1
|
Hwang SL, Lin YC, Lin CM, Chi MC. Effects of ambient fine particulate matter on the exacerbation of psychiatric disorders in southern Taiwan: a case-crossover study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-12. [PMID: 40103419 DOI: 10.1080/09603123.2025.2480853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/13/2025] [Indexed: 03/20/2025]
Abstract
This study investigated the impact of short-term exposures to ambient fine particulate matter 2.5 (PM2.5) on the exacerbation of psychiatric disorders (PDs) in southern Taiwan between 2014 and 2020. Data on emergency room visits (ERVs) for PDs and air pollutant levels were obtained from the Chang Gung Research Database and the Environmental Protection Administration, respectively. A time-stratified case-crossover design was adopted to estimate the risks of ERVs for PDs. At lag4 days, a 10-μg/m3 increase in PM2.5 was associated with significant increases in ERVs in both single- and multi-pollutant models, with odds ratio (OR) of 1.18 [95% confidence interval (95% CI): 1.00, 1.38] (PM2.5), 1.20 (95% CI: 1.00, 1.43) (PM2.5 + SO2), 1.23 (95% CI: 1.03, 1.46) (PM2.5 + O3), and 1.25 (95% CI: 1.03, 1.52) (PM2.5 + SO2 + O3). For cumulative lags (lag0-6), a 10-μg/m3 increase in PM2.5 was associated with significant increases in ERVs only for multi-pollutant model (PM2.5 + SO2), with OR of 1.41 (95% CI: 1.03, 1.93). Among males, significant increases in ERVs were observed at lag4 and lag0-6 days; however, no significant associations were observed in females. In conclusion, short-term exposure to PM2.5 increased the risk of PDs exacerbation, exhibiting both delayed and cumulative effects, with male patients found to be more sensitive.
Collapse
Affiliation(s)
- Su-Lun Hwang
- Department of Nursing, Chang Gung University of Science and Technology, Puzi, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Taiwan
- Division of Thoracic Oncology, Chang Gung Memorial Hospital Chiayi Branch, Puzi, Taiwan
| | - Yu-Ching Lin
- Division of Thoracic Oncology, Chang Gung Memorial Hospital Chiayi Branch, Puzi, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi, Taiwan
| | - Chieh-Mo Lin
- Department of Nursing, Chang Gung University of Science and Technology, Puzi, Taiwan
- Department of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Chang Gung Medical Foundation, Puzi, Chiayi Country, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Miao-Ching Chi
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi, Taiwan
| |
Collapse
|
2
|
Wu K, Fan W, Wei J, Lu J, Ma X, Yuan Z, Huang Z, Zhong Q, Huang Y, Zou F, Wu X. Effects of fine particulate matter and its chemical constituents on influenza-like illness in Guangzhou, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117540. [PMID: 39689457 DOI: 10.1016/j.ecoenv.2024.117540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Although the link between fine particulate matter (PM2.5) and influenza-like illness (ILI) is well established, the effect of the chemical constituents of PM2.5 on ILI remains unclear. This study aims to explore this effect in Guangzhou, China. METHODS Daily data on ILI cases, PM2.5 levels, and specific PM2.5 constituents (black carbon [BC], chlorine [Cl-], ammonia [NH4+], nitrate [NO3-], and sulfate [SO42-]) in Guangzhou, China, were collected for the period of 2014-2019. Additionally, data on gaseous pollutants and meteorological conditions were obtained. By using quasi-Poisson regression models, the association between exposure to PM2.5 and its constituents and ILI risk was estimated. Stratified subgroup analyses were performed by gender, age, and season to explore in depth the effects of these factors on disease risk. RESULTS Single-pollutant modeling results showed that an increase of one interquartile range (IQR) in Cl-, SO42-, PM2.5, NH4+, BC, and NO3- corresponded to relative risks of ILI of 1.046 (95 % CI: 1.004, 1.090) (lag03), 1.098 (95 % CI: 1.058, 1.139) (lag01), 1.091 (95 % CI: 1.054, 1.130) (lag02), 1.093 (95 % CI: 1.049, 1.138) (lag02), 1.111 (95 % CI: 1.074, 1.150) (lag03), and 1.103 (95 % CI: 1.061, 1.146) (lag03), respectively. Notably, the association between ILI and BC remained significant even after adjusting for PM2.5 mass. Subgroup analyses indicated that individuals aged 5-14 and 15-24 years may exhibit higher sensitivity to BC and Cl- exposure than other individuals. Furthermore, stronger associations were observed during the cold season than during the warm season. CONCLUSIONS Results showed that the mass and constituents of PM2.5 were significantly correlated with ILI. Specifically, the carbonaceous fractions of PM2.5 were found to have a pronounced effect on ILI. These findings underscore the importance of implementing effective measures to reduce the emission of specific sources of PM2.5 constituents to mitigate the risk of ILI. Nevertheless, limitations such as potential exposure misclassification and regional constraints should be considered.
