1
|
Udah DC, Bakarey AS, Anetor GO, Omabe M, Edem VF, Ademowo OG, Anetor JI. Increased cancer risk in HIV-infected individuals occupationally exposed to chemicals: Depression of p53 as the key driver. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002841. [PMID: 39042631 PMCID: PMC11265661 DOI: 10.1371/journal.pgph.0002841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/21/2024] [Indexed: 07/25/2024]
Abstract
The growing exposure to occupational chemicals and the spread of human immunodeficiency virus (HIV) infection are major global health issues. However, there is little data on the carcinogenic risk profile of HIV-infected individuals who have been occupationally exposed to chemical mixtures. This study therefore investigated the levels of cancer risk biomarkers in HIV-infected individuals exposed to occupational chemicals, exploring the relationship between apoptotic regulatory and oxidative response markers as a measure of cancer risk. Study participants (mean age 38.35±0.72 years) were divided into four groups according to their HIV status and occupational chemical exposure: 62 HIV-positive exposed (HPE), 66 HIV-positive unexposed (HPU), 60 HIV-negative exposed (HNE), and 60 HIV-negative unexposed (HNU). Serum p53, β-cell lymphoma-2 (bcl2), 8-hydroxydeoxyguanosine (8-OHdG), superoxide dismutase (SOD), and malondialdehyde (MDA) were measured using standard methods. Clusters of differentiation 4 (CD4+) T-lymphocytes were enumerated using flow cytometry. Serum p53 and bcl2 levels in HPE (0.91±0.11ng/ml and 122.37±15.77ng/ml) were significantly lower than HNU (1.49±0.15ng/ml and 225.52±33.67ng/ml) (p < 0.05), respectively. Wildtype p53 and bcl2 were positively and significantly correlated with 8-OHdG (r = 0.35, p<0.001; r = 0.36, p<0.001) and SOD (r = 0.38, p<0.001; r = 0.39, p<0.001). After controlling for gender, age, BMI, and cigarette smoking, both HIV status and SOD activity were significantly associated with wildtype p53 and bcl2 (p < 0.05). Malondialdehyde was significantly higher in the HPE (0.72 ± 0.01 mg/ml) than in the HNE (0.68 ± 0.01 mg/ml) and HNU (0.67 ± 0.01 mg/ml) groups (p < 0.05). The HPE group showed significantly lower CD4 counts than the HNE and HNU groups. Individuals who are HIV-infected and occupationally exposed to chemicals have a constellation of depressed immunity, elevated oxidative stress, and loss of tumour suppressive functions, which together intensify cancer risk, providing valuable scientific and public health bases for preventive measures in this vulnerable population.
Collapse
Affiliation(s)
- Donald C. Udah
- Department of Chemical Pathology, Laboratory for Toxicology and Micronutrient Metabolism, College of Medicine, University of Ibadan, Ibadan, Nigeria
- JSI Research & Training Institute Inc. (JSI), Abuja, Nigeria
| | - Adeleye S. Bakarey
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Biomedical Laboratory Science, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Gloria O. Anetor
- Department of Public Health Science, Faculty of Health Sciences, National Open University of Nigeria (NOUN), Abuja, Nigeria
| | - Maxwell Omabe
- Department of Medical Laboratory Sciences, School of Biomedical Science, Faculty of Health Science, Ebonyi State University, Nigeria
| | - Victory F. Edem
- Department of Immunology, University of Ibadan, Ibadan, Nigeria
| | - Olusegun G. Ademowo
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - John I. Anetor
- Department of Chemical Pathology, Laboratory for Toxicology and Micronutrient Metabolism, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
2
|
Dai Z, Li G, Wang X, Gao B, Gao X, Strappe P, Zhou Z. Mapping the metabolic characteristics of probiotic-fermented Ganoderma lucidum and its protective mechanism against Cd-induced nephrotoxicity. Food Funct 2023; 14:8615-8630. [PMID: 37668611 DOI: 10.1039/d3fo01587d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
An animal model of Cd-induced kidney damage was designed to investigate the nephroprotective potential of the probiotic-fermented Ganoderma lucidum (FGL) via metabonomic analysis. The results showed that FGL enhanced sugar and amino acid metabolism. The interaction of Ganoderma lucidum (GL) and probiotics efficiently elevated short-chain fatty acid production following gut microbiota fermentation. The current data revealed that the FGL intervention alleviated Cd-induced nephrotoxicity via elevating the activity of antioxidant enzymes and decreasing the levels of pro-inflammatory and apoptotic factors. Based on transcriptome analysis, FGL intervention mediated renal dysfunction via decreasing the expressions of Nos2, Tnfsf14, S100a9, Map3k6 and Hk3, which were involved in oxidative stress, inflammatory response and the apoptosis process. The current study highlights a new approach for achieving positive nephroprotection via natural product intervention.
