1
|
Bisaccia M, Berini F, Marinelli F, Binda E. Emerging Trends in Antimicrobial Resistance in Polar Aquatic Ecosystems. Antibiotics (Basel) 2025; 14:394. [PMID: 40298543 PMCID: PMC12024378 DOI: 10.3390/antibiotics14040394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 04/30/2025] Open
Abstract
The global spread of antimicrobial resistance (AMR) threatens to plummet society back to the pre-antibiotic era through a resurgence of common everyday infections' morbidity. Thus, studies investigating antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in urban, agricultural, and clinical settings, as well as in extreme environments, have become increasingly relevant in the One Health perspective. Since the Antarctic and Arctic regions are considered amongst the few remaining pristine environments on Earth, the characterization of their native resistome appears to be of the utmost importance to understand whether and how it is evolving as a result of anthropogenic activities and climate change. In the present review, we report on the phenotypic (e.g., disk diffusion test) and genotypic (e.g., PCR, metagenomics) approaches used to study AMR in the aquatic environment of polar regions, as water represents one of AMR main dissemination routes in nature. Their advantages and limits are described, and the emerging trends resulting from the analysis of ARB and ARGs diffusion in polar waters discussed. The resistome detected in these extreme environments appears to be mostly comparable to those from more anthropized areas, with the predominance of tetracycline, β-lactam, and sulfonamide resistance (and related ARGs). Indeed, AMR is, in all cases, more consistently highlighted in sites impacted by human and wildlife activities with respect to more pristine ones. Surprisingly, aminoglycoside and fluroquinolone determinants seem to have an even higher incidence in the Antarctic and Arctic aquatic environment compared to that from other areas of the world, corroborating the need for a more thorough AMR surveillance in these regions.
Collapse
Affiliation(s)
- Melissa Bisaccia
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (M.B.); (F.B.); (E.B.)
| | - Francesca Berini
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (M.B.); (F.B.); (E.B.)
- Climate Change Research Center (CCRC), University of Insubria, 22100 Como, Italy
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (M.B.); (F.B.); (E.B.)
- Climate Change Research Center (CCRC), University of Insubria, 22100 Como, Italy
| | - Elisa Binda
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (M.B.); (F.B.); (E.B.)
| |
Collapse
|
2
|
Caruso G, Azzaro M, Dell’Acqua O, Papale M, Lo Giudice A, Laganà P. Plastic Polymers and Antibiotic Resistance in an Antarctic Environment (Ross Sea): Are We Revealing the Tip of an Iceberg? Microorganisms 2024; 12:2083. [PMID: 39458392 PMCID: PMC11510405 DOI: 10.3390/microorganisms12102083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Microbial colonization of plastic polymers in Antarctic environments is an under-investigated issue. While several studies are documenting the spread of plastic pollution in the Ross Sea, whether the formation of a plastisphere (namely the complex microbial assemblage colonizing plastics) may favor the spread of antibiotic-resistant bacteria (ARB) in this marine environment is unknown yet. A colonization experiment was performed in this ecosystem, aiming at exploring the potential role of plastic polymers as a reservoir of antibiotic resistance. To this end, the biofilm-producing activity and the antibiotic susceptibility profiles of bacterial strains isolated from biofilms colonizing submerged polyvinylchloride and polyethylene panels were screened. The colonization experiment was carried out at two different sites of the Ross Sea, namely Road Bay and Tethys Bay. Most of bacterial isolates were able to produce biofilm; several multidrug resistances were detected in the bacterial members of biofilms associated to PVC and PE (also named as the plastisphere), as well as in the bacterial strains isolated from the surrounding water. The lowest percentage of ARB was found in the PE-associated plastisphere from the not-impacted (control) Punta Stocchino station, whereas the highest one was detected in the PVC-associated plastisphere from the Tethys Bay station. However, no selective enrichment of ARB in relation to the study sites or to either type of plastic material was observed, suggesting that resistance to antibiotics was a generalized widespread phenomenon. Resistance against to all the three classes of antibiotics assayed in this study (i.e., cell wall antibiotics, nucleic acids, and protein synthesis inhibitors) was observed. The high percentage of bacterial isolates showing resistance in remote environments like Antarctic ones, suffering increasing anthropic pressure, points out an emerging threat with a potential pathogenic risk that needs further deepening studies.
