1
|
Piri A, Kaykhaii M, Khajeh M, Oveisi AR. Application of a magnetically separable Zr-MOF for fast extraction of palladium before its spectrophotometric detection. BMC Chem 2024; 18:63. [PMID: 38555428 PMCID: PMC10981821 DOI: 10.1186/s13065-024-01171-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/22/2024] [Indexed: 04/02/2024] Open
Abstract
In this research, a novel magnetic zirconium-based metal-organic framework (Fe3O4@SiO2@MIP-202, MMOF), was fabricated, fully characterized, and applied for the batch-mode solid phase extraction of trace amounts of Pd2+ ions from water and wastewater samples before its spectrophotometric detection. Pd2+ ions were desorbed from MMOF by nitric acid and were complexed by treating with KI solution to have a maximum absorbance at 410 nm. The synthesized MMOF composite showed a very large surface area (65 m2.g- 1), good magnetization (1.7 emu.g- 1) and a large pore volume (0.059 cm3.g- 1) with adsorption capacity of 194.5 mg of Pd2+ ions/g of the adsorbent. This nanosorbent boasts chemo-mechanical stability, high adsorption capacity due to its vast active sites, and facile recovery facilitated by its magnetic properties. Parameters affecting the extraction efficiency of the method were optimized as pH of the sample 7.4, volume of the sample 25 mL, 15 mg adsorbent, 1 mL of 0.1 M HNO3 eluent, with 10 and 15 min as the extraction and desorption times, respectively. The calibration curve was found to be linear across the 10.0-1500.0 µg.L- 1 range with a limit of detection of 1.05 µg.L- 1. The obtained extraction efficiency and enrichment were 98% and 245, respectively. The total analysis time was less than 30 min. This MMOF has never been used for the extraction of Pd2+ ions before.
Collapse
Affiliation(s)
- Amin Piri
- Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, 98135-674, Iran
| | - Massoud Kaykhaii
- Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, 98135-674, Iran.
| | - Mostafa Khajeh
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran
| | - Ali Reza Oveisi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran
| |
Collapse
|
2
|
Bouaziz N, Kouira O, Aouaini F, Bukhari L, Knani S, Znaidia S, Lamine AB. Adsorption of antibiotics by bentonite-chitosan composite: Phenomenological modeling and physical investigation of the adsorption process. Int J Biol Macromol 2023:125156. [PMID: 37270136 DOI: 10.1016/j.ijbiomac.2023.125156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/18/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
The increased use of antibiotics worldwide turned into a serious preoccupation due to their environmental and health impacts. Since the majority of antibiotic residuals are hardly eliminated from wastewater, based on usual methods, other treatments receive considerable attention. Adsorption is known as the most effective method of the treatment of antibiotics. In this paper, the adsorption isotherms of doripenem, ampicillin, and amoxicillin on bentonite-chitosan composite are determined at three temperatures, T = 303.15, 313.15 and 323.15 K, which are used to achieve a theoretical investigation of the removal phenomenon, based on a statistical physics theory. Three analytical models are utilized to describe the AMO, AMP, and DOR adsorption phenomena at the molecular level. From the fitting results, all antibiotic adsorption on a BC adsorbent is associated with the monolayer formation with one type of site. Concerning the number of adsorbed molecules per site (n), it is concluded that multi-docking (n < 1) and multi-molecular (n > 1) phenomena are feasible for AMO, AMP, and DOR adsorption on BC. The adsorption amounts at saturation of the BC adsorbent, deduced by the monolayer model, are found to be 70.4-88.0 mg/g for doripenem, 57.8-79.2 mg/g for ampicillin and 38.6-67.5 mg/g for amoxicillin indicating that the antibiotics adsorption performance of BC was greatly depended on temperature where the adsorption capacities increased with the increment of this operating variable. All adsorption systems are demonstrated by a calculation of the energy of adsorption, considering that the extrication of these pollutants implies physical interactions. The thermodynamic interpretation confirms the spontaneous and feasible nature of the adsorption of the three antibiotics on BC adsorbent. In brief, BC sample is regarded as a promising adsorbent to extract antibiotics from water and presents important potentials to be effected in wastewater handling at industrial level.
Collapse
Affiliation(s)
- Nadia Bouaziz
- Laboratory of Quantum and Statistical Physics LR 18 ES 18, Faculty of Sciences of Monastir, Environnement Street, 5019 Monastir, Tunisia.
| | - Oumayma Kouira
- Laboratory of Quantum and Statistical Physics LR 18 ES 18, Faculty of Sciences of Monastir, Environnement Street, 5019 Monastir, Tunisia
| | - Fatma Aouaini
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Lamies Bukhari
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Salah Knani
- Department of Physics, College of Science, Northern Border University, Arar, Saudi Arabia.
