1
|
Jannat MAH, Park SH, Hwang S. Modeling interactions of Clostridium cadaveris and Clostridium sporogenes in anaerobic acidogenesis of glucose and peptone. BIORESOURCE TECHNOLOGY 2024; 393:130099. [PMID: 38013037 DOI: 10.1016/j.biortech.2023.130099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
This study focuses on developing a mathematical model to assess interaction among acidogenic bacteria during the anaerobic degradation of two substrates. Clostridium cadaveris and Clostridium sporogenes were cultured in various combinations with glucose and peptone. Parameter estimates are given for both conventional Monod parameters from single substrate-single species cultures and sum kinetics with interaction parameters obtained from dual substrate-single species cultures. The presence of multiple substrates led to both inhibitory and enhancing effects on biodegradation rates for dual substrates compared to single substrate cultures. A new model of interspecies interaction was developed within the framework of Lotka-Volterra incorporating substrate interaction parameters, with a focus on accuracy, realism, simplicity, and biological significance. The model demonstrated competitive interaction for resource sharing and the additional non-linearity parameter eliminated the constraint of the linear relationship between growth rate and population density.
Collapse
Affiliation(s)
- Md Abu Hanifa Jannat
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea.
| | - Sang Hyeok Park
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea.
| | - Seokhwan Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea; Yonsei University Institute for Convergence Research and Education in Advanced Technology (I-CREATE), 85, Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea.
| |
Collapse
|
2
|
Zhuo T, Wan Q, Chai B, Ren D, Lei X, He L, Chen B. Eutrophic water remediation efficiency of algicidal bacteria, Cellvibrio sp. G1 and Chitinimonas sp. G2, and their influence on microbial community structure. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
3
|
Li S, Qu W, Chang H, Li J, Ho SH. Microalgae-driven swine wastewater biotreatment: Nutrient recovery, key microbial community and current challenges. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129785. [PMID: 36007366 DOI: 10.1016/j.jhazmat.2022.129785] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
As a promising technology, the microalgae-driven strategy can achieve environmentally sustainable and economically viable swine wastewater treatment. Currently, most microalgae-based research focuses on remediation improvement and biomass accumulation, while information on the removal mechanisms and dominant microorganisms is emerging but still limited. In this review, the major removal mechanisms of pollutants and pathogenic bacteria are systematically discussed. In addition, the bacterial and microalgal community during the swine wastewater treatment process are summarized. In general, Blastomonas, Flavobacterium, Skermanella, Calothrix and Sedimentibacter exhibit a high relative abundance. In contrast to the bacterial community, the microalgal community does not change much during swine wastewater treatment. Additionally, the effects of various parameters (characteristics of swine wastewater and cultivation conditions) on microalgal growth and current challenges in the microalgae-driven biotreatment process are comprehensively introduced. This review stresses the need to integrate bacterial and microalgal ecology information into the conventional design of full-scale swine wastewater treatment systems and operations. Herein, future research needs are also proposed, which will facilitate the development and operation of a more efficient microalgae-based swine wastewater treatment process.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Wenying Qu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China; College of Water Conservancy and Architecture Engineering, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Haixing Chang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Junfeng Li
- College of Water Conservancy and Architecture Engineering, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
4
|
|
5
|
Sureshkumar P, Thomas J. Exploring the distinctiveness of biomass and biomolecules from limnic microalgae of unexplored waters of Noyyal River, Western Ghats, for exploitation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23309-23322. [PMID: 32337670 DOI: 10.1007/s11356-020-08921-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Oleaginous microalgae with high biomass productivity, lipid content, and lipid productivity are desirable for sustainable biofuel production. Rapid and accurate quantification of lipid content facilitates the identification of promising microalgae candidates. In the present study, 23 freshwater microalgae species from river Noyyal were isolated and identified based on their morphological and molecular (18S rRNA) features and recorded as Karunya Algae Culture Collection (KACC). Their biomass and lipid content were characterized and screened using FT-IR, Nile red staining, and gravimetric method. Results generated from FT-IR spectra differentiated KACC microalgae based on their biochemical contents with Scenedesmus rubescens KACC 2 and Chlorococcum sp. KACC 13 possessed high total protein and lipid content, respectively. Nile red fluorescence at 530/575 nm showed the yellow fluorescence under a fluorescent microscope giving the evidence of high neutral lipids in 10 KACC microalgae isolates. Total lipid content showed prominent variation between the KACC isolates and found in the range of 4 to 32% of DW. Lipid productivity and biomass productivity showed a similar pattern among KACC strains. Thus, our findings serve as a baseline data on the bioprospecting potential of KACC isolates from river Noyyal, an unexplored area of Western Ghats.