Collapse
Affiliation(s)
- Zhen Dai
- Key Laboratory for Processing and Quality Safety Control of Characteristic Agricultural Products, the Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi 832003, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Gaoheng Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xixi Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Bo Gao
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiuwei Gao
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Padraig Strappe
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, Qld 4700, Australia
| | - Zhongkai Zhou
- Key Laboratory for Processing and Quality Safety Control of Characteristic Agricultural Products, the Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi 832003, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
- Gulbali Institute-Agriculture Water Environment, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| |
Collapse
|
3
|
The mechanism of the cadmium-induced toxicity and cellular response in the liver. Toxicology 2022; 480:153339. [PMID: 36167199 DOI: 10.1016/j.tox.2022.153339] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 01/22/2023]
Abstract
Cadmium is a toxic element to which man can be exposed at work or in the environment. Cd's most salient toxicological property is its exceptionally long half-life in the human body. Once absorbed, Cd accumulates in the human body, particularly in the liver. The cellular actions of Cd are extensively documented, but the molecular mechanisms underlying these actions are still not resolved. The liver manages the cadmium to eliminate it by a diverse mechanism of action. Still, many cellular and physiological responses are executed in the task, leading to worse liver damage, ranging from steatosis, steatohepatitis, and eventually hepatocellular carcinoma. The progression of cadmium-induced liver damage is complex, and it is well-known the cellular response that depends on the time in which the metal is present, ranging from oxidative stress, apoptosis, adipogenesis, and failures in autophagy. In the present work, we aim to present a review of the current knowledge of cadmium toxicity and the cellular response in the liver.
Collapse
|
4
|
Is Cadmium Toxicity Tissue-Specific? Toxicogenomics Studies Reveal Common and Specific Pathways in Pulmonary, Hepatic, and Neuronal Cell Models. Int J Mol Sci 2022; 23:ijms23031768. [PMID: 35163690 PMCID: PMC8836438 DOI: 10.3390/ijms23031768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 11/24/2022] Open
Abstract
Several harmful modifications in different tissues-organs, leading to relevant diseases (e.g., liver and lung diseases, neurodegeneration) are reported after exposure to cadmium (Cd), a wide environmental contaminant. This arises the question whether any common molecular signatures and/or Cd-induced modifications might represent the building block in initiating or contributing to address the cells towards different pathological conditions. To unravel possible mechanisms of Cd tissue-specificity, we have analyzed transcriptomics data from cell models representative of three major Cd targets: pulmonary (A549), hepatic (HepG2), and neuronal (SH-SY-5Y) cells. Further, we compared common features to identify any non-specific molecular signatures. The functional analysis of dysregulated genes (gene ontology and KEGG) shows GO terms related to metabolic processes significantly enriched only in HepG2 cells. GO terms in common in the three cell models are related to metal ions stress response and detoxification processes. Results from KEGG analysis show that only one specific pathway is dysregulated in a significant way in all cell models: the mineral absorption pathway. Our data clearly indicate how the molecular mimicry of Cd and its ability to cause a general metal ions dyshomeostasis represent the initial common feature leading to different molecular signatures and alterations, possibly responsible for different pathological conditions.
Collapse
|
5
|
Poland CA, Lombaert N, Mackie C, Renard A, Sinha P, Verougstraete V, Lourens NJJ. Bioaccessibility as a determining factor in the bioavailability and toxicokinetics of cadmium compounds. Toxicology 2021; 463:152969. [PMID: 34606952 DOI: 10.1016/j.tox.2021.152969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/15/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022]
Abstract
Cadmium toxicity occurs where there is absorption and accumulation of cadmium ions (Cd2+) in tissues beyond tolerable levels. Significant differences in the release of Cd2+ from cadmium compounds in biological fluids, like gastric fluid, may indicate differences in bioavailability and absorption. This means that direct read-across from high solubility cadmium compounds to lower solubility compounds may not accurately reflect potential hazards. Here, the relative bioaccessibility in gastric fluid of cadmium telluride and cadmium chloride was evaluated using in vitro bioelution tests whilst the toxicokinetic behavior of these two compounds were compared after dietary administration for 90 days in male and female Wistar Han rats following OECD TG 408. Cadmium chloride was highly bioaccessible, whilst cadmium telluride showed low solubility in simulated gastric fluid (90 % and 1.5 % bioaccessibility, respectively). This difference in bioaccessibility was also reflected by a difference in bioavailability as shown by the difference in the liver and kidney concentrations of cadmium after repeat oral exposure. Feeding at doses of 750 and 1500 ppm of cadmium telluride did not result in tissue cadmium levels above the lower limit of quantification (LLOQ). In contrast, feeding with a lower test substance concentration yet higher concentration of bioaccessible cadmium (30 ppm cadmium chloride) resulted in tissue accumulation of cadmium. Only slight, non-adverse changes in hematology and clinical chemistry parameters were seen at these doses, indicating an absence of significant cadmium mediated toxicity towards target organs (kidney and liver), reflected in minimal cadmium accumulation in these organs. This study demonstrates that bioelution tests can help determine the bioaccessibility of cadmium, which can be used to estimate the potential for target tissue toxicity based on known toxicokinetic profiles and threshold levels for cadmium toxicity, while reducing and refining animal testing.
