However, a single first order with plateau (SFOP) was best fitted for atrazine degradation in sandy loam and sandy clay soils. The half-life of atrazine was higher in sandy clay soil (27-106 day-1) than silty clay (28-77 day-1) and sandy loam soil (27-83 day-1). The variations in the dissipation kinetics and half-life of the atrazine in three soil were associated with atrazine partitioning, availability of mineral content (silica, aluminum, and iron), and soil microbial biomass carbon. Biochar amendment significantly reduced the plateau in the kinetic curve and also reduced the atrazine toxicity on soil microbiota. Overall, biochar was more effective in sandy clay soil for the restoration of soil microbial activities under atrazine stress due to modulation in the pH and more improved soil quality.
Collapse
Affiliation(s)
- Raghavendra Pratap Singh
- Plant Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Mohd Ahsan
- Plant Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India; Academy of Scientific and Innovative Research (AcSIR), India
| | - Disha Mishra
- Plant Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Versha Pandey
- Plant Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India; Academy of Scientific and Innovative Research (AcSIR), India
| | - Anisha Yadav
- Plant Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Puja Khare
- Plant Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India; Academy of Scientific and Innovative Research (AcSIR), India.
| |
Collapse
|
8
|
Torabi E, Talebi Jahromi K, Homayoonzadeh M, Torshiz AO, Tavakoli E. Residue kinetics of neonicotinoids and abamectin in pistachio nuts under field conditions: model selection, effects of multiple sprayings, and risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2598-2612. [PMID: 34370195 DOI: 10.1007/s11356-021-15822-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Pistachio is an economically valuable crop, and Iran is among the biggest producers, exporters, and consumers of this product in the world. During the growing season, pistachios are subjected to multiple sprayings with various pesticides, which result in the accumulation of their residues in nuts. These residues have raised concerns regarding consumers' health. In this research, uptake and dissipation kinetics of insecticides imidacloprid (IMI), thiacloprid (THI), thiamethoxam (THX), and abamectin (ABA) were investigated in pistachio nuts. Field experiments were conducted in a pistachio orchard. Pistachio trees were sprayed with the recommended dose of each insecticide formulation and water as the control. Samplings were performed for up to 49 days. Based on the results, pesticides uptake and dissipation kinetics were best fitted to first-order exponential growth (FOEG) and single first-order kinetic (SFOK) models, respectively. Variations in pesticides uptake/dissipation rates were mostly related to their water solubility, pKa, and log Kow. THX showed a higher uptake rate (0.16 ± 0.04) compared to IMI (0.10 ± 0.01) and THI (0.06 ± 0.01). The fastest dissipation rates were observed for IMI (0.04 ± 0.002 day-1) and THX (0.03 ± 0.001 day-1), while the slowest belonged to THI (0.02 ± 0.003 day-1). ABA residues were below the quantification limit (LOQ) throughout the experiment. Based on FOEG and SFOK model predictions, multiple sprayings with THI and THX resulted in final concentrations exceeding the maximum residue limit (MRL). Hazard quotients for all pesticides were <1, indicating no risk to humans via consumption of the pistachio nut.
Collapse
Affiliation(s)
- Ehssan Torabi
- Department of Plant Protection, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Khalil Talebi Jahromi
- Department of Plant Protection, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mohammad Homayoonzadeh
- Department of Plant Protection, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ali Olyaie Torshiz
- Department of Plant Protection, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Kashmar Higher Education Institute, Kashmar, Iran
| | - Ebrahim Tavakoli
- Department of Plant Protection, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Kashmar Higher Education Institute, Kashmar, Iran
| |
Collapse
|
9
|
Nasrollahi M, Pourbabaei AA, Etesami H, Talebi K. Diazinon degradation by bacterial endophytes in rice plant (Oryzia sativa L.): A possible reason for reducing the efficiency of diazinon in the control of the rice stem-borer. CHEMOSPHERE 2020; 246:125759. [PMID: 31891844 DOI: 10.1016/j.chemosphere.2019.125759] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/09/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
It is well known that microorganisms can reduce the effectiveness of organophosphate pesticides after their application. But, little information is available concerning the effect of rice endophytic bacteria on the degradation of diazinon, an organophosphate pesticide used in control of the rice stem-borer, absorbed by the rice plant. Thus, aim of this study was to characterize the endophytic bacterial isolates, isolated from diazinon-treated and non-treated rice plants in paddy fields, in terms of diazinon degradation and to investigate whether potent isolates that degrade diazinon in vitro might have the same effect in the rice plant. The results showed that all endophytic isolates, isolated from both groups of rice plants (diazinon-treated and non-treated rice plants), could grow in mineral salt medium (MSM) supplemented with diazinon (20 mg L-1) as a sole carbon source, and 3.79-58.52% of the initial dose of the insecticide was degraded by the isolates within 14 d of incubation. Phylogenetic analysis based on 16 S rRNA sequencing indicated that the potent isolates (DB26-R and B6-L) clearly belonged to the Bacillus genus. The diazinon concentrations in rice plants co-inoculated with B. altitudinis DB26-R and B. subtilis subsp. Inaquosorum B6-L and single-inoculated with these strains were reduced significantly compared with endophyte-free rice plants. These results provide unequivocal evidence that the rice endophytic bacteria, in addition to in vitro degradation of diazinon, are also involved in the rapid inactivation of diazinon in rice plants treated with diazinon (in vivo degradation of diazinon).