| | - Sami Znaidia
- College of Sciences and Arts in Mahayel Asir, Department of Physics, King Khalid University, Abha, Saudi Arabia
| | - Abdelmottaleb Ben Lamine
- Laboratory of Quantum and Statistical Physics LR 18 ES 18, Faculty of Sciences of Monastir, Environnement Street, 5019 Monastir, Tunisia
| |
Collapse
|
3
|
Han Q, Huo Y, Yang X, Yao X. Determination of ultra-trace levels of palladium in water samples by cloud point extraction and graphite furnace atomic absorption spectrometry. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/17475198211027330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A highly sensitive method for the determination of ultra-trace levels of palladium in water samples by cloud point extraction and graphite furnace atomic absorption spectrometry is developed. The procedure is based on complexation of palladium with a laboratory-prepared novel chelating agent, 2-(5-bromo-4-methyl-2-pyridylazo)-5-dimethylaminoaniline (5-Br-4-CH3-PADMA) and subsequent micelle-mediated extraction of the product using the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114) as an extracting agent. Analytical parameters affecting the separation and detection process, such as pH, concentration of the chelating agent and surfactant, equilibration temperature, and time are investigated. The optimized conditions are as follows: pH 6.0 HAc–NaAc buffer solution, 1 × 10−5 mol L−1 5-Br-4-CH3-PADMA, and 0.1% (w/v) Triton X-114. Under the optimized conditions, the calibration graph is linear in the range of 0.1–12 ng/mL, the detection limit is 0.05 ng/mL for palladium, and the relative standard deviation is 2.9% ( c = 1.0 ng/mL, n = 10). The enrichment factor, defined as the ratio of the aqueous solution volume to that of the surfactant-rich phase volume after dilution with HNO3–methanol solution, is 200. The proposed method is applied to the determination of palladium in water samples with satisfactory results.
Collapse
Affiliation(s)
- Quan Han
- School of Chemical Engineering, Xi’an University, Xi’an, P.R. China
| | - Yanyan Huo
- School of Chemical Engineering, Xi’an University, Xi’an, P.R. China
| | - Xiaohui Yang
- School of Chemical Engineering, Xi’an University, Xi’an, P.R. China
| | - Xing Yao
- School of Chemical Engineering, Xi’an University, Xi’an, P.R. China
| |
Collapse
|
4
|
|
5
|
Öztürk Er E, Dalgıç Bozyiğit G, Büyükpınar Ç, Bakırdere S. Magnetic Nanoparticles Based Solid Phase Extraction Methods for the Determination of Trace Elements. Crit Rev Anal Chem 2020; 52:231-249. [DOI: 10.1080/10408347.2020.1797465] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Elif Öztürk Er
- Chemical Engineering Department, Yıldız Technical University, İstanbul, Turkey
| | - Gamze Dalgıç Bozyiğit
- Faculty of Civil Engineering, Department of Environmental Engineering, Yıldız Technical University, İstanbul, Turkey
| | - Çağdaş Büyükpınar
- Department of Chemistry, Yıldız Technical University, İstanbul, Turkey
| | - Sezgin Bakırdere
- Department of Chemistry, Yıldız Technical University, İstanbul, Turkey
- Turkish Academy of Sciences (TÜBA), Ankara, Turkey
| |
Collapse
|
6
|
Experimental and DFT studies on the selective adsorption of Pd(II) from wastewater by pyromellitic-functionalized poly(glycidyl methacrylate) microsphere. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Khani R, Irani M. A reusable reduced graphene oxide-cobalt oxide nanocomposite with excellent yield as adsorbent for determination trace-level of brilliant green in environmental water samples. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04083-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
Omidinasab M, Rahbar N, Ahmadi M, Kakavandi B, Ghanbari F, Kyzas GZ, Martinez SS, Jaafarzadeh N. Removal of vanadium and palladium ions by adsorption onto magnetic chitosan nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:34262-34276. [PMID: 30291614 DOI: 10.1007/s11356-018-3137-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/03/2018] [Indexed: 05/15/2023]
Abstract
Chitosan (CS), synthesized from chitin chemically extracted from shrimp shells, was used for the synthesis of magnetic chitosan nanoparticles (Fe3O4-CSN), which makes the adsorbent easier to separate. Fe3O4-CSN was used for the removal of toxic metals such as vanadium (V(V)) and palladium (Pd(II)) ions from aqueous solutions. Influencing factors on the adsorption process such as pH, contact time, adsorbent dosage, and agitation speed were investigated. A competitive adsorption of V(V) and Pd(II) ions for the active sites was also studied. The monolayer maximum adsorption capacities (Qm) of 186.6 and 192.3 mg/g were obtained for V(V) and Pd(II) ions, respectively. The pseudo-second-order equation gave the best fit for the kinetic data, implying that chemisorption was the determining step. Freundlich model yielded a much better fit than the other adsorption models assessed (Langmuir, Temkin and Dubinin-Radushkevich). Thus, the adsorption of V(V) and Pd(II) ions onto Fe3O4-CSN is a combination of physical and chemical adsorption, as based on the kinetics and equilibrium study. Generally, physical adsorption is the mechanism that governs the system, while chemical adsorption is the slowest adsorption step that takes place. Thermodynamic studies displayed that the adsorption process was exothermic and spontaneous. Removal efficiencies of 99.9% for V(V) and 92.3% for Pd(II) ions were achieved, implying that Fe3O4-CSN adsorbent had an excellent ability for the removal of the metal ions from real industrial wastewaters without remarkable matrix effect. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Maryam Omidinasab
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nadereh Rahbar
- Nanotechnology Research Center, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Ahmadi
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Babak Kakavandi
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran
- Department of Environmental Health Engineering, Alborz University of Medical Sciences, Karaj, Iran
| | - Farshid Ghanbari
- Department of Environmental Health Engineering, Abadan School of Medical Sciences, Abadan, Iran
| | - George Z Kyzas
- Hephaestus Advanced Laboratory, Eastern Macedonia and Thrace Institute of Technology, Kavala, Greece
| | - Susana Silva Martinez
- Centro de Investigaciones en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209, Cuernavaca, Mor, Mexico
| | - Neemat Jaafarzadeh
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
9
|
Surfactant-assisted dispersive liquid–liquid micro-extraction combined with magnetic solid-phase extraction for analysis of polyphenols in tobacco samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1354-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|