1
|
Roy H, Rahman TU, Tasnim N, Arju J, Rafid MM, Islam MR, Pervez MN, Cai Y, Naddeo V, Islam MS. Microbial Fuel Cell Construction Features and Application for Sustainable Wastewater Treatment. MEMBRANES 2023; 13:membranes13050490. [PMID: 37233551 DOI: 10.3390/membranes13050490] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
A microbial fuel cell (MFC) is a system that can generate electricity by harnessing microorganisms' metabolic activity. MFCs can be used in wastewater treatment plants since they can convert the organic matter in wastewater into electricity while also removing pollutants. The microorganisms in the anode electrode oxidize the organic matter, breaking down pollutants and generating electrons that flow through an electrical circuit to the cathode compartment. This process also generates clean water as a byproduct, which can be reused or released back into the environment. MFCs offer a more energy-efficient alternative to traditional wastewater treatment plants, as they can generate electricity from the organic matter in wastewater, offsetting the energy needs of the treatment plants. The energy requirements of conventional wastewater treatment plants can add to the overall cost of the treatment process and contribute to greenhouse gas emissions. MFCs in wastewater treatment plants can increase sustainability in wastewater treatment processes by increasing energy efficiency and reducing operational cost and greenhouse gas emissions. However, the build-up to the commercial-scale still needs a lot of study, as MFC research is still in its early stages. This study thoroughly describes the principles underlying MFCs, including their fundamental structure and types, construction materials and membrane, working mechanism, and significant process elements influencing their effectiveness in the workplace. The application of this technology in sustainable wastewater treatment, as well as the challenges involved in its widespread adoption, are discussed in this study.
Collapse
Affiliation(s)
- Hridoy Roy
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Tanzim Ur Rahman
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Nishat Tasnim
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Jannatul Arju
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Md Mustafa Rafid
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Md Reazul Islam
- Department of Civil Engineering, Louisiana Tech University, Ruston, LA 71270, USA
| | - Md Nahid Pervez
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Yingjie Cai
- Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-Based Textile Materials, Wuhan Textile University, Wuhan 430200, China
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Md Shahinoor Islam
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
- Department of Textile Engineering, Daffodil International University, Dhaka 1341, Bangladesh
| |
Collapse
|
2
|
Liu Y, Wang K, Zhang S. In-situ utilizing the produced electricity to regulate substrate conversion in denitrifying sulfide removal microbial fuel cells. BIORESOURCE TECHNOLOGY 2021; 322:124535. [PMID: 33340952 DOI: 10.1016/j.biortech.2020.124535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
A denitrifying sulfide removal microbial fuel cell, incorporated with a capacitor and run in an alternate charging and discharging mode, was developed to in-situ utilize the produced electricity. The switching interval, external resistance distribution and temperature were used to adjust substrates conversion via regulating electrode potentials. The switching interval of 10 min favored the formation of sulfur and gaseous nitrogen. Adjusting the external resistances via the constant anode potential method was a feasible measure for regulating the cathode potential and promoting nitrate reduction, achieving a total nitrogen removal rate of 16.5 ± 0.8 g N/(m3 d) and a gaseous nitrogen formation percent of 32.2 ± 1.5%. 30 °C favored gaseous nitrogen formation while 10 °C and 40 °C benefited sulfur formation. In-situ utilization of the produced electricity shifted the microbial community structure. This work provided a novel approach to regulate the substrate conversion by in-situ utilizing the produced electricity.
Collapse
Affiliation(s)
- Yubo Liu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Ke Wang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Shaohui Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China; Hubei Key Laboratory of Fuel Cell, Wuhan University of Technology, Wuhan 430070, PR China.
| |
Collapse
|
3
|
Abstract
Nitrogenous compounds attract great attention because of their environmental impact and harmfulness to the health of human beings. Various biological technologies have been developed to reduce the environmental risks of nitrogenous pollutants. Bioelectrochemical systems (BESs) are considered to be a novel biological technology for removing nitrogenous contaminants by virtue of their advantages, such as low energy requirement and capacity for treating wastewaters with a low C/N ratio. Therefore, increasing attention has been given to carry out biological processes related to nitrogen removal with the aid of cathodic biofilms in BESs. Prior studies have evaluated the feasibility of conventional biological processes including nitrification, denitrification, and anaerobic ammonia oxidation (anammox), separately or combined together, to remove nitrogenous compounds with the help of BESs. The present review summarizes the progress of developments in BESs in terms of the biological process, cathodic biofilm, and affecting factors for efficient nitrogen removal.