Collapse
Affiliation(s)
- Gabriella Caruso
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122 Messina, Italy; (M.A.); (M.P.); (A.L.G.)
| | - Maurizio Azzaro
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122 Messina, Italy; (M.A.); (M.P.); (A.L.G.)
| | - Ombretta Dell’Acqua
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy;
| | - Maria Papale
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122 Messina, Italy; (M.A.); (M.P.); (A.L.G.)
| | - Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122 Messina, Italy; (M.A.); (M.P.); (A.L.G.)
- Italian Collection of Antarctic Bacteria, National Antarctic Museum (CIBAN-MNA), Viale Ferdinando Stagno d’Alcontrès 31, 98168 Messina, Italy
| | - Pasqualina Laganà
- Department of Biomedical and Dentistry Sciences and Morphological and Functional Images (BIOMORF), University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy;
| |
Collapse
|
3
|
Yi X, Wen P, Liang JL, Jia P, Yang TT, Feng SW, Liao B, Shu WS, Li JT. Phytostabilization mitigates antibiotic resistance gene enrichment in a copper mine tailings pond. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130255. [PMID: 36327844 DOI: 10.1016/j.jhazmat.2022.130255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/06/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Mining-impacted environments are distributed globally and have become increasingly recognized as hotspots of antibiotic resistance genes (ARGs). However, there are currently no reports on treatment technologies to deal with such an important environmental problem. To narrow this knowledge gap, we implemented a phytostabilization project in an acidic copper mine tailings pond and employed metagenomics to explore ARG characteristics in the soil samples. Our results showed that phytostabilization decreased the total ARG abundance in 0-10 cm soil layer by 75 %, which was companied by a significant decrease in ARG mobility, and a significant increase in ARG diversity and microbial diversity. Phytostabilization was also found to drastically alter the ARG host composition and to significantly reduce the total abundance of virulence factor genes of ARG hosts. Soil nutrient status, heavy metal toxicity and SO42- concentration were important physicochemical factors to affect the total ARG abundance, while causal mediation analysis showed that their effects were largely mediated by the changes in ARG mobility and microbial diversity. The increase in ARG diversity associated with phytostabilization was mainly mediated by a small subgroup of ARG hosts, most of which could not be classified at the genus level and deserve further research in the future.
Collapse
Affiliation(s)
- Xinzhu Yi
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Ping Wen
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Jie-Liang Liang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Tao-Tao Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shi-Wei Feng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
4
|
Depta J, Niedźwiedzka-Rystwej P. The Phenomenon of Antibiotic Resistance in the Polar Regions: An Overview of the Global Problem. Infect Drug Resist 2023; 16:1979-1995. [PMID: 37034396 PMCID: PMC10081531 DOI: 10.2147/idr.s369023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/02/2022] [Indexed: 04/11/2023] Open
Abstract
The increasing prevalence of antibiotic resistance is a global problem in human and animal health. This leads to a reduction in the therapeutic effectiveness of the measures used so far and to the limitation of treatment options, which may pose a threat to human health and life. The problem of phenomenon of antibiotic resistance affects more and more the polar regions. This is due to the increase in tourist traffic and the number of people staying at research stations, unmodernised sewage systems in inhabited areas, as well as the migration of animals or the movement of microplastics, which may contain resistant bacteria. Research shows that the presence of antibiotic resistance genes is more dominant in zones of human and wildlife influence than in remote areas. In a polluted environment, there is evidence of a direct correlation between human activity and the spread and survival of antibiotic-resistant bacteria. Attention should be paid to the presence of resistance to synthetic and semi-synthetic antibiotics in the polar regions, which is likely to be correlated with human presence and activity, and possible steps to be taken. We need to understand many more aspects of this, such as bacterial epigenetics and environmental stress, in order to develop effective strategies for minimizing the spread of antibiotic resistance genes. Studying the diversity and abundance of antibiotic resistance genes in regions with less anthropogenic activity could provide insight into the diversity of primary genes and explain the historical evolution of antibiotic resistance.