Collapse
Affiliation(s)
- Keyi Wu
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No.1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Weidong Fan
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No.1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA
| | - Jianyun Lu
- Guangzhou Baiyun Center for Disease Control and Prevention, Guangzhou City, Guangdong 510440, China
| | - Xiaowei Ma
- Guangzhou Center for Disease Control and Prevention, Guangzhou City, Guangdong 510440, China
| | - Zelin Yuan
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No.1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Zhiwei Huang
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No.1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Qi Zhong
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No.1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Yining Huang
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No.1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Fei Zou
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China.
| | - Xianbo Wu
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No.1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China.
| |
Collapse
|
3
|
Song Y, Yang L, Kang N, Wang N, Zhang X, Liu S, Li H, Xue T, Ji J. Associations of incident female breast cancer with long-term exposure to PM 2.5 and its constituents: Findings from a prospective cohort study in Beijing, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134614. [PMID: 38761767 DOI: 10.1016/j.jhazmat.2024.134614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/29/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
This study aimed to investigate the association between long-term exposure to fine particulate matter (PM2.5) and its constituents (black carbon (BC), ammonium (NH4+), nitrate (NO3-), organic matter (OM), inorganic sulfate (SO42-)) and incident female breast cancer in Beijing, China. Data from a prospective cohort comprising 85,504 women enrolled in the National Urban Cancer Screening Program in Beijing (2013-2019) and the Tracking Air Pollution in China dataset are used. Monthly exposures were aggregated to calculate 5-year average concentrations to indicate long-term exposure. Cox models and mixture exposure models (weighted quantile sum, quantile-based g-computation, and explanatory machine learning model) were employed to analyze the associations. Findings indicated increased levels of PM2.5 and its constituents were associated with higher breast cancer risk, with hazard ratios per 1-μg/m3 increase of 1.02 (95% confidence interval (CI): 1.01, 1.03), 1.39 (95% CI: 1.16, 1.65), 1.28 (95% CI: 1.12, 1.46), 1.15 (95% CI: 1.05, 1.24), 1.05 (95% CI: 1.02, 1.08), and 1.15 (95% CI: 1.07, 1.23) for PM2.5, BC, NH4+, NO3-, OM, and SO42-, respectively. Exposure-response curves demonstrated a monotonic risk increase without an evident threshold. Mixture exposure models highlighted BC and SO42- as key factors, underscoring the importance of reducing emissions of these pollutants.
Collapse
Affiliation(s)
- Yutong Song
- Institute of Reproductive and Child Health / National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics / Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Lei Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing Office for Cancer Prevention and Control, Peking University Cancer Hospital & Institute, Beijing 100142, China; Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Cancer Center, Hohhot 010010, China
| | - Ning Kang
- Institute of Reproductive and Child Health / National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics / Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Ning Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing Office for Cancer Prevention and Control, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xi Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing Office for Cancer Prevention and Control, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Shuo Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing Office for Cancer Prevention and Control, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Huichao Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing Office for Cancer Prevention and Control, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Tao Xue
- Institute of Reproductive and Child Health / National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics / Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Centre, Beijing, China; Advanced Institute of Information Technology, Peking University, Hangzhou, China; State Environmental Protection Key Laboratory of Atmospheric Exposure and Health Risk Management, Center for Environment and Health, Peking University, Beijing, China.
