1
|
Maculewicz J, Białk-Bielińska A, Kowalska D, Stepnowski P, Stolte S, Beil S, Gajewicz-Skretna A, Dołżonek J. Bioconcentration potential of ionic liquids: New data on membrane partitioning and its comparison with predictions obtained by COSMOmic. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184320. [PMID: 38583701 DOI: 10.1016/j.bbamem.2024.184320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Ionic liquids (ILs) have recently gained significant attention in both the scientific community and industry, but there is a limited understanding of the potential risks they might pose to the environment and human health, including their potential to accumulate in organisms. While membrane and storage lipids have been considered as primary sorption phases driving bioaccumulation, in this study we used an in vitro tool known as solid-supported lipid membranes (SSLMs) to investigate the affinity of ILs to membrane lipid - phosphatidylcholine and compare the results with an existing in silico model. Our findings indicate that ILs may have a strong affinity for the lipids that form cell membranes, with the key factor being the length of the cation's side chain. For quaternary ammonium cations, increase in membrane affinity (logMA) was observed from 3.45 ± 0.06 at 10 carbon atoms in chain to 4.79 ± 0.06 at 14 carbon atoms. We also found that the anion can significantly affect the membrane partitioning of the cation, even though the anions themselves tend to have weaker interactions with phospholipids than the cations of ILs. For 1-methyl-3-octylimidazolium cation the presence of tricyanomethanide anion caused increase in logMA to 4.23 ± 0.06. Although some of our data proved to be consistent with predictions made by the COSMOmic model, there are also significant discrepancies. These results suggest that further research is needed to improve our understanding of the mechanisms and structure-activity relationships involved in ILs bioconcentration and to develop more accurate predictive models.
Collapse
Affiliation(s)
- Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Dorota Kowalska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Stefan Stolte
- Institute of Water Chemistry, TU Dresden, 01062 Dresden, Germany
| | - Stephan Beil
- Institute of Water Chemistry, TU Dresden, 01062 Dresden, Germany
| | - Agnieszka Gajewicz-Skretna
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Joanna Dołżonek
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| |
Collapse
|
2
|
Ashtaputrey SD, Agrawal PS. Fenton and photo-assisted advanced oxidative degradation of ionic liquids: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103576-103601. [PMID: 37715035 DOI: 10.1007/s11356-023-29777-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
Ionic liquids (ILs) are the class of materials which are purely ionic in nature and liquid at room temperature. Their remarkable properties like very low vapour pressure, non-inflammable and high heat resistance are responsible for their use as a very appealing solvent in a variety of industrial applications in place of regular organic solvents. Because ILs are water soluble to a certain extent, the industrial wastewater effluents are found to contaminate with their traces. The non-biodegradability of ILs attracts the attention of the researchers for their removal or degradation from wastewater. Numbers of methods are available for the treatment of wastewater. However, it is very crucial to use the most efficient method for the degradation of ILs. Advanced oxidation process (AOP) is one of the most important techniques for the treatment of ILs in wastewater which have been investigated during last decades. This review paper covers the cost-effective Fenton, photochemical and photocatalytic AOPs and their combination that could be applied for the degradation of ILs from the wastewater. Theoretical explanations of these AOPs along with experimental conditions and kinetics of degradation or removal of ILs from water and wastewater have been reported and compared. Finally, future perspectives of IL degradation are presented.