Collapse
Affiliation(s)
- Julia Depta
- Institute of Biology, University of Szczecin, Szczecin, 71-412, Poland
| | - Paulina Niedźwiedzka-Rystwej
- Institute of Biology, University of Szczecin, Szczecin, 71-412, Poland
- Correspondence: Paulina Niedźwiedzka-Rystwej, Institute of Biology, University of Szczecin, Szczecin, 71-412, Poland, Tel +48 91 444 15 15, Email
| |
Collapse
|
5
|
Benthic Microbial Communities in a Seasonally Ice-Covered Sub-Arctic River (Pasvik River, Norway) Are Shaped by Site-Specific Environmental Conditions. Microorganisms 2022; 10:microorganisms10051022. [PMID: 35630464 PMCID: PMC9147904 DOI: 10.3390/microorganisms10051022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023] Open
Abstract
The Pasvik River experiences chemical, physical, and biological stressors due to the direct discharges of domestic sewage from settlements located within the catchment and runoff from smelter and mine wastes. Sediments, as a natural repository of organic matter and associated contaminants, are of global concern for the possible release of pollutants in the water column, with detrimental effects on aquatic organisms. The present study was aimed at characterizing the riverine benthic microbial community and evaluating its ecological role in relation to the contamination level. Sediments were sampled along the river during two contrasting environmental periods (i.e., beginning and ongoing phases of ice melting). Microbial enzymatic activities, cell abundance, and morphological traits were evaluated, along with the phylogenetic community composition. Amplified 16S rRNA genes from bacteria were sequenced using a next-generation approach. Sediments were also analyzed for a variety of chemical features, namely particulate material characteristics and concentration of polychlorobiphenyls, polycyclic aromatic hydrocarbons, and pesticides. Riverine and brackish sites did not affect the microbial community in terms of main phylogenetic diversity (at phylum level), morphometry, enzymatic activities, and abundance. Instead, bacterial diversity in the river sediments appeared to be influenced by the micro-niche conditions, with differences in the relative abundance of selected taxa. In particular, our results highlighted the occurrence of bacterial taxa directly involved in the C, Fe, and N cycles, as well as in the degradation of organic pollutants and toxic compounds.
Collapse
|
6
|
Facciolà A, Laganà P, Caruso G. The COVID-19 pandemic and its implications on the environment. ENVIRONMENTAL RESEARCH 2021; 201:111648. [PMID: 34242676 PMCID: PMC8261195 DOI: 10.1016/j.envres.2021.111648] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 05/06/2023]
Abstract
The emerging threat posed by COVID-19 pandemic has strongly modified our lifestyle, making urgent to re-consider the humans-environment relationships and stimulating towards more sustainable choices in our daily behavior. Scientific evidences showed that the onset of new viral pathogens with a high epidemic-pandemic potential is often the result of complex interactions between animals, humans and environment. In this context, the interest of the scientific community has also been attracted towards the potential interactions of SARS-CoV-2 with environmental compartments. Many issues, ranging from the epidemiology and persistence of SARS-CoV-2 in water bodies to the potential implications of lockdown measures on environmental quality status are here reviewed, with a special reference to marine ecosystems. Due to current sanitary emergence, the relevance of pilot studies regarding the interactions between SARS-CoV-2 spread and the direct and indirect environmental impacts of the COVID-19 pandemic, that are still a matter of scientific debate, is underlined.
Collapse
Affiliation(s)
- Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| | - Pasqualina Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy.
| | - Gabriella Caruso
- Institute of Polar Sciences (ISP), National Research Council (CNR), Messina, Italy
| |
Collapse
|
7
|
Evaluation of Antibiotic Resistance in Bacterial Strains Isolated from Sewage of Slaughterhouses Located in Sicily (Italy). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189611. [PMID: 34574535 PMCID: PMC8467622 DOI: 10.3390/ijerph18189611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022]
Abstract
Antimicrobial resistance is presently one of the most public health critical concerns. The frequent and often incorrect use of antibiotics in animal husbandry has led to the spread of antimicrobial resistance in this setting. Wastewater from slaughterhouses can be contaminated with multidrug-resistant bacteria, representing a possible cross-contamination route. We evaluated the presence of antibiotic-resistant bacteria in wastewater samples from slaughterhouses located in an Italian region. Specifically, 18 slaughterhouses were included in the study. Of the tested samples, 40 bacterial strains were chosen, identified, and tested for antibiotic susceptibility. Pseudomonas spp., Proteus spp., Enterobacter spp., Aeromonas spp., and Citrobacter spp. were the most detected genera. The most resistant strains were on average those belonging to Enterobacter spp. The highest resistance rate was recorded for macrolides. Among β-lactams, penicillins and cephalosporins were by far the molecules towards which the highest resistance was detected. A very interesting finding is the difference found in strains detected in wastewater from poultry slaughterhouses, in which higher levels for almost all the considered drugs were detected compared to those from ungulates slaughterhouses. Our results indicate wastewater from slaughterhouses as a potential vehicle of resistant bacteria and highlight the importance of correct management of these kinds of waters.