Collapse
|
4
|
Dai Q, Zhang S, Liu H, Huang J, Li L. Sulfide-mediated azo dye degradation and microbial community analysis in a single-chamber air cathode microbial fuel cell. Bioelectrochemistry 2020; 131:107349. [DOI: 10.1016/j.bioelechem.2019.107349] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/20/2022]
|
5
|
Chen Z, Zhang S, Zhong L. Simultaneous sulfide removal, nitrogen removal and electricity generation in a coupled microbial fuel cell system. BIORESOURCE TECHNOLOGY 2019; 291:121888. [PMID: 31374413 DOI: 10.1016/j.biortech.2019.121888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
A coupled microbial fuel cell (MFC) system, consisting of a nitrifying sulfide removal MFC and a denitrifying sulfide removal MFC, was assembled to simultaneously treat ammonium and sulfide in wastewater. It provided a promising approach to recover electricity from wastewater containing sulfide and ammonium. Considering both substrate removal and electricity generation performance, the desirable feeding S/N molar ratio was deemed as 3 and the optimal temperature was found to be 30 °C. Under this condition, the coupled MFC achieved a sum coulomb production of 554.8 C/d, a total nitrogen removal efficiency of 58.7 ± 1.3% and a sulfur production percent of 27.4 ± 0.4-33.3 ± 0.9%. The introduction of nitrifiers and electroactive oxic microbes from the oxic-cathode chamber into the anoxic-cathode chamber favored nitrogen removal.
Collapse
Affiliation(s)
- Zhuang Chen
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Shaohui Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China; Hubei Key Laboratory of Fuel Cell, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Liuxiang Zhong
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
6
|
Gonzalez-Martínez A, Chengyuan S, Rodriguez-Sanchez A, Pozo C, Gonzalez-Lopez J, Vahala R. Application of microbial fuel cell technology for wastewater treatment and electricity generation under Nordic countries climate conditions: Study of performance and microbial communities. BIORESOURCE TECHNOLOGY 2018; 270:1-10. [PMID: 30199700 DOI: 10.1016/j.biortech.2018.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/30/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
Two microbial fuel cells were inoculated with activated sludge from Finland and operated under moderate (25 °C) and low (8 °C) temperatures. Operation under real urban wastewater showed similarities in chemical oxygen demand removal and voltage generated, although moderate temperature supported higher ammonium oxidation. Fungi disappeared in the microbial fuel cell operated at temperature of 25 °C. Archaea domain was dominated by methanogenic archaea at both temperature scenarios. Important differences were observed in bacterial communities between both temperatures, however generating similar voltage. The results supported that the implementation of microbial fuel cells in Nordic countries operating under real conditions could be successful, as well as suggested the flexibility of cold-adapted inoculum for starting-up microbial fuel cells, regardless of the operating temperature of the system, obtaining higher COD removal and voltage generation performances at low temperature than at moderate temperature.
Collapse
Affiliation(s)
| | - Su Chengyuan
- Department of Environmental Engineering, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541004, People's Republic of China
| | | | - Clementina Pozo
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071 Granada, Spain
| | - Jesus Gonzalez-Lopez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071 Granada, Spain
| | - Riku Vahala
- Department of Built Environment, School of Engineering, Aalto University, P.O. Box 15200, Aalto, FI-00076 Espoo, Finland
| |
Collapse
|
7
|
Mathuriya AS, Jadhav DA, Ghangrekar MM. Architectural adaptations of microbial fuel cells. Appl Microbiol Biotechnol 2018; 102:9419-9432. [PMID: 30259099 DOI: 10.1007/s00253-018-9339-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/29/2018] [Accepted: 08/22/2018] [Indexed: 02/05/2023]
Abstract
Conventional wastewater treatment consumes a large amount of money worldwide for removal of pollutants prior to its discharge into water body or facilitating reuse. Decreasing energy expenditure during wastewater treatment and rather recovering some value-added products while treating wastewater is an important goal for researchers. Microbial fuel cells (MFCs) are representative bioelectrochemical systems, which offer energy-efficient wastewater treatment. MFCs convert chemical energy of organic matter into electrical energy by using biocatalytic activities. Although MFCs are not truly commercialized, they have potential to make energy-gaining wastewater treatment technologies and represent their capabilities successfully. Over the last decade, MFCs have developed remarkably in almost every dimension including wastewater treatment capabilities, power output, and cost optimization; however, its architectural design is an important consideration for scaling up. Here, we review various architectural advancements and technology up-gradation MFCs have experienced during its journey, to take this technology step forward for commercialization.