Collapse
Affiliation(s)
| | - Pratibha S Agrawal
- Department of Applied Chemistry, Laxminarayan Institute of Technology, RTM Nagpur University, Nagpur, MS, India, 440010
| |
Collapse
|
3
|
Lyu P, Guo W, Qi H, Yuan X, Ma J, Xu X, Zhou H. Degradation of 1-alkyl-3-methylimidazolium tetrafluoroborate in an ultrasonic zero-valent zinc and activated carbon micro-electrolysis system. Sci Rep 2023; 13:1951. [PMID: 36732576 PMCID: PMC9894912 DOI: 10.1038/s41598-023-28237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Increased attention has been given to the removal of ionic liquids (ILs) from natural water environments. In this work, 5 kinds of 1-alkyl-3-methylimidazoliumtetrafluoroborate ([Cnmim][BF4] (n = 2, 4, 6, 8, 10)) ILs were degraded in an ultrasonic zero-valent zinc (ZVZ) and activated carbon (AC) micro-electrolysis system. Optimization of degradation conditions and the degradation levels were studied by high performance liquid chromatography, the surface morphology of the ZVZ and AC changed before and after the reaction were observed by scanning electron microscope. The degradation intermediates were detected by gas chromatography- mass spectrometry and ion chromatography, and inferred the degradation pathway. The degradation effect of [C4mim][BF4] was best with ultrasonic assistance, pH 3 and an AC/ZVZ ratio of 1:1. The degradation of [Cnmim][BF4] in aqueous solution exceeded 91.7% in 120 min, and the mineralization level exceeded 88.9%. The surface of smooth and dense ZVZ particles became loose flocculent and the porous surface of AC became larger and rougher after reaction. The degradation pathway suggested that the imidazolium ring was sulfurized or oxidized, and then the ring was opened to form N-alkyl formamide and N-methyl formamide. ZVZ/AC micro-electrolysis combined with ultrasonic irradiation is an effective method to remove ILs, which provides new insight into IL degradation.
Collapse
Affiliation(s)
- Ping Lyu
- grid.453074.10000 0000 9797 0900Faculty of Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Wan Guo
- grid.453074.10000 0000 9797 0900Faculty of Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Hang Qi
- grid.453074.10000 0000 9797 0900Faculty of Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xiang Yuan
- grid.453074.10000 0000 9797 0900Faculty of Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Jinqi Ma
- grid.453074.10000 0000 9797 0900Faculty of Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xingmin Xu
- grid.453074.10000 0000 9797 0900Faculty of Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Haimei Zhou
- grid.453074.10000 0000 9797 0900Faculty of Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
4
|
Maculewicz J, Dołżonek J, Sharma L, Białk-Bielińska A, Stepnowski P, Pazdro K. Bioconcentration of imidazolium ionic liquids: In vivo evaluation in marine mussels Mytilus trossulus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159388. [PMID: 36240918 DOI: 10.1016/j.scitotenv.2022.159388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/19/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Although imidazolium ionic liquids (ILs) are beginning to be used more widely in many industrial fields e.g., as reaction media, electrolytes, stationary phases in gas chromatography), there is still little information about their potential environmental fate. Among the uncertainties regarding the risks associated with these compounds, bioconcentration is one of the key issues, about which many doubts have been raised in recent years. While in vitro data suggest that permanently charged compounds can also bioconcentrate, conclusive evidence in the form of studies on organisms, at least for selected compounds, is needed. Therefore, the main objective of this work was to determine whether imidazolium cations of ILs, namely 1-methyl-3-octylimidazolium ([IM18]+) and 1-methyl-3-dodecylimidazolium ([IM1-12]+), can bioconcentrate in marine invertebrates tissues. During 21-day experiments, Mytilus trossulus mussels were exposed to these cations individually, at a concentration of 10 μg/L. In our study, it has been demonstrated for the first time during in vivo study, that long-chain imidazolium ionic liquids can bioconcentrate. The determined BCF value for [IM1-12]+ of 21,901 ± 3400 L/kg makes this compound to be considered highly bioaccumulative according to commonly accepted criteria. However, the obtained BCF for [IM18]+ (with the value below 100) suggests that this cation has little potential for bioconcentration. On the other hand, no salinity or anion influence on the bioconcentration of the tested cations was observed. Our tests also confirm that imidazolium ILs exhibit acute toxicity only at relatively high concentration levels, as LC50 reached 0.68 mg/L for [IM1-12][Br], and 11.66 mg/L for [IM18][C(CN)3]. This further confirms that the risks associated with the potential presence of these compounds in the environment should be attributed to their high persistence and potential bioconcentration, rather than acute toxicity.