Collapse
Affiliation(s)
- Craig A Poland
- Regulatory Compliance Limited, 6 Dryden Road, Loanhead, Midlothian, EH20 9TY, UK; Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| | - Noömi Lombaert
- International Zinc Association, Reach Cadmium Consortium, Avenue de Tervueren 168/Box 4, B-1150, Brussels, Belgium
| | - Carol Mackie
- Regulatory Compliance Limited, 6 Dryden Road, Loanhead, Midlothian, EH20 9TY, UK
| | - Alain Renard
- 5N Plus Inc., 4385, Rue Garand, Saint-Laurent, QC, H4R 2B4, Canada
| | - Parikhit Sinha
- First Solar, 350 West Washington Street, Suite 600, Tempe, AZ, 85281, USA
| | | | - Nicky J J Lourens
- Charles River Laboratories Den Bosch B.V., 's-Hertogenbosch, the Netherlands
| |
Collapse
|
6
|
Zhang C, Wang X, Nie G, Wei Z, Pi S, Wang C, Yang F, Hu R, Xing C, Hu G. In vivo assessment of molybdenum and cadmium co-induce nephrotoxicity via NLRP3/Caspase-1-mediated pyroptosis in ducks. J Inorg Biochem 2021; 224:111584. [PMID: 34479002 DOI: 10.1016/j.jinorgbio.2021.111584] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 02/07/2023]
Abstract
Excessive molybdenum (Mo) and cadmium (Cd) cause toxic effects on animals, but their joint effects on pyroptosis in kidney of ducks remain unclear. 160 healthy 7-day-old ducks were randomly divided into four groups which were fed with basal diet containing different dosages of Mo or/and Cd for 16 weeks. On the 4th, 8th, 12th and 16th weeks, kidney tissue and serum were collected. The results showed that Mo or/and Cd could significantly elevate their contents in kidney, disturb the homeostasis of trace elements, cause renal function impairment and histological abnormality, and oxidative stress as accompanied by increasing hydrogen peroxide (H2O2) and malondialdehyde (MDA) concentrations and decreasing glutathione peroxidase (GSH-Px), catalase (CAT) and total-superoxide dismutase (T-SOD) activities. Simultaneously, Mo or/and Cd could markedly increase interleukin-1β (IL-1β), interleukin-18 (IL-18) contents and the expression levels of pyroptosis-related genes (NOD-like receptor protein-3 (NLRP3), Caspase-1, apoptosis-associated speck-like protein (ASC), NIMA-related kinase 7 (NEK7), Gasdermin A (GSDMA), Gasdermin E (GSDME), IL-1β and IL-18) and proteins (NLRP3, Caspase-1 p20, ASC and Gasdermin D (GSDMD)). Moreover, the changes of above these indicators were more obvious in combined group. Taken together, the results illustrate that Mo and Cd might synergistically lead to oxidative stress and induce pyroptosis via NLRP3/Caspase-1 pathway, whose mechanism is somehow related to Mo and Cd accumulation in duck kidneys.
Collapse
Affiliation(s)
- Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xueru Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Gaohui Nie
- School of Information Technology, Jiangxi University of Finance and Economics, No. 665 Yuping West street, Economic and Technological Development District, Nanchang 330032, Jiangxi, PR China
| | - Zejing Wei
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Shaoxing Pi
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Chang Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
7
|
Ge J, Liu LL, Cui ZG, Talukder M, Lv MW, Li JY, Li JL. Comparative study on protective effect of different selenium sources against cadmium-induced nephrotoxicity via regulating the transcriptions of selenoproteome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112135. [PMID: 33780782 DOI: 10.1016/j.ecoenv.2021.112135] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is a ubiquitous environmental pollutant, which mainly input to the aquatic environment through discharge of industrial and agricultural waste, can be a threat to human and animal health. Selenium (Se) possesses a beneficial role in protecting animals and ameliorating the toxic effects of Cd. However, the comparative antagonistic effects of different Se sources such as inorganic, organic Se and nano-form Se on Cd toxicity are still under-investigated. Hence, the purpose of this study was to evaluate the comparative of Se sources antagonism on Cd-induced nephrotoxicity via oxidative stress and selenoproteome transcription. In the present study, Cd-diet disturbed in the system balance of 5 trace elements (Zinc (Zn), copper (Cu), Iron (Fe), Se, Cd) and impaired renal function. Se sources, including nano- Se (NS), Se- yeast (SY), sodium selenite (SS) and mixed selenium (MS) significantly recovered the balance of 4 trace elements (Zn, Cu, Cd, Se) and renal impaired indexes (blood urea nitrogen (BUN) and creatinine (CREA)). Histological appearance of Cd-treated kidney indicated renal tubular epithelial vacuoles, particle degeneration and enlarged capsular space. Ultrastructure observation results illustrated that Cd-induced mitochondrial cristae reduction, membrane disappearance, and nuclear deformation. Treatment with Se sources, NS appeared a better impact on improving kidney tissues against the pathological alterations resulting from Cd administration. Meanwhile, NS reflected a significant impact on relieving Cd-induced kidney oxidative damage, and significantly restored the antioxidant defense system of the body. Our findings also showed NS ameliorated the Cd-induced downtrends expression of selenoproteome and selenoprotein synthesis related transcription factors. Overall, NS was the most effective Se source in avoiding of Cd cumulative toxicity, improving antioxidant capacity and regulating of selenoproteome transcriptome and selenoprotein synthesis related transcription factors expression, which contributes to ameliorate Cd-induced nephrotoxicity in chickens. These results demonstrated diet supplement with NS may prove to be an effective approach for alleviating Cd toxicity and minimizing Cd -induced health risk.