Collapse
Affiliation(s)
- Abhilasha S Mathuriya
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, 201306, India.
| | - Dipak A Jadhav
- School of Water Resources, Indian Institute of Technology, Kharagpur, 721302, India
| | - Makarand M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur, 721302, India
| |
Collapse
|
8
|
ter Heijne A, de Rink R, Liu D, Klok JBM, Buisman CJN. Bacteria as an Electron Shuttle for Sulfide Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2018; 5:495-499. [PMID: 30135862 PMCID: PMC6097799 DOI: 10.1021/acs.estlett.8b00319] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 05/13/2023]
Abstract
Biological desulfurization under haloalkaliphilic conditions is a widely applied process, in which haloalkalophilic sulfide-oxidizing bacteria (SOB) oxidize dissolved sulfide with oxygen as the final electron acceptor. We show that these SOB can shuttle electrons from sulfide to an electrode, producing electricity. Reactor solutions from two different biodesulfurization installations were used, containing different SOB communities; 0.2 mM sulfide was added to the reactor solutions with SOB in absence of oxygen, and sulfide was removed from the solution. Subsequently, the reactor solutions with SOB, and the centrifuged reactor solutions without SOB, were transferred to an electrochemical cell, where they were contacted with an anode. Charge recovery was studied at different anode potentials. At an anode potential of +0.1 V versus Ag/AgCl, average current densities of 0.48 and 0.24 A/m2 were measured for the two reactor solutions with SOB. Current was negligible for reactor solutions without SOB. We postulate that these differences in current are related to differences in microbial community composition. Potential mechanisms for charge storage in SOB are proposed. The ability of SOB to shuttle electrons from sulfide to an electrode offers new opportunities for developing a more sustainable desulfurization process.
Collapse
Affiliation(s)
- Annemiek ter Heijne
- Sub-department
of Environmental Technology, Wageningen
University, Bornse Weilanden
9, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- E-mail: . Telephone: +31 317 483447
| | - Rieks de Rink
- Sub-department
of Environmental Technology, Wageningen
University, Bornse Weilanden
9, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- Paqell
B.V., Reactorweg 301, 3542 AD Utrecht, The Netherlands
| | - Dandan Liu
- Sub-department
of Environmental Technology, Wageningen
University, Bornse Weilanden
9, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Johannes B. M. Klok
- Sub-department
of Environmental Technology, Wageningen
University, Bornse Weilanden
9, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- Paqell
B.V., Reactorweg 301, 3542 AD Utrecht, The Netherlands
- Wetsus,
Centre of Excellence for Sustainable Water Technology, Oostergoweg 9,
P.O. Box 1113, 8900 CC Leeuwarden, The Netherlands
| | - Cees J. N. Buisman
- Sub-department
of Environmental Technology, Wageningen
University, Bornse Weilanden
9, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- Wetsus,
Centre of Excellence for Sustainable Water Technology, Oostergoweg 9,
P.O. Box 1113, 8900 CC Leeuwarden, The Netherlands
| |
Collapse
|
9
|
Zhang S, Bao R, Lu J, Sang W. Simultaneous sulfide removal, nitrification, denitrification and electricity generation in three-chamber microbial fuel cells. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.12.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Sathishkumar K, Narenkumar J, Selvi A, Murugan K, Babujanarthanam R, Rajasekar A. Treatment of soak liquor and bioelectricity generation in dual chamber microbial fuel cell. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11424-11430. [PMID: 29423696 DOI: 10.1007/s11356-018-1371-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
The discharge of untreated soak liquor from tannery industry causes severe environmental pollution. This study is characterizing the soak liquor as a substrate in the microbial fuel cell (MFC) for remediation along with electricity generation. The dual chamber MFC was constructed and operated. Potassium permanganate was used as cathode solution and carbon felt electrode as anodic and cathodic material, respectively. The soak liquor was characterized by electrochemical studies viz., cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and polarization studies, respectively. The removal percentage of protein, lipid, and chemical oxygen demand (COD) were measured before and after treatment with MFC. The results of MFC showed a highest current density of 300 mA/cm2 and a power density of 92 mW/m2. The removal of COD, protein, and lipid were noted as 96, 81, and 97% respectively during MFC process. This MFC can be used in tannery industries for treating soak liquor and simultaneous electricity generation.
Collapse
Affiliation(s)
- Kuppusamy Sathishkumar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Vellore, 632 115, India
| | - Jayaraman Narenkumar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Vellore, 632 115, India
| | - Adikesavan Selvi
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Vellore, 632 115, India
| | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, India
- Thiruvalluvar University, Vellore, 632 115, India
| | - Ranganathan Babujanarthanam
- Nano and Energy Bioscience Laboratory, Department of Biotechnology, Thiruvalluvar University, Vellore, 632 115, India
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Vellore, 632 115, India.
| |
Collapse
|