Collapse
Affiliation(s)
- Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Joanna Dołżonek
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Lilianna Sharma
- Institute of Oceanology, Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Ksenia Pazdro
- Institute of Oceanology, Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| |
Collapse
|
5
|
Ren H, Qian H, Hou Q, Li W, Ju M. Removal of ionic liquid in water environment: A review of fundamentals and applications. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Analysis of imidazolium ionic liquids in biological matrices: A novel procedure for the determination of trace amounts in marine mussels. Talanta 2022; 252:123790. [DOI: 10.1016/j.talanta.2022.123790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 01/23/2023]
|
7
|
Lin J, Xiao J, Cai H, Huang Y, Li J, Yang H, Li T, Zou J. Multi-wavelength spectrophotometric determination of peracetic acid and the coexistent hydrogen peroxide via oxidative coloration of ABTS with the assistance of Fe 2+ and KI. CHEMOSPHERE 2022; 287:132242. [PMID: 34826929 DOI: 10.1016/j.chemosphere.2021.132242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/04/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
In this study, a multi-wavelength spectrophotometric method for simultaneous determination of peracetic acid (PAA) and coexistent hydrogen peroxide (H2O2) was presented. This method was based on the oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) with the assistance of Fe2+/KI to produce a stable green radical (ABTS●+), which could be determined at four characteristic peaks (i.e., 415 nm, 650 nm, 732 nm, and 820 nm). The absorbances of ABTS●+ at four peaks were well linear (R2 > 0.999) with concentrations of both total peroxides (PAA + H2O2) and PAA in the range of 0-40 μM under optimized conditions. The sensitivities for determining total peroxides at 415 nm, 650 nm, 732 nm and 820 nm were determined to be 4.248 × 104 M-1 cm-1, 1.682 × 104 M-1 cm-1, 2.132 × 104 M-1 cm-1, and 1.928 × 104 M-1 cm-1, respectively. For determining PAA, the corresponding sensitivities were 4.622 × 104 M-1 cm-1, 1.895 × 104 M-1 cm-1, 2.394 × 104 M-1 cm-1 and 2.153 × 104 M-1 cm-1, respectively. The concentration of coexistent H2O2 was gained by deducting PAA concentration from total peroxides concentration. The ABTS method was accurate enough to determine PAA concentration in natural water samples. Moreover, the ABTS method was successfully used to determine the changes of PAA and coexistent H2O2 and to distinguish their role on naproxen degradation in heat-activated PAA process. Overall, the ABTS method could be used as an alternative method for the convenient, rapid and sensitive determination of PAA and the coexistent H2O2 in water samples.
Collapse
Affiliation(s)
- Jinbin Lin
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Junyang Xiao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Hengyu Cai
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Yixin Huang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Jiawen Li
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Haoyu Yang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Tao Li
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jing Zou
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China.
| |
Collapse
|
8
|
Cui J, Li X, Muhammad Y, Shi C, Li H, Su H. Residual organics removal from manganese electrochemical solution using combined Fenton oxidation process with adsorption over activated carbon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44240-44248. [PMID: 32761526 DOI: 10.1007/s11356-020-10290-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
The removal of residual organics from manganese (Mn) electrochemical solution using combined Fenton oxidation process with adsorption over activated carbon (AC) was investigated. The effect of operating conditions such as dosage of H2O2, H2O2/Fe2+ ratio, initial pH value, reaction temperature, and reaction time on Fenton oxidation was studied. Experimental results indicated that a maximum chemical oxygen demand (COD) of 83.2% was obtained under the optimized set of conditions: H2O2 concentration of 0.15 mol/L, H2O2/Fe2+ molar ratio of 3, initial pH value of 3, reaction temperature of 50 °C, and reaction time of 90 min. The leaching solution was furthered treated over AC and COD removal rate increased to 93.1% under 3.75 g/L dosage of AC, adsorption temperature of 70 °C, and adsorption time of 120 min. The adsorption mechanism of Mn over AC was detailly investigated, while the porous texture of AC was studied by nitrogen adsorption isotherm.