Collapse
Affiliation(s)
- Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Li-Li Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, PR China
| | - Zheng-Guo Cui
- Department of Environmental Health, University of Fukui School of Medical Science, University of Fukui, Fukui 910-1193, Japan
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Yang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
8
|
Chen Z, Shi K, Kuang W, Huang L. Exploration of the optimal strategy for dietary calcium intervention against the toxicity of liver and kidney induced by cadmium in mice: An in vivo diet intervention study. PLoS One 2021; 16:e0250885. [PMID: 33974642 PMCID: PMC8112675 DOI: 10.1371/journal.pone.0250885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/15/2021] [Indexed: 11/18/2022] Open
Abstract
Cadmium (Cd) is a toxic non-essential element, while calcium (Ca) is an essential element with high chemical similarity to Cd. Dietary intake is the major Cd exposure pathway for non-smokers. A multi-concentration dietary intervention experiment was designed to explore the optimum concentration of Ca in diet with obvious protective effects against the toxicity of livers and kidneys induced by Cd in mice. The mice were divided into six groups with different concentrations of Cd and Ca in their food: control-group (no Cd or Ca), Ca-group (100 g/kg Ca, without Cd), Cd-group (2 mg/kg Cd, without Ca), CaL+Cd-group (2 mg/kg Cd, 2 g/kg Ca), CaM+Cd-group (2 mg/kg Cd, 20 g/kg Ca) and CaH+Cd-group (2 mg/kg Cd, 100 g/kg Ca). The organ indexes, oxidative stress biomarkers, lesions and Cd concentrations were detected after a 30-day exposure period. Results showed that serum Aspartate Aminotransferase (AST) level in CaH+Cd-group was significantly lower than that in Cd-group, while close to that in control-group. The contents of Serum Blood Urea Nitrogen (BUN) in different groups showed the same trend. Concentrations of all oxidative stress biomarkers (GSH-Px, SOD, CAT, GSH and MDA) in CaH+Cd-group were close to the normal levels of control-group while significantly different from those in Cd-group. The only exception was the Malondialdehyde (MDA) levels in kidneys. This study suggests that Ca plays a protective role in relieving the Cd-induced toxicity of livers and kidneys and a concentration of 100 g/kg for Ca in diet showed the best protective effects. These findings could provide a clue for further studies concerning human diet intervention for Cd control.
Collapse
Affiliation(s)
- Zhaofang Chen
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Kexin Shi
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Wenjie Kuang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Lei Huang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, PR China
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States of America
- * E-mail:
| |
Collapse
|
9
|
Beyrami M, Karimi E, Oskoueian E. Synthesized chrysin-loaded nanoliposomes improves cadmium-induced toxicity in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:40643-40651. [PMID: 32671712 DOI: 10.1007/s11356-020-10113-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
In this study, chrysin as a natural flavonoid was encapsulated in nanoliposomal structures, and the synthesized nanoliposome-loaded chrysin (NLC) was further characterized for its physical properties and cytoprotective effects in mice that received cadmium-containing water. The results showed that the synthesized NLC is possessed spherical structure with the size of 185.1 nm and negative surface charge of - 26 mV with a poly dispersity index of 0.26. The mice received cadmium (2 mg/kg body weight/day) through drinking water showed weight loss and decease in the feed intake significantly (p ≤ 0.05). The cadmium notably (p ≤ 0.05) increased the liver enzymes including aspartate aminotransferase, alanine transaminase, and alkaline phosphatase; altered the liver metal deposition (cadmium, copper, manganese, selenium, and zinc); and induced hepatic oxidative stress (inducible nitric oxide synthase, catalase, superoxide dismutase, and glutathione peroxidase genes) with no remarkable histopathological changes. Furthermore, the cadmium impaired the morphology of jejunum through reducing villus height and villus width and increasing the crypt depth. Providing NLC as a dietary supplement at the concentrations of 2.5 and 5 mg/kg mice body weight significantly (p ≤ 0.05) improved the feed intake and body weight gain, modulated the liver enzymes, and alleviated the hepatic oxidative stress. The NLC also improved the antioxidant mineral deposition in the liver and morphohistological structure of jejunum. Consequently, the NLC is suggested as a potential dietary supplement to alleviate the symptoms of cadmium-induced toxicity in mice.