Collapse
|
8
|
Laganà P, Visalli G, Facciolà A, Ciarello MP, Laganà A, Iannazzo D, Di Pietro A. Is the Antibacterial Activity of Multi-Walled Carbon Nanotubes (MWCNTs) Related to Antibiotic Resistance? An Assessment in Clinical Isolates. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179310. [PMID: 34501898 PMCID: PMC8431017 DOI: 10.3390/ijerph18179310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
Antimicrobial resistance has spread globally, compromising the treatment of common infections. This feature is particularly harmful for nosocomial pathogens that can survive on hospital surfaces. Research studies have been conducted to evaluate new materials that are able to counteract the microbial growth and the colonization of the hospital environment. In this context, nanotechnologies have showed encouraging applications. We investigated the antibacterial activity of multi-walled carbon nanotubes (MWCNTs), both pristine (p) and functionalized (f), at concentrations of 50 and 100 μg mL−1, against bacterial strains isolated from hospital-acquired infections, and this activity was correlated with the antibiotic susceptibility of the strains. The inhibiting effect of MWCNTs occurred for both types and doses tested. Moreover, f-MWCNTs exerted a greater inhibiting effect, with growth decreases greater than 10% at 24 h and 20% at 48 h compared to p-MWCNTs. Moreover, a lower inhibitory effect of MWCNTs, which was more lasting in Gram-positives resistant to cell wall antibiotics, or temporary in Gram-negatives resistant to nucleic acid and protein synthesis inhibitors, was observed, highlighting the strong relation between antibiotic resistance and MWCNT effect. In conclusion, an antimicrobial activity was observed especially for f-MWCNTs that could therefore be loaded with bioactive antimicrobial molecules. However, this potential application of CNTs presupposes the absence of toxicity and therefore total safety for patients.
Collapse
Affiliation(s)
- Pasqualina Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.F.); (M.P.C.); (A.L.); (A.D.P.)
- Correspondence:
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.F.); (M.P.C.); (A.L.); (A.D.P.)
| | - Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.F.); (M.P.C.); (A.L.); (A.D.P.)
| | - Marianna Pruiti Ciarello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.F.); (M.P.C.); (A.L.); (A.D.P.)
| | - Antonio Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.F.); (M.P.C.); (A.L.); (A.D.P.)
| | - Daniela Iannazzo
- Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, 98125 Messina, Italy;
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.F.); (M.P.C.); (A.L.); (A.D.P.)
| |
Collapse
|
9
|
Ice Melt-Induced Variations of Structural and Functional Traits of the Aquatic Microbial Community along an Arctic River (Pasvik River, Norway). WATER 2021. [DOI: 10.3390/w13162297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The effects of climate change-induced ice melting on the microbial communities in different glacial-fed aquatic systems have been reported, but seasonal dynamics remain poorly investigated. In this study, the structural and functional traits of the aquatic microbial community were assessed along with the hydrological and biogeochemical variation patterns of the Arctic Pasvik River under riverine and brackish conditions at the beginning (May = Ice-melt (−)) and during the ice-melting season (July = Ice-melt (+)). The microbial abundance and morphometric analysis showed a spatial diversification between the riverine and brackish stations. Results highlighted different levels of microbial respiration and activities with different carbon and phosphorous utilization pathways, thus suggesting an active biogeochemical cycling along the river especially at the beginning of the ice-melting period. At Ice-melt (−), Gammaproteobacteria and Alphaproteobacteria were dominant in riverine and brackish stations, respectively. Conversely, at Ice-melt (+), the microbial community composition was more homogeneously distributed along the river (Gammaproteobacteria > Alphaproteobacteria > Bacteroidetes). Our findings provide evidence on how riverine microbial communities adapt and respond to seasonal ice melting in glacial-fed aquatic ecosystems.
Collapse
|
10
|
Bacterial Diversity in a Dynamic and Extreme Sub-Arctic Watercourse (Pasvik River, Norwegian Arctic). WATER 2020. [DOI: 10.3390/w12113098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Microbial communities promptly respond to the environmental perturbations, especially in the Arctic and sub-Arctic systems that are highly impacted by climate change, and fluctuations in the diversity level of microbial assemblages could give insights on their expected response. 16S rRNA gene amplicon sequencing was applied to describe the bacterial community composition in water and sediment through the sub-Arctic Pasvik River. Our results showed that river water and sediment harbored distinct communities in terms of diversity and composition at genus level. The distribution of the bacterial communities was mainly affected by both salinity and temperature in sediment samples, and by oxygen in water samples. Glacial meltwaters and runoff waters from melting ice probably influenced the composition of the bacterial community at upper and middle river sites. Interestingly, marine-derived bacteria consistently accounted for a small proportion of the total sequences and were also more prominent in the inner part of the river. Results evidenced that particular conditions occurring at sampling sites (such as algal blooms, heavy metal contamination and anaerobiosis) may select species at local scale from a shared bacterial pool, thus favoring certain bacterial taxa. Conversely, the few phylotypes specifically detected in some sites are probably due to localized external inputs introducing allochthonous microbial groups.