Collapse
Affiliation(s)
- Jingxian Cui
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Xueping Li
- College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006, China
| | - Yaseen Muhammad
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
- Institute of Chemical Sciences, University of Peshawar, Peshawar, KP, 25120, Pakistan
| | - Chongyi Shi
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Haibin Li
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Haifeng Su
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
9
|
Pérez SA, Montalbán MG, Carissimi G, Licence P, Víllora G. In vitro cytotoxicity assessment of monocationic and dicationic pyridinium-based ionic liquids on HeLa, MCF-7, BGM and EA.hy926 cell lines. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121513. [PMID: 31727529 DOI: 10.1016/j.jhazmat.2019.121513] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/19/2019] [Accepted: 10/19/2019] [Indexed: 05/12/2023]
Abstract
Dicationic ionic liquids (ILs) generally possess higher thermal and electrochemical stability than the analogous monocationic ILs, which makes them more suitable for high-temperature applications as solvents for organic reactions, lubricants or stationary phase in gas chromatography. However, knowledge on dicationic IL cytotoxicity is still scarce. Here we explore the cytotoxicity of twelve mono- and dicationic pyridinium-based ILs on HeLa, MCF-7, BGM and EA.hy926 cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell cycle arrest assays, apoptosis experiments and orange staining were carried out. The results showed that dicationic ILs are generally less cytotoxic than their monocationic counterparts. In monocationic ILs, cytotoxicity was stronger when they contain long alkyl chains, because of their higher lipophilicity. However, the full effect of the length of the linkage alkyl chain of dicationic ILs on cytotoxicity is not clear probably because the chain is "trapped" between both cationic moieties. IL cytotoxicity is highly dependent on the cell type, and HeLa cells exposed to [C12Pyr]Br die via apoptosis. The present study increases our knowledge of IL cytotoxicity on human and monkey cells and clarifies the cell death mechanism. The results suggest that dicationic ILs offer the potential to replace some monocationic ILs because of their lower cytotoxicity.
Collapse
Affiliation(s)
- S A Pérez
- Chemical Engineering Department, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30071, Murcia, Spain
| | - M G Montalbán
- Chemical Engineering Department, University of Alicante, Apartado 99, 03080, Alicante, Spain.
| | - G Carissimi
- Chemical Engineering Department, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30071, Murcia, Spain
| | - P Licence
- School of Chemistry, The University of Nottingham, University Park, Nottingham, UK
| | - G Víllora
- Chemical Engineering Department, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30071, Murcia, Spain
| |
Collapse
|
10
|
Mena IF, Diaz E, Palomar J, Rodriguez JJ, Mohedano AF. Cation and anion effect on the biodegradability and toxicity of imidazolium- and choline-based ionic liquids. CHEMOSPHERE 2020; 240:124947. [PMID: 31568943 DOI: 10.1016/j.chemosphere.2019.124947] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 05/11/2023]
Abstract
This work studies the effect of the cation and anion on the biodegradability and inhibition of imidazolium- and choline-based ionic liquids (ILs) using activated sludge. Six commercial ILs, formed by combination of 1-Butyl-3-methylimidazolium (Bmim+) and N,N,N-trimethylethanolammonium (Choline+) cations and chloride (Cl-), acetate (Ac-) and bis(trifluoromethanesulfonyl)imide (NTf2-) anions were evaluated, all representative counter-ions with markedly different toxicity and biodegradability. Inherent and fast biodegradability tests were used to evaluate both the microorganism inhibition and the IL biodegradability. In addition, the ecotoxicological response (EC50) of the ILs was studied using activated sludge and Vibrio fischeri (Microtox® test). Bmim+ and NTf2- can be considered as non-biodegradable, whereas aerobic microorganisms easily degraded Choline+ and Ac-. The biodegradation pattern of each cation/anion is nearly unaffected by counter-ion nature. Moreover, concentrations of CholineNTf2 higher than 50 mg/L caused a partial inhibition on microbial activity, in good concordance with its low EC50 (54 mg/L) measured by respiration inhibition test, which alerts on the negative environmental impact of NTf2-containing ILs on the performance of sewage treatment plants.