Collapse
Affiliation(s)
- Mahsan Beyrami
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Ehsan Oskoueian
- Mashhad Branch, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Mashhad, Iran.
| |
Collapse
|
10
|
Yu D, Zhang L, Yu G, Nong C, Lei M, Tang J, Chen Q, Cai J, Chen S, Wei Y, Xu X, Tang X, Zou Y, Qin J. Association of liver and kidney functions with Klotho gene methylation in a population environment exposed to cadmium in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2020; 30:38-48. [PMID: 30714826 DOI: 10.1080/09603123.2019.1572106] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Exposure to the heavy metal cadmium has adverse effects on human health, including DNA methylation. This study aimed to investigate the effects of cadmium on liver and kidney functions and Klotho gene methylation and to explore the relationship of methylation level with indicators of liver and kidney functions. Graphite furnace atomic absorption spectrometry was conducted to determine urinary cadmium, and an automatic biochemical analyzer was used to detect indices of liver and kidney functions. PCR pyrosequencing was performed to detect the methylation rate of Klotho. One-way ANOVA was adopted to compare the differences between groups, and the linear correlation to variables was analyzed. Cadmium exposure was negatively correlated with albumin level (r=-0.143, p=0.021) and positively correlated with urinary β2-microglobulin level (r=0.229, p<0.001). However, the methylation levels of Klotho gene was decreased and increased by low and high doses of cadmium exposure, respectively. And Klothomethylation levels were negatively correlated with albumin levels and positively correlated with β2-microglobulin levels.In this study, cadmium exposure affects liver and kidney functions as well as Klotho methylation levels, but the effect on Klotho methylation levels is not linear. Klotho methylation levels also influence liver and kidney functions.
Collapse
Affiliation(s)
- Dongmei Yu
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Li'e Zhang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Guoqi Yu
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Chuntao Nong
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Mingzhi Lei
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiexia Tang
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Quanhui Chen
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiangsheng Cai
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | | | - Yi Wei
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xia Xu
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xu Tang
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jian Qin
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
11
|
El-Boshy M, Refaat B, Almaimani RA, Abdelghany AH, Ahmad J, Idris S, Almasmoum H, Mahbub AA, Ghaith MM, BaSalamah MA. Vitamin D 3 and calcium cosupplementation alleviates cadmium hepatotoxicity in the rat: Enhanced antioxidative and anti-inflammatory actions by remodeling cellular calcium pathways. J Biochem Mol Toxicol 2020; 34:e22440. [PMID: 31926057 DOI: 10.1002/jbt.22440] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022]
Abstract
Although vitamin D (VD) and calcium (Ca) attenuate cadmium (Cd) metabolism, their combined antioxidant and anti-inflammatory actions against Cd toxicity have not been previously explored. Hence, this study measured the protective effects of VD ± Ca supplements against Cd hepatotoxicity. Forty adult male rats were distributed to: negative controls (NCs), positive controls (PCs), VD, Ca, and VD3 and Ca (VDC) groups. All groups, except NC, received CdCl2 in drinking water (44 mg/L) for 4 weeks individually or concurrently with intramuscular VD3 (600 IU/kg; three times per week) and/or oral Ca (100 mg/kg; five times per week). The PC group showed abnormal hepatic biochemical parameters and increase in cellular cytochrome C, caspase-9, and caspase-3 alongside the apoptotic/necrotic cell numbers by terminal deoxynucleotidyl transferase dUTP nick end labeling technique. The PC hepatic tissue also had substantially elevated pro-oxidants (malondialdehyde [MDA]/H2 O2 /protein carbonyls) and inflammatory cytokines (interleukin 1β [IL-1β]/IL-6/IL17A/tumor necrosis factor-α), whereas the anti-inflammatory (IL-10/IL-22) and antioxidants (glutathione [GSH]/GPx/catalase enzyme [CAT]) markers declined. Hypovitaminosis D, low hepatic tissue Ca, aberrant hepatic expression of VD-metabolizing enzymes (Cyp2R1/Cyp27a1/cyp24a1), receptor and binding protein alongside Ca-membrane (CaV 1.1/CaV 3.1), and store-operated (RyR1/ITPR1) channels, and Ca-binding proteins (CAM/CAMKIIA/S100A1/S100B) were observed in the PC group. Both monotherapies decreased serum, but not tissue Cd levels, restored the targeted hepatic VD/Ca molecules' expression. However, these effects were more prominent in the VD group than the Ca group. The VDC group, contrariwise, disclosed the greatest alleviations on serum and tissue Cd, inflammatory and oxidative markers, the VD/Ca molecules and tissue integrity. In conclusion, this report is the first to reveal boosted protection for cosupplementing VD and Ca against Cd hepatotoxicity that could be due to enhanced antioxidative, anti-inflammatory, and modulation of the Ca pathways.