Collapse
Affiliation(s)
- Pandian Sureshkumar
- Algae Biomass Research Laboratory, Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641 114, India
| | - Jibu Thomas
- Algae Biomass Research Laboratory, Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641 114, India.
| |
Collapse
|
6
|
Limayem A, Wasson S, Mehta M, Pokhrel AR, Patil S, Nguyen M, Chen J, Nayak B. High-Throughput Detection of Bacterial Community and Its Drug-Resistance Profiling From Local Reclaimed Wastewater Plants. Front Cell Infect Microbiol 2019; 9:303. [PMID: 31637218 PMCID: PMC6787911 DOI: 10.3389/fcimb.2019.00303] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/07/2019] [Indexed: 11/30/2022] Open
Abstract
Treated wastewater from reclaimed facilities (WWTP) has become a reusable source for a variety of applications, such as agricultural irrigation. However, it is also a potential reservoir of clinically-relevant multidrug resistant (MDR) pathogens, including ESKAPE (Enterococcus faecium and Streptococcus surrogates, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species along with the emerging nosocomial Escherichia strains). This study was performed to decipher the bacterial community structure through Illumina high throughput 16S rRNA gene sequencing, and to determine the resistance profile using the Sensititre antimicrobial susceptibility test (AST) conforming to clinical lab standards (NCCLS). Out of 1747 bacterial strains detected from wastewater influent and effluent, Pseudomonas was the most predominant genus related to ESKAPE in influent, with sequence reads corresponding to 21.356%, followed by Streptococcus (6.445%), Acinetobacter (0.968%), Enterococcus (0.063%), Klebsiella (0.038%), Escherichia (0.028%) and Staphylococcus (0.004%). Despite the different treatment methods used, the effluent still revealed the presence of some Pseudomonas strains (0.066%), and a wide range of gram-positive cocci, including Staphylococcus (0.194%), Streptococcus (0.63%) and Enterococcus (0.037%), in addition to gram-negative Acinetobacter (0.736%), Klebsiella (0.1%), and Escherichia sub-species (0.811%). The AST results indicated that the strains Escherichia along with Klebsiella and Acinetobacter, isolated from the effluent, displayed resistance to 11 antibiotics, while Pseudomonas was resistant to 7 antibiotics, and Streptococcus along with Staphylococcus were resistant to 9 antibiotics. Results herein, proved the existence of some nosocomial MDR pathogens, known for ESKAPE, with potential drug resistance transfer to the non-pathogen microbes, requiring targeted remediation.
Collapse
Affiliation(s)
- Alya Limayem
- Graduate Program, Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States.,Division of Translational Medicine, Center for Education in Nanobioengineering, University of South Florida, Tampa, FL, United States
| | - Sarah Wasson
- Graduate Program, Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Mausam Mehta
- Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Anaya Raj Pokhrel
- Graduate Program, Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Shrushti Patil
- Graduate Program, Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Minh Nguyen
- College of Public Health, University of South Florida, Tampa, FL, United States.,College of Arts and Sciences, University of South Florida, Tampa, FL, United States
| | - Jing Chen
- Graduate Program, Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Bina Nayak
- Pinellas County Utilities, Water Quality Division, Largo, FL, United States
| |
Collapse
|
7
|
Chang BV, Chang YT, Chao WL, Yeh SL, Kuo DL, Yang CW. Effects of sulfamethoxazole and sulfamethoxazole-degrading bacteria on water quality and microbial communities in milkfish ponds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:305-316. [PMID: 31158659 DOI: 10.1016/j.envpol.2019.05.136] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
Intensive farming practices are typically used for aquaculture. To prevent disease outbreaks, antibiotics are often used to reduce pathogenic bacteria in aquaculture animals. However, the effects of antibiotics on water quality and microbial communities in euryhaline fish culture ponds are largely unknown. The aim of this study was to investigate the interactions between sulfamethoxazole (SMX), water quality and microbial communities in milkfish (Chanos chanos) culture ponds. The results of small-scale milkfish pond experiments indicated that the addition of SMX decreased the abundance of ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB) and photosynthetic bacteria. Consequently, the levels of ammonia and total phosphorus in the fish pond water increased, causing algal and cyanobacterial blooms to occur. In contrast, the addition of the SMX-degrading bacterial strains A12 and L effectively degraded SMX and reduced the levels of ammonia and total phosphorus in fish pond water. Furthermore, the abundances of AOB, NOB and photosynthetic bacteria were restored, and algal and cyanobacterial blooms were inhibited. This study demonstrate the influences of SMX on water quality and microbial community composition in milkfish culture ponds. Moreover, the use of the bacterial strains A12 and L as dual function (bioaugmentation and water quality maintenance) beneficial bacteria was shown to provide an effective approach for the bioremediation of SMX-contaminated euryhaline milkfish culture ponds.