Collapse
Affiliation(s)
- I F Mena
- Chemical Engineering Department, University Autonoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049, Madrid, Spain.
| | - E Diaz
- Chemical Engineering Department, University Autonoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - J Palomar
- Chemical Engineering Department, University Autonoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - J J Rodriguez
- Chemical Engineering Department, University Autonoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - A F Mohedano
- Chemical Engineering Department, University Autonoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| |
Collapse
|
11
|
Gomez-Herrero E, Tobajas M, Polo A, Rodriguez JJ, Mohedano AF. Toxicity and inhibition assessment of ionic liquids by activated sludge. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109836. [PMID: 31675504 DOI: 10.1016/j.ecoenv.2019.109836] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/01/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Toxicity of 13 ionic liquids (ILs) corresponding to different families were studied by inhibition respiration assays (15 min) using activated sludge. Toxicity increased as increasing the number of carbons in the alkyl-chain of imidazolium-based ILs, with EC50 values from 4.19 to 0.17 for 1-ethyl-3-methylimidazolium chloride ([Emim][Cl]) and 1-octyl-3-methylimidazolium chloride ([Omim][Cl]), respectively. An increase in toxicity was observed for aromatic-based ILs (pyridinium- and imidazolium-based ILs) due to the hydrophobic character of the head groups in comparison with linear structures as phosphonium and ammonium cations. Among to the anions studied fixing [Emim]+ as cation, [HSO4]- and [NTf2]- presented low EC50 values (0.34 mM and 1.69 mM, respectively) while [Cl]- and [EtSO4]- were considered harmless anions due to the hydrophilic character of chloride and the organic nature of [EtSO4]-. ILs toxicity/inhibition was determined by adding a biodegradable compound and measuring the sludge response after being in contact with the ILs for at least 15 h. The exposure of sewage sludge to ILs for more than 15 min used in short inhibition assays caused more toxic effect on microorganisms, even for [Choline][NTf2], previously defined as practically harmless (EC50 = 2.79 mM). Biodegradability assays confirmed the biodegradable nature of choline cation, related with TOC conversion of 40%, only due to cation consumption. No oxygen consumption or even lysis of microbial cells was observed for Tetrabutylammonium bis(trifluoromethylsulfonyl)imide and for 1-Ethyl-3-methylimidazolium hydrogensulphate due to the presence of anions previously defined as hazardous ([NTf2]- and [HSO4]-), maintaining their recalcitrant character to sewage systems.
Collapse
Affiliation(s)
- E Gomez-Herrero
- Department of Chemical Engineering, Faculty of Science, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain.
| | - M Tobajas
- Department of Chemical Engineering, Faculty of Science, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - A Polo
- Department of Chemical Engineering, Faculty of Science, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - J J Rodriguez
- Department of Chemical Engineering, Faculty of Science, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - A F Mohedano
- Department of Chemical Engineering, Faculty of Science, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
12
|
Pęziak-Kowalska D, Syguda A, Ławniczak Ł, Borkowski A, Fourcade F, Heipieper HJ, Lota G, Chrzanowski Ł. Hybrid electrochemical and biological treatment of herbicidal ionic liquids comprising the MCPA anion. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:172-179. [PMID: 31185431 DOI: 10.1016/j.ecoenv.2019.05.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 05/26/2023]
Abstract
The present study was focused on the application of an electrochemical oxidation process combined with biodegradation for the removal of novel Herbicidal Ionic Liquids (HILs) -promising protection plant products which incorporate herbicidal anions and ammonium cations. The influence of carbon chain length (n = 8, 10, 12, 14, 16, 18) in the dialkyldimethylammonium cations on electrochemical oxidation kinetics, degradation efficiency and biodegradation by activated sludge was investigated. It was established that the applied cation influenced the heterogeneous rate constant and diffusion coefficient of electrochemical oxidation. The oxidation efficiency ranged from 17% in case of HILs with C8 alkyl chain to approx. 60% in case of HILs comprising C14 and C16 alkyl chains after 3 h of electrochemical treatment. Subsequent biodegradation studies revealed that electrochemical oxidation improved the mineralization efficiency of the studied HILs. The mineralization efficiency of electrochemically-treated HILs ranged from 28% in case of HILs comprising the C8 alkyl chain to 57% in case of HILs with C14 and C16 alkyl chains after 28 days. In case of untreated HILs, the corresponding mineralization efficiency ranged from 0 to 8%, respectively. This confirms the feasibility of a hybrid electrochemical-biological approach for treatment of herbicidal ionic liquids based on MCPA.