Collapse
Affiliation(s)
- Mohamed El-Boshy
- Faculty of Applied Medical Sciences, Department of Laboratory Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.,Faculty of Veterinary Medicine, Department of Clinical Pathology, Mansoura University, Mansoura, Egypt
| | - Bassem Refaat
- Faculty of Applied Medical Sciences, Department of Laboratory Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Riyad A Almaimani
- Faculty of Medicine, Department of Biochemistry, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdelghany H Abdelghany
- Faculty of Applied Medical Sciences, Department of Laboratory Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.,Faculty of Medicine, Department of Anatomy, Alexandria University, Alexandria, Egypt
| | - Jawwad Ahmad
- Faculty of Applied Medical Sciences, Department of Laboratory Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shakir Idris
- Faculty of Applied Medical Sciences, Department of Laboratory Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hussain Almasmoum
- Faculty of Applied Medical Sciences, Department of Laboratory Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Amani A Mahbub
- Faculty of Applied Medical Sciences, Department of Laboratory Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mazen M Ghaith
- Faculty of Applied Medical Sciences, Department of Laboratory Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammad A BaSalamah
- Faculty of Medicine, Department of Pathology, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
12
|
Almasmoum H, Refaat B, Ghaith MM, Almaimani RA, Idris S, Ahmad J, Abdelghany AH, BaSalamah MA, El-Boshy M. Protective effect of Vitamin D3 against lead induced hepatotoxicity, oxidative stress, immunosuppressive and calcium homeostasis disorders in rat. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 72:103246. [PMID: 31465891 DOI: 10.1016/j.etap.2019.103246] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Lead (Pb) is an extremely poisonous, non-essential trace element and toxicity develops in humans following frequent exposure to the heavy metal in polluted environmental and occupational settings. Pb induces hepatic damage through the depletion of the antioxidant system, enhancing cellular oxidative stress and stimulation of proinflammatory cytokines. Although the antioxidant and anti-inflammatory actions of vitamin D3 (VD3) are well-established, a minority of studies measured the protective actions of VD3 against Pb toxicity. Therefore, this work studied the effects of vitamin VD3 therapy on the fundamental molecular basis underlying hepatic injury induced by chronic Pb toxicity. Twenty-four adult male rats were distributed equally into the negative controls (NC), positive controls (PC) and VD3 groups. While both the PC and VD3 groups received Pb-acetate in drinking water (1000 mg/L) for four weeks, the latter group also received intramuscular VD3 injections (1000 IU/kg; 3 days/week) simultaneously with Pb. The liver enzymes together with the serum and hepatic tissue Pb concentrations increased markedly in the PC group compared with the NC group. Pb toxicity also drastically induced hepatocyte apoptosis/necrosis, increased the hepatic tissue concentrations of malondialdehyde and the pro-inflammatory cytokines (TGF-β, IL-4 & TNF-α) as well as reduced the anti-oxidative enzymes (GSH, GPx & CAT) and the anti-inflammatory cytokine, IL-10, compared with the NC group. Pb also significantly decreased the serum concentrations of VD3 and Ca2+. Additionally, the hepatic expressions of VD receptor, Cyp24a1 enzyme, L-type Ca2+-channel, calbindin-D28k & -D29k, calmodulin and calmodulin-dependent protein kinase II were significantly upregulated, whereas the VD binding protein, CYP2R1 enzyme and T-type Ca2+-channel were markedly inhibited at the gene and protein levels following Pb intoxication. VD3 alleviated the hepatic damage, inhibited the oxidative stress and pro-inflammatory molecules as well as upregulated the anti-oxidant and anti-inflammatory markers and restored the expression of the VD/Ca2+ regulatory molecules compared with the PC group. VD3 supplementation discloses promising protective effects against Pb-induced hepatic damage, through its anti-inflammatory and antioxidant actions as well as by modulating the hepatocyte calcium homeostatic molecules.
Collapse
Affiliation(s)
- Hussain Almasmoum
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia.
| | - Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia.
| | - Mazen M Ghaith
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia.
| | - Riyad A Almaimani
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia.
| | - Shakir Idris
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia.
| | - Jawwad Ahmad
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia.
| | - Abdelghany H Abdelghany
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Mohammad A BaSalamah
- Pathology Department, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Saudi Arabia.