Collapse
Affiliation(s)
- Bea-Ven Chang
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Yi-Tang Chang
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Wei-Liang Chao
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Shinn-Lih Yeh
- Mariculture Research Center, Council of Agriculture, Tainan City, Taiwan
| | - Dong-Lin Kuo
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Chu-Wen Yang
- Department of Microbiology, Soochow University, Taipei, Taiwan.
| |
Collapse
|
8
|
Zhang S, Courtois S, Gitungo S, Raczko RF, Dyksen JE, Li M, Axe L. Microbial community analysis in biologically active filters exhibiting efficient removal of emerging contaminants and impact of operational conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:1455-1464. [PMID: 30021312 DOI: 10.1016/j.scitotenv.2018.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/02/2018] [Accepted: 06/02/2018] [Indexed: 06/08/2023]
Abstract
In biologically active filters (BAFs), microorganisms acclimated on the media surface are the key players responsible for removing organic water contaminants. In this study, next generation sequencing by Illumina MiSeq was used to characterize the microbial community structures in the influent, effluent, and media of a set of bench-scale BAFs that have been demonstrated with high removal efficiency (>75%) of 16 contaminants of emerging concern (CECs), which include a variety of pharmaceuticals (e.g., sulfamethoxazole and ibuprofen), X-ray contrast agent (i.e., iopromide), and pesticides (e.g., atrazine) that are prevalently found in municipal waste streams. Proteobacteria and Planctomycetes were the most abundant phyla in filter media, while the influent and effluent samples were dominated by Proteobacteria, Actinobacteria, and Chlamydiae. Factorial and principal component analysis revealed microbial structures in the media were significantly affected by the operation conditions, including media type (GAC versus dual media anthracite sand), EBCT (10 versus 18 min), and pre-ozonation. Detrended correspondence analysis demonstrated media materials predominantly governed the structures of the acclimated biofilm in BAFs as they provide direct attachment surface. This is in line with the higher microbial activity and better treatment performance exhibited by GAC BAFs compared to the dual media BAFs, corroborating the importance of filter media selection to promote the acclimation of active and robust biofilm for efficient CEC removal. Principal component analysis revealed the significant influence from ozonation, which does not only break down CECs, but also stimulates microbes that grow on the ozonation products. Partial canonical correlation analysis further proved the shaping of biofilm communities on the BAF media is more associated with media type and ozonation compared to EBCT. Putative CEC degraders are predicted based on their dominance in the media and degradation capabilities reported in previous literature. This is the first study to examine the relationship between the microbial community structure and the BAF operating parameters, which are both aligned with the treatment performance exhibited by the BAFs.
Collapse
Affiliation(s)
- Shuangyi Zhang
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Sophie Courtois
- Suez, Centre International de Recherche sur l'Eau et l'Environnement, Le Pecq 78230, France
| | - Stephen Gitungo
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | | | - John E Dyksen
- Suez North America, Paramus, NJ 07652, United States
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States.
| | - Lisa Axe
- Otto H. York Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States.
| |
Collapse
|