Collapse
Affiliation(s)
- Daria Pęziak-Kowalska
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, ul. Bedrychowo 4, 60-965, Poznan, Poland
| | - Anna Syguda
- Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Bedrychowo 4, 60-965, Poznan, Poland
| | - Łukasz Ławniczak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Bedrychowo 4, 60-965, Poznan, Poland
| | - Andrzej Borkowski
- Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Florence Fourcade
- Université Rennes 1/Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 allées de Beaulieu, CS 50837, 35708, Rennes Cedex 7, France
| | - Hermann J Heipieper
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Biotechnology, Permoserstraße 15, D-04318 Leipzig, Germany
| | - Grzegorz Lota
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, ul. Bedrychowo 4, 60-965, Poznan, Poland
| | - Łukasz Chrzanowski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Bedrychowo 4, 60-965, Poznan, Poland.
| |
Collapse
|
13
|
Wang M, Wang D, Qiu S, Xiao J, Cai H, Zou J. Multi-wavelength spectrophotometric determination of hydrogen peroxide in water by oxidative coloration of ABTS via Fenton reaction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:27063-27072. [PMID: 31313234 DOI: 10.1007/s11356-019-05884-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
In this study, a sensitive and low-cost multi-wavelength spectrophotometric method for the determination of hydrogen peroxide (H2O2) in water was established. The method was based on the oxidative coloration of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) via Fenton reaction, which resulted in the formation of green radical (ABTS•+) with absorbance at four different wavelengths (i.e., 415 nm, 650 nm, 732 nm, and 820 nm). Under the optimized conditions (CABTS = 2.0 mM, CFe2+ = 1.0 mM, pH = 2.60 ± 0.02, and reaction time (t) = 1 min), the absorbance of the generated ABTS•+ at 415 nm, 650 nm, 732 nm, and 820 nm were well linear with H2O2 concentrations in the range of 0-40 μM (R2 > 0.999) and the sensitivities of the proposed Fenton-ABTS method were calculated as 4.19 × 104 M-1 cm-1,1.73 × 104 M-1 cm-1, 2.18 × 104 M-1 cm-1, and 1.96 × 104 M-1 cm-1, respectively. Meanwhile, the detection limits of the Fenton-ABTS method at 415 nm, 650 nm, 732 nm, and 820 nm were respectively calculated to be 0.18 μM, 0.12 μM, 0.10 μM, and 0.11 μM. The absorbance of the generated ABTS•+ in ultrapure water, underground water, and reservoir water was quite stable within 30 min. Moreover, the proposed Fenton-ABTS method could be used for monitoring the variations of H2O2 concentration during the oxidative decolorization of RhB in alkali-activated H2O2 system.
Collapse
Affiliation(s)
- Mengyun Wang
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Daiyao Wang
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Shiyi Qiu
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Junyang Xiao
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Huahua Cai
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Jing Zou
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China.
| |
Collapse
|
14
|
de Oliveira Marcionilio SML, Crisafulli R, Medeiros GA, de Sousa Tonhá M, Garnier J, Neto BAD, Linares JJ. Influence of hydrodynamic conditions on the degradation of 1-butyl-3-methylimidazolium chloride solutions on boron-doped diamond anodes. CHEMOSPHERE 2019; 224:343-350. [PMID: 30826704 DOI: 10.1016/j.chemosphere.2019.02.128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
This study assessed the influence of hydrodynamic conditions on the degradation process of 1-butyl-3-methylimidazolium chloride (BMImCl) solution on a boron-doped diamond anode in a filter-type electrochemical reactor configuration. The results show that this parameter did not significantly affect this process when operating in the laminar regime. However, in the transition regime (Re ≥ 2000), higher flow rates resulted in a faster removal of BMImCl and total organic carbon, making the process more efficient. Following BMImCl degradation, nitrates were generated at the cathode, then reduced at the cathode to ammonium; combination with free chloride produced at the anode led to the transformation of chloride into combined chlorine forms instead of more toxic oxianions such as chlorate and perchlorate. Thus, the flow rate can be a key parameter for defining operating conditions in which the target BMImCl is more effectively degraded with reduced generation of undesirable secondary products.