Collapse
|
11
|
Microbial Abundance and Enzyme Activity Patterns: Response to Changing Environmental Characteristics along a Transect in Kongsfjorden (Svalbard Islands). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8100824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Svalbard archipelago is experiencing the effects of climate changes (i.e., glaciers’ thickness reduction and glacier front retreat), but how ice melting affects water biogeochemistry is still unknown. Microbial communities often act as environmental sentinels, modulating their distribution and activity in response to environmental variability. To assess microbial response to climate warming, within the ARctic: present Climatic change and pAst extreme events (ARCA) project, a survey was carried out along a transect in Konsfjorden from off-shore stations towards the Kronebreen glacier. Total bacterial abundance and the fraction of actively respiring cells (labelled by cyanotetrazolium chloride, CTC), cultivable heterotrophic bacterial abundance, and extracellular enzymatic activities (leucine aminopeptidase (LAP), beta-glucosidase (GLU), and alkaline phosphatase (AP)) were measured. In addition, water temperature, salinity, dissolved oxygen, turbidity, total suspended matter (TSM), particulate and chromophoric dissolved organic matter (CDOM), chlorophyll-a (Chl-a), and inorganic compounds were determined, in order to evaluate whether variations in microbial abundance and metabolism were related with changes in environmental variables. Colder waters at surface (3.5–5 m) depths and increased turbidity, TSM, and inorganic compounds found at some hydrological stations close to the glacier were signals of ice melting. CDOM absorption slope values (275–295 nm) varied from 0.0077 to 0.0109 nm−1, and total bacterial cell count and cultivable heterotrophic bacterial abundance were in the order of 106 cells/mL and 103 colony forming units/mL, respectively. Enzymatic rates <1.78, 1.25, and 0.25 nmol/L/h were recorded for AP, LAP, and GLU, respectively. Inorganic compounds, TSM, and turbidity correlated inversely with temperature; AP was significantly related with CDOM absorption spectra and heterotrophic bacteria (r = 0.59, 0.71, p < 0.05); and LAP with Chl-a, Particulate Organic Carbon (POC) and Particulate Organic Nitrogen (PON) (0.97, 0.780, 0.734, p < 0.01), suggesting that fresh material from ice melting stimulated the metabolism of the cultivable fraction.
Collapse
|
12
|
Caputo S, Papale M, Rizzo C, Giannarelli S, Conte A, Moscheo F, Graziano M, Aspholm PE, Onor M, De Domenico E, Miserocchi S, Michaud L, Azzaro M, Lo Giudice A. Metal Resistance in Bacteria from Contaminated Arctic Sediment is Driven by Metal Local Inputs. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 77:291-307. [PMID: 30982081 DOI: 10.1007/s00244-019-00628-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
Anthropogenic impact over the Pasvik River (Arctic Norway) is mainly caused by emissions from runoff from smelter and mine wastes, as well as by domestic sewage from the Russian, Norwegian, and Finnish settlements situated on its catchment area. In this study, sediment samples from sites within the Pasvik River area with different histories of metal input were analyzed for metal contamination and occurrence of metal-resistant bacteria in late spring and summer of 2014. The major differences in microbial and chemical parameters were mostly dependent on local inputs than seasonality. Higher concentrations of metals were generally detected in July rather than May, with inner stations that became particularly enriched in Cr, Ni, Cu, and Zn, but without significant differences. Bacterial resistance to metals, which resulted from viable counts on amended agar plates, was in the order Ni2+>Pb2+>Co2+>Zn2+>Cu2+>Cd2+>Hg2+, with higher values that were generally determined at inner stations. Among a total of 286 bacterial isolates (mainly achieved from Ni- and Pb-amended plates), the 7.2% showed multiresistance at increasing metal concentration (up to 10,000 ppm). Selected multiresistant isolates belonged to the genera Stenotrophomonas, Arthrobacter, and Serratia. Results highlighted that bacteria, rapidly responding to changing conditions, could be considered as true indicators of the harmful effect caused by contaminants on human health and environment and suggested their potential application in bioremediation processes of metal-polluted cold sites.