Collapse
Affiliation(s)
- Mina Nasrollahi
- Department of Soil Science, University College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Ahmad Ali Pourbabaei
- Department of Soil Science, University College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
| | - Hassan Etesami
- Department of Soil Science, University College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
| | - Khalil Talebi
- Department of Plant Protection, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
10
|
Fu Y, Dou X, Lu Q, Qin J, Luo J, Yang M. Comprehensive assessment for the residual characteristics and degradation kinetics of pesticides in Panax notoginseng and planting soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136718. [PMID: 31982747 DOI: 10.1016/j.scitotenv.2020.136718] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/21/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Incorrect and excess usage of pesticides during crop cultivation poses a serious threat to human health and ecosystems. In this study, we tested for the presence of 201 pesticide residues in 90 batches of Panax notoginseng (P. notoginseng) and 10 batches of planting soil. Pesticide residue characteristics and the relationship between pesticides present in P. notoginseng and the soil were discussed. Twenty-nine pesticides were detected in P. notoginseng samples and 15 pesticides were found in the soil samples. In P. notoginseng samples, the 68.9% of the identified pesticides were fungicides, and six fungicides (procymidone, iprodione, pyrimethanil, propiconazole, dimethomorph and tebuconazole) were found in >90% of the samples. Nine insecticides were found, with one insecticide, chlorpyrifos, detected in 93.3% of the P. notoginseng samples. The residual concentrations of 17 pesticides were found at levels exceeded the "non-Chinese" maximum residue levels (MRLs) for Ginseng and 17 pesticides were found at levels exceeding the MRLs set by China for "pollution-free" P. notoginseng. We observed no significant differences in pesticide residues were found on P. notoginseng from different cultivation areas. We also analyzed the degradation kinetics of pesticides in the soil, as well as their bioconcentration factors (BCFs), and found that the fungicides iprodione and myclobutanil displayed strong uptake from the soil to the root of P. notoginseng. Together, our data suggest that fungicides should be considered as key monitoring substances in P. notoginseng and planting soil.
Collapse
Affiliation(s)
- Yanwei Fu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Xiaowen Dou
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Qian Lu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Jiaan Qin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
11
|
Báez ME, Espinoza J, Fuentes E. Degradation kinetics of chlorpyrifos and diazinon in volcanic and non-volcanic soils: influence of cyclodextrins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:25020-25035. [PMID: 29934831 DOI: 10.1007/s11356-018-2559-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/13/2018] [Indexed: 05/24/2023]
Abstract
The intensive use of insecticides such as chlorpyrifos (CPF) and diazinon (DZN) in the agricultural activities worldwide has produced contamination of soils and/or transport to non-target areas including their distribution to surface and groundwaters. Cyclodextrins (CDs) have been proposed as an alternative in remediation technologies based on the separation of contaminants from soils because they could allow a higher bioavailability for their degradation with a low environmental impact. In this work, the degradation pattern of CPF and DZN and the formation and dissipation of the major degradation products 3,5,6-trichloro-2-pyridinol (TCP) and 2-isopropyl-6-methyl-4-pyrimidinol (IMPH) was established in four agricultural volcanic and non-volcanic soils belonging to Andisol, Ultisol, and Mollisol orders. Both pesticides were highly adsorbed in these soils, consequently, with a greater probability of contaminating them. In contrast, the adsorption of their two main metabolites was low or null; therefore, they are potential groundwater contaminants. The degradation processes were studied in the natural and amended soils with β-cyclodextrin (β-CD) and methyl-β-cyclodextrin (Mβ-CD) for CPF and DZN, respectively. A slow degradation of CPF and DZN was obtained for volcanic soils with observable residues until the end of the incubation time (150-180 days). In Mollisols, the higher degradation rate of CPF was favored by the neutral to basic pH, and for DZN it was related to the lower adsorption and higher bioavailability. The amendment of soils with CDs produced slower degradation rates which led to a greater concentration of the compounds at the end of the incubation time. This effect was more pronounced for DZN. The exception was the Andisol, with no significant changes for both compounds regarding the unamended soil. No residues of TCP were observed for this soil in both conditions during the whole incubation time; nevertheless, the accumulation of TCP was significant in the Ultisol and Mollisols, but the concentrations were lower for the amended soils. The accumulation of IMPH was important in Mollisol amended soils; however, their residues were observed in the volcanic soils during the whole incubation period in the natural and amended soils. An important enhancement of the microbial activity occurred in the system β-CD/CPF in Mollisols, without a more effective degradation of the insecticide. The opposite effect was observed in the system Mβ-CD/DZN mainly in the oxidative activity in all soils. The higher degradation of DZN and IMPH in natural Mollisols was related to the higher hydrolytic and oxidative activities. The stability of the inclusion complexes formed could play an important role for explaining the results obtained with the amendments.