Collapse
Affiliation(s)
| | - Rudy Crisafulli
- Instituto de Química, Universidade de Brasília, Campus Darcy Ribeiro, 70910-900, Brasília, DF, Brazil
| | - Gisele A Medeiros
- Instituto de Química, Universidade de Brasília, Campus Darcy Ribeiro, 70910-900, Brasília, DF, Brazil
| | - Myller de Sousa Tonhá
- Laboratório de Geoquímica, Instituto de Geociências, Universidade de Brasília, Campus Darcy Ribeiro, 70910-900, Brasília, DF, Brazil
| | - Jeremie Garnier
- Laboratório de Geoquímica, Instituto de Geociências, Universidade de Brasília, Campus Darcy Ribeiro, 70910-900, Brasília, DF, Brazil
| | - Brenno A D Neto
- Instituto de Química, Universidade de Brasília, Campus Darcy Ribeiro, 70910-900, Brasília, DF, Brazil
| | - José J Linares
- Instituto de Química, Universidade de Brasília, Campus Darcy Ribeiro, 70910-900, Brasília, DF, Brazil.
| |
Collapse
|
15
|
Synthesis and Properties of Poly(imides) and Poly(imides)/Ionic Liquid Composites Bearing a Benzimidazole Moiety. Polymers (Basel) 2019; 11:polym11050759. [PMID: 31052323 PMCID: PMC6572087 DOI: 10.3390/polym11050759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/15/2019] [Accepted: 04/26/2019] [Indexed: 12/05/2022] Open
Abstract
Three new aromatic poly(imides) containing benzimidazole units in the backbone were synthesized and characterized by several spectroscopic techniques. Flexible spacer groups were incorporated into the poly(imides) structure to improve their solubility in organic solvents and their oxidative stabilization. All poly(imides) were thermally stable (Td5% > 512 °C) and had the ability to form dense flexible films. Novel composite films were successfully prepared by loading poly(imide) with ionic liquid ([Bmim]Br) at different concentrations up to 25 wt.%. The resulting materials were characterized according to their morphology and elemental composition (SEM-EDX), water uptake capability, contact angle, and oxidative degradation resistance. Results suggested that poly(imide)/ionic liquid composites would be excellent candidates for future proton conductivity measurements.
Collapse
|
16
|
Gomez-Herrero E, Tobajas M, Polo A, Rodriguez JJ, Mohedano AF. Removal of imidazolium-based ionic liquid by coupling Fenton and biological oxidation. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:289-296. [PMID: 30447636 DOI: 10.1016/j.jhazmat.2018.10.097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/20/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
In this work, we assessed the potential of combining Fenton´s reagent and biological oxidation for removing the imidazolium-based ionic liquid 1-Ethyl-3-methylimidazolium chloride (EmimCl). Fenton-like oxidation was conducted at variable H2O2 doses from 20 to 100% the stoichiometric value as calculated from the theoretical chemical oxygen demand (COD). The stoichiometric H2O2 dose afforded Total Organic Carbon (TOC) conversion and COD removal of 50 and 62%, respectively. Identifying the reaction by-products formed at low hydrogen peroxide doses allowed a plausible pathway for EmimCl oxidation to be proposed. The effluents from Fenton-like oxidation at substoichiometric H2O2 doses were less ecotoxic and more biodegradable than was the parent ionic liquid. The effluent from Fenton-like oxidation with the 60% H2O2 dose (TOC conversion ≅ 41%, COD removal ≅ 31%) was subsequently subjected to an effective biological treatment that allowed complete removal of the starting compound, increased its ecotoxicity to a low-moderate level and rendered it acceptably biodegradable. Biological oxidation was performed in 8-h and 12-h cycles in a sequencing batch reactor. Combining Fenton and biological oxidation of EmimCl afforded TOC conversion and COD removal of around 90%.