Collapse
Affiliation(s)
- Simona Caputo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Maria Papale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Carmen Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Stefania Giannarelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Antonella Conte
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Federica Moscheo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Marco Graziano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Paul Eric Aspholm
- Norwegian Institute of Bioeconomy Research (NIBIO), 9925, Svanvik, Norway
| | - Massimo Onor
- Institute of Chemistry of Organometallic Compounds, National Research Council (ICCOM-CNR), Via G. Moruzzi 1, 56124, Pisa, Italy
| | - Emilio De Domenico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Stefano Miserocchi
- Institute of Marine Sciences, National Research Council (ISMAR-CNR), Via Gobetti 101, 40129, Bologna, Italy
| | - Luigi Michaud
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Maurizio Azzaro
- Institute of Marine Biological Resources and Biotechnology, National Research Council (IRBIM-CNR), Spianata San Raineri 86, 98122, Messina, Italy
| | - Angelina Lo Giudice
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy.
- Institute of Marine Biological Resources and Biotechnology, National Research Council (IRBIM-CNR), Spianata San Raineri 86, 98122, Messina, Italy.
| |
Collapse
|
13
|
Rappazzo AC, Papale M, Rizzo C, Conte A, Giannarelli S, Onor M, Abete C, Cefali P, De Domenico E, Michaud L, Lo Giudice A. Heavy metal tolerance and polychlorinated biphenyl oxidation in bacterial communities inhabiting the Pasvik River and the Varanger Fjord area (Arctic Norway). MARINE POLLUTION BULLETIN 2019; 141:535-549. [PMID: 30955766 DOI: 10.1016/j.marpolbul.2019.01.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 01/11/2019] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
Heavy metals (HMs) and polychlorobiphenyls (PCBs) enter the Arctic environment through a variety of anthropogenic sources with deleterious effects towards biota and public health. Bacteria first transfer toxic compounds to higher trophic levels and, due to the tight link existing between prokaryotic community functions and the type and concentration of contaminants, they may be useful indicator of pollution events and potential toxicity to other forms of life. The occurrence and abundance of HM-tolerant and PCB-oxidizing bacteria in the sub-Arctic Pasvik river area, heavily impacted by anthropogenic modifications, was related to HM and PCB contamination. This latter more likely derived from local inputs rather than a global contamination with higher PCB and HM amounts (and higher bacterial viable counts) that were determined in inner and middle sections of the River. Finally, a panel of bacteria with potential applications in the bioremediation of cold environments were selected and phylogenetically identified.
Collapse
Affiliation(s)
- Alessandro Ciro Rappazzo
- Institute for the Biological Resources and Marine Biotechnology, National Research Council (IRBIM-CNR), Spianata San Raineri 86, 98122 Messina, Italy
| | - Maria Papale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Carmen Rizzo
- Institute for the Biological Resources and Marine Biotechnology, National Research Council (IRBIM-CNR), Spianata San Raineri 86, 98122 Messina, Italy; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Antonella Conte
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Stefania Giannarelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Massimo Onor
- Institute of Chemistry of Organometallic Compounds, National Research Council (ICCOM-CNR), via G. Moruzzi 1, 56124 Pisa, Italy
| | - Carlo Abete
- Institute of Chemistry of Organometallic Compounds, National Research Council (ICCOM-CNR), via G. Moruzzi 1, 56124 Pisa, Italy
| | - Pietro Cefali
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Emilio De Domenico
- Institute for the Biological Resources and Marine Biotechnology, National Research Council (IRBIM-CNR), Spianata San Raineri 86, 98122 Messina, Italy; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Luigi Michaud
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Angelina Lo Giudice
- Institute for the Biological Resources and Marine Biotechnology, National Research Council (IRBIM-CNR), Spianata San Raineri 86, 98122 Messina, Italy; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
14
|
Laganà P, Caruso G, Corsi I, Bergami E, Venuti V, Majolino D, La Ferla R, Azzaro M, Cappello S. Do plastics serve as a possible vector for the spread of antibiotic resistance? First insights from bacteria associated to a polystyrene piece from King George Island (Antarctica). Int J Hyg Environ Health 2019; 222:89-100. [DOI: 10.1016/j.ijheh.2018.08.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 11/25/2022]
|