| | - Mohamed El-Boshy
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia; Department of Clinical Pathology, Fac. Vet. Med, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
13
|
Young JL, Yan X, Xu J, Yin X, Zhang X, Arteel GE, Barnes GN, States JC, Watson WH, Kong M, Cai L, Freedman JH. Cadmium and High-Fat Diet Disrupt Renal, Cardiac and Hepatic Essential Metals. Sci Rep 2019; 9:14675. [PMID: 31604971 PMCID: PMC6789035 DOI: 10.1038/s41598-019-50771-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/14/2019] [Indexed: 01/07/2023] Open
Abstract
Exposure to the environmental toxicant cadmium (Cd) contributes to the development of obesity-associated diseases. Obesity is a risk factor for a spectrum of unhealthy conditions including systemic metabolic dyshomeostasis. In the present study, the effects of whole-life exposure to environmentally-relevant concentrations of Cd on systemic essential metal distribution in adult mice fed a high-fat diet (HFD) were examined. For these studies, male and female mice were exposed to Cd-containing drinking water for >2 weeks before breeding. Pregnant mice and dams with offspring were exposed to Cd-containing drinking water. After weaning, offspring were continuously exposed to the same Cd concentration as their parents, and divided into HFD and normal (low) fat diet (LFD) groups. At 10 and 24 weeks, mice were sacrificed and blood, liver, kidney and heart harvested for metal analyses. There were significant concentration dependent increases in Cd levels in offspring with kidney > liver > heart. Sex significantly affected Cd levels in kidney and liver, with female animals accumulating more metal than males. Mice fed the HFD showed > 2-fold increase in Cd levels in the three organs compared to similarly treated LFD mice. Cadmium significantly affected essential metals levels in blood, kidney and liver. Additionally, HFD affected essential metal levels in these three organs. These findings suggest that Cd interacts with HFD to affect essential metal homeostasis, a phenomenon that may contribute to the underlying mechanism responsible for the development of obesity-associated pathologies.
Collapse
Affiliation(s)
- Jamie L Young
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Xiaofang Yan
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, KY, USA
| | - Jianxiang Xu
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Xiang Zhang
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Gavin E Arteel
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregory N Barnes
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Walter H Watson
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, KY, USA
| | - Lu Cai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Jonathan H Freedman
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
14
|
Seif MM, Madboli AN, Marrez DA, Aboulthana WM. Hepato-Renal protective Effects of Egyptian Purslane Extract against Experimental Cadmium Toxicity in Rats with Special Emphasis on the Functional and Histopathological Changes. Toxicol Rep 2019; 6:625-631. [PMID: 31367527 PMCID: PMC6650623 DOI: 10.1016/j.toxrep.2019.06.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 01/01/2023] Open
Abstract
The study was designed to clarify the hapato-nephroprotective effects of purslane ethanolic extract (PEE) against cadmium toxicity. Cadmium (Cd) is a toxic heavy metal. Cd occurs as environmental and food/ feed contamination causing public and animals health hazards. Liver and kidney are the main target organs for acute and chronic cadmium toxicity. Portulaca oleracea is rich in several vitamins, minerals, antioxidant components, and omega-3 fatty acids mainly α-linolenic acid and eicosapentaenoic acid. Results showed significant elevation of the liver and kidney functions, lipid profile and lipid peroxidation. In contrast to the antioxidants enzymatic were greatly decreased. The hepatic and renal tissues showed severe degeneration and necrosis accompanied by severe congestion and multifocal hemorrhages in Cd intoxicated rats. All parameters and tissues showed no changes in rates-treated with both Cd and purslane extract as compared with the control rats. The administration of PEE provided a significantly protection against Cd-induced hepato-nephrotoxicity.
Collapse
Affiliation(s)
- Mohamed M. Seif
- Department of Toxicology and Food Contaminants, National Research Centre, 33 Elbohoth St., Dokki, Giza, Egypt
| | - Abdel-Naser Madboli
- Department of Animal Reproduction and Artificial Insemination, National Research Centre, 33 Elbohoth St., Dokki, Giza, Egypt
| | - Diaa A. Marrez
- Department of Toxicology and Food Contaminants, National Research Centre, 33 Elbohoth St., Dokki, Giza, Egypt
| | - Wael M.K. Aboulthana
- Department of Biochemistry, National Research Centre, 33 Elbohoth St., Dokki, Giza, Egypt
| |
Collapse
|
15
|
Salama SA, Arab HH, Hassan MH, Al Robaian MM, Maghrabi IA. Cadmium-induced hepatocellular injury: Modulatory effects of γ-glutamyl cysteine on the biomarkers of inflammation, DNA damage, and apoptotic cell death. J Trace Elem Med Biol 2019; 52:74-82. [PMID: 30732903 DOI: 10.1016/j.jtemb.2018.12.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/10/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022]
Abstract
Cadmium is an extremely toxic pollutant that reaches human body through intake of the industrially polluted food and water as well as through cigarette smoking and exposure to polluted air. Cadmium accumulates in different body organs especially the liver. It induces tissue injury largely through inflammation and oxidative stress-based mechanisms. The aim of the current study was to investigate the ability of γ glutamyl cysteine (γGC) to protect against cadmium-induced hepatocellular injury employing Wistar rats as a mammalian model. The results of the current work indicated that γGC upregulated the level of the anti-inflammatory cytokine IL-10 and downregulated the levels of the pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) in the cadmium-exposed rats. In addition, γGC reduced the liver tissues cadmium content in the cadmium-treated rats, suppressed the cadmium-induced hepatocellular apoptosis and oxidative modifications of cellular DNA, lipids, and proteins. Additionally, γGC enhanced the antioxidant potential of the liver tissues in the cadmium-treated rats as evidenced by a remarkable increase in the activity of the antioxidant enzymes superoxide dismutase and glutathione peroxidase and significant increase in the levels of the total antioxidant capacity and reduced glutathione as well as a significant reduction in oxidized to reduced glutathione (GSSG/GSH) ratio. Moreover, it effectively improved liver cell integrity in the cadmium-treated rats as demonstrated by a significant reduction in the serum activity of the liver enzymes (ALT and AST) and amelioration of the cadmium-evoked histopathological alterations. Together, these findings underscore, for the first time, the alleviating effects of γGC against cadmium-induced hepatocellular injury that is potentially mediated through reduction of liver tissue cadmium content along with modulation of both hepatocellular redox status and inflammatory cytokines.