Collapse
Affiliation(s)
- Esther Gomez-Herrero
- -Departamento de Ingeniería Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Montserrat Tobajas
- -Departamento de Ingeniería Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Alicia Polo
- -Departamento de Ingeniería Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Juan J Rodriguez
- -Departamento de Ingeniería Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Angel F Mohedano
- -Departamento de Ingeniería Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
17
|
Bedia J, Rodriguez JJ, Moreno D, Palomar J, Belver C. Photostability and photocatalytic degradation of ionic liquids in water under solar light. RSC Adv 2019; 9:2026-2033. [PMID: 35694131 PMCID: PMC9119320 DOI: 10.1039/c8ra07867j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/10/2019] [Indexed: 12/24/2022] Open
Abstract
The aim of this work is to study, (i) the photostability of different imidazolium and pyridinium ionic liquids (ILs) in water under solar light; and (ii) the photocatalytic degradation of those ILs in water with TiO2 under solar light. The effects of the type of cation and anion as well as the length of the cationic chain of the imidazolium ILs have been analyzed. These imidazolium-based ILs show high solar stability, slightly decreasing as the length of the cationic chain increases. The anion plays a main role in the stability of ILs under solar light, decreasing in the case of hydrophobic anions. The kind of head group (pyridinium or imidazolium) or the presence of functional groups (allyl, OH) also influence the solar light stability. DFT calculations on the fundamental and excited electronic states of the ILs were carried out to obtain a deeper insight on their photostability. In the case of the photocatalytic degradation of the ILs, complete conversion was achieved for all the ILS tested but mineralization reached 80% at the most. The rate of degradation increased with the length of the alkyl chain while the anion showed little effect. The pyridinium-based IL tested was the easiest to breakdown. The aim of this work is to study, (i) the photostability of different imidazolium and pyridinium ionic liquids (ILs) in water under solar light; and (ii) the photocatalytic degradation of those ILs in water with TiO2 under solar light.![]()
Collapse
Affiliation(s)
- Jorge Bedia
- Departamento de Ingeniería Química
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Juan José Rodriguez
- Departamento de Ingeniería Química
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Daniel Moreno
- Departamento de Ingeniería Química
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | | | - Carolina Belver
- Departamento de Ingeniería Química
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| |
Collapse
|
18
|
Poza-Nogueiras V, Arellano M, Rosales E, Pazos M, González-Romero E, Sanromán MA. Heterogeneous electro-Fenton as plausible technology for the degradation of imidazolinium-based ionic liquids. CHEMOSPHERE 2018; 199:68-75. [PMID: 29428517 DOI: 10.1016/j.chemosphere.2018.01.174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
Conventional water treatments are generally inadequate for degradation of emerging pollutants such as ionic liquids (ILs). The use of heterogeneous electro-Fenton (HEF) has attracted great interest, due to its ability to efficiently oxidize a wide range of organic pollutants operating in cycles or in continuous mode. In this study, the removal of a complex IL from the imidazolinium family (1,3-Bis(2,4,6-trimethylphenyl)imidazolinium chloride), by means of HEF using iron alginate spheres as catalyst has been investigated, resulting in significant TOC decay after 6 h. The optimization of the key process parameters (current, IL concentration and catalyst dosage) has been performed using a Box-Behnken experimental design and achieving 76.98% of TOC abatement in 2 h of treatment. Current proved to be a crucial parameter and high catalyst dosage is required to achieve the maximum removal. In addition, an insight about the availability of iron into the reactor and the evolution of several intermediates has been carried out by employing differential pulse voltammetry on screen-printed carbon electrodes. The evolution of the different voltammetric peaks confirmed the influence of iron release, and the generation of several iron complexes has permitted the comprehension of the degradation pathway, which has been validated by chromatographic techniques.
Collapse
Affiliation(s)
- V Poza-Nogueiras
- Centro de Investigación Tecnolóxico Industrial - MTI, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - M Arellano
- Centro de Investigación Tecnolóxico Industrial - MTI, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - E Rosales
- Centro de Investigación Tecnolóxico Industrial - MTI, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - M Pazos
- Centro de Investigación Tecnolóxico Industrial - MTI, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - E González-Romero
- Department of Analytical and Food Chemistry, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain.
| | - M A Sanromán
- Centro de Investigación Tecnolóxico Industrial - MTI, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain.
| |
Collapse
|