Collapse
Affiliation(s)
- María E Báez
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone Pohlhammer 1007, 8380000, Santiago, Chile.
| | - Jeannette Espinoza
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone Pohlhammer 1007, 8380000, Santiago, Chile
| | - Edwar Fuentes
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone Pohlhammer 1007, 8380000, Santiago, Chile
| |
Collapse
|
12
|
Li F, Su Q, Zhou Z, Liao X, Zou J, Yuan B, Sun W. Anaerobic biodegradation of 8:2 fluorotelomer alcohol in anaerobic activated sludge: Metabolic products and pathways. CHEMOSPHERE 2018; 200:124-132. [PMID: 29476957 DOI: 10.1016/j.chemosphere.2018.02.065] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/05/2018] [Accepted: 02/09/2018] [Indexed: 05/21/2023]
Abstract
The anaerobic biodegradability and metabolic pathways of 8:2 fluorotelomer alcohol (8:2 FTOH) were investigated in anaerobic activated sludge. The biodegradation was well described by a double exponential decay model. 8:2 FTOH was biodegraded to poly- and perfluorinated metabolites with the release of fluoride ion. All polyfluorinated metabolites were intermediate metabolic products and could be further transformed to other metabolites, while perfluorinated metabolites were terminal products. 2H-perfluoro-2-decenoic acid (8:2 FTUA) and perfluorooctanoic acid (PFOA) were verified as the most abundant poly- and perfluorinated metabolites, respectively. Two shorter-chain perfluorinated metabolites, perfluoropentanoic acid (PFPeA) and perfluorobutyric acid (PFBA), were first reported in the biodegradation of 8:2 FTOH. However, the total molar recovery of 8:2 FTOH decreased with increasing incubation time, indicating that there might be some unknown metabolites. Thus, the anaerobic biodegradation pathways were proposed as follows: 8:2 FTOH was oxidized to 8:2 FTUA and 2-perfluorooctyl ethanoic acid (8:2 FTCA) via 2-perfluorooctyl acetaldehyde (8:2 FTAL), and then 8:2 FTUA and 8:2 FTCA were further transformed to 1-perfluoroheptyl ethanol (7:2 sFTOH) via 3-perfluoroheptyl propionic acid (7:3 acid) or/and 3-perfluoroheptyl acrylic acid (7:3 Uacid), and eventually 7:2 sFTOH was further biodegraded to PFOA and other perfluorocarboxylates containing less than eight carbons.
Collapse
Affiliation(s)
- Fei Li
- Xiamen Engineering & Technology Research Center for Urban Water Environment Planning and Remediation, College of Civil Engineering, Huaqiao University, Xiamen, 361021, China
| | - Qiangfa Su
- Xiamen Engineering & Technology Research Center for Urban Water Environment Planning and Remediation, College of Civil Engineering, Huaqiao University, Xiamen, 361021, China
| | - Zhenming Zhou
- Xiamen Engineering & Technology Research Center for Urban Water Environment Planning and Remediation, College of Civil Engineering, Huaqiao University, Xiamen, 361021, China
| | - Xiaobin Liao
- Xiamen Engineering & Technology Research Center for Urban Water Environment Planning and Remediation, College of Civil Engineering, Huaqiao University, Xiamen, 361021, China
| | - Jing Zou
- Xiamen Engineering & Technology Research Center for Urban Water Environment Planning and Remediation, College of Civil Engineering, Huaqiao University, Xiamen, 361021, China
| | - Baoling Yuan
- Xiamen Engineering & Technology Research Center for Urban Water Environment Planning and Remediation, College of Civil Engineering, Huaqiao University, Xiamen, 361021, China.
| | - Wenjie Sun
- Department of Civil and Environmental Engineering, Southern Methodist University, Dallas, TX, 75275, USA.
| |
Collapse
|