Collapse
Affiliation(s)
- Samir A Salama
- Division of Biochemistry, Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Taif, 21974, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt.
| | - Hany H Arab
- Division of Biochemistry, Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Taif, 21974, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Memy H Hassan
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, El-Madinah El-Munaworah, 30001, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azahr University, Cairo, 11751, Egypt
| | - Majed M Al Robaian
- Department of Pharmaceutics, College of Clinical Pharmacy, Taif University, Taif 21974, Saudi Arabia
| | - Ibrahim A Maghrabi
- Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Taif 21974, Saudi Arabia
| |
Collapse
|
16
|
Refaie MMM, El-Hussieny M, Zenhom NM. Protective role of nebivolol in cadmium-induced hepatotoxicity via downregulation of oxidative stress, apoptosis and inflammatory pathways. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 58:212-219. [PMID: 29408764 DOI: 10.1016/j.etap.2018.01.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 06/07/2023]
Abstract
Cadmium (Cd) intoxication in human occurs through inhalation of cigarette smoke and ingestion of contaminated water and food. We investigated the role of nebivolol (NEB) in Cd induced hepatotoxicity. In our study; NEB was given as (10 mg/kg/d) orally to rats for 6 weeks, in the presence or absence of hepatotoxicity induced by oral administration of Cd (7 mg/kg/d) for 6 weeks. Levels of serum liver enzyme biomarkers; alanine transaminase (ALT), aspartate transaminase (AST) and serum total antioxidant capacity (TAC) were measured. In addition; mean arterial pressure and total cholesterol levels were measured. Hepatic superoxide dismutase (SOD) and malondialdehyde (MDA) were detected. Hepatic histopathological features, inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) immunoexpressions were evaluated. Tumor necrosis factor alpha (TNF-α) and B-cell lymphoma-2 (Bcl-2) mRNA gene expressions were detected using real time-PCR (rt-PCR). Our results showed marked increase in all measured parameters except SOD, TAC, eNOS immunoexpression and Bcl2 mRNA gene expression which decreased in Cd induced hepatotoxicity group. NEB showed marvelous protective effect against Cd induced changes. NEB decreased liver enzymes (ALT and AST), mean arterial pressure, total cholesterol levels, MDA, iNOS immunoexpression and TNF-α gene expression but significantly increased SOD, TAC, eNOS immunoexpression and Bcl-2 gene expression. Moreover; NEB markedly improved the histopathological changes induced by Cd. These findings prove the antioxidant, anti-apoptotic and anti-inflammatory properties of NEB and its protective role in Cd induced hepatotoxicity.
Collapse
Affiliation(s)
- Marwa M M Refaie
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt.
| | - Maram El-Hussieny
- Department of Pathology, Faculty of Medicine, Minia University, Minia, Egypt.
| | - Nagwa M Zenhom
- Department of Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt.
| |
Collapse
|
17
|
Bio-prospectus of cadmium bioadsorption by lactic acid bacteria to mitigate health and environmental impacts. Appl Microbiol Biotechnol 2018; 102:1599-1615. [PMID: 29352397 DOI: 10.1007/s00253-018-8743-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 12/15/2022]
Abstract
Foodstuffs and water are the key sources of cadmium biomagnifiaction. The available strategies to mitigate this problem are unproductive and expensive for practical large-scale use. Biological decontamination of metals through environmental microbes has been known since long time, whereas lactic acid bacteria (LAB) have not been extensively studied for this purpose. The LAB are known for maintaining homeostasis and suppression of pathogens in humans and animals. They also play a vital role in bioremediation of certain heavy metals. Recently in-vivo research findings strongly complement the in-vitro results in relation to decreased total body cadmium burden in animal model. This review summarizes the currently available information on impact of toxic metal (Cd) on human and animal health as well as cadmium sequestration through microbes placed broadly, whereas preeminent attention grabbed on LAB-cadmium interaction to explore their possible role in bioremediation of cadmium from foods and environment to safeguard human as well as environment health.
Collapse
|