| | - Jiafu Ji
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| |
Collapse
|
4
|
Huang JB, Huang KC, Hsieh TM, Tsai CM, Hsiao HY, Cheng CY, Cheng FJ. Association between Air Pollution and Short-Term Outcome of ST-Segment Elevation Myocardial Infarction in a Tropical City, Kaohsiung, Taiwan. TOXICS 2023; 11:541. [PMID: 37368641 DOI: 10.3390/toxics11060541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
ST-segment elevation myocardial infarction (STEMI), one of the primary factors leading to global mortality, has been shown through epidemiological studies to have a relationship with short-term exposure to air pollutants; however, the association between air pollutants and the outcome of STEMI has not been well studied. The aim of this study was to estimate the impact of air pollutants on the outcomes of STEMI. Data on particulate matter <2.5 μm (PM2.5), <10 μm (PM10), nitrogen dioxide (NO2), and ozone (O3) at each of the 11 air monitoring stations in Kaohsiung City were collected between 1 January 2012 and 31 December 2017. Medical records of non-trauma patients aged > 20 years who had presented to the Emergency Department (ED) with a principal diagnosis of STEMI were extracted. The primary outcome measure was in-hospital mortality. After adjusting for potential confounders and meteorological variables, we found that an increase in the interquartile range (IQR) in NO2 was associated with an elevated risk of in-hospital mortality in patients with STEMI. Moreover, there was an observed higher risk of in-hospital mortality associated with an increase in the IQR of NO2 during the warm season, specifically in lag 3 (3 days prior to the onset, OR = 3.266; 95%CI: 1.203-8.864, p = 0.02). Conversely, an IQR increase in PM10 was associated with an increased risk of in-hospital mortality in patients with STEMI in lag 3 (OR = 2.792; 95%CI: 1.115-6.993, p = 0.028) during the cold season. Our study suggests that exposure to NO2 (during the warm season) and PM10 (during the cold season) may contribute to a higher risk of poor prognosis in patients with STEMI.
Collapse
Affiliation(s)
- Jyun-Bin Huang
- Department of Emergency Medicine, Kaohsiung Municipal Feng Shan Hospital-Under The Management of Chang Gung Medical Foundation, Fengshan District, Kaohsiung 830, Taiwan
- College of Medicine, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City 333, Taiwan
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan
| | - Kuo-Chen Huang
- College of Medicine, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City 333, Taiwan
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan
| | - Ting-Min Hsieh
- College of Medicine, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City 333, Taiwan
- Division of Trauma, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan
| | - Chih-Min Tsai
- College of Medicine, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City 333, Taiwan
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Road, Niao-Sung District, Kaohsiung City 833, Taiwan
| | - Hao-Yi Hsiao
- College of Medicine, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City 333, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan
| | - Chi-Yung Cheng
- College of Medicine, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City 333, Taiwan
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan
| | - Fu-Jen Cheng
- College of Medicine, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City 333, Taiwan
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan
| |
Collapse
|
5
|
Yang Y, Wei S, Li Q, Chu K, Zhou Y, Xue L, Tian H, Tao S. Vitamin D protects silica particles induced lung injury by promoting macrophage polarization in a KLF4-STAT6 manner. J Nutr Biochem 2022; 110:109148. [PMID: 36049670 DOI: 10.1016/j.jnutbio.2022.109148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/10/2022] [Accepted: 08/10/2022] [Indexed: 01/13/2023]
Abstract
Silicosis is one of the severest occupational diseases worldwide, manifesting as infiltration of inflammatory cells, excessive secretion of pro-inflammatory mediators and pulmonary diffuse fibrosis. Macrophages polarization to M2 is one of the major strategies that attenuates inflammatory response. Our previous study found that vitamin D could protect against silica-induced lung injury by damping the secretion of pro-inflammatory cytokines. Here we further identified that vitamin D attenuated silica particles-induced lung inflammation by regulating macrophage polarization in a KLF4-STAT6 manner. Myeloid-specific Stat6 knockout (cKO) mice were generated for in vivo studies. Primary macrophages purified from bronchoalveolar lavage fluid (BALF) of wildtype or Stat6 cKO mice and differentiated THP-1 cells were used for in vitro studies. Vitamin D was found to promote alveolar macrophage polarizing to M2 phenotype through the STAT6 signaling pathway, as demonstrated by worse lung inflammation and ablated protection of vitamin D in silica particles-instilled Stat6 cKO mice. Mechanismly, vitamin D upregulated KLF4 expression in the alveolar macrophage, which synergistically activated STAT6. Additionally, KLF4 was found to upregulate macrophages autophagy, which protected them from silica particles-induced oxidative stress and cell apoptosis. The protective effects of vitamin D were dismissed by silencing KLF4. Our study demonstrates the potential mechanism of vitamin D-mediated macrophage polarization and reveals the therapeutic application of vitamin D in inflammatory disease.
Collapse
Affiliation(s)
- Youjing Yang
- Chongqing University Central Hospital and Chongqing Emergency Medical Center, Chongqing, China; School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Shuhui Wei
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Qianmin Li
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Kaimiao Chu
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yujia Zhou
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Lian Xue
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Hailin Tian
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Shasha Tao
- Chongqing University Central Hospital and Chongqing Emergency Medical Center, Chongqing, China; School of Public Health, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
6
|
Lagged acute respiratory outcomes among children related to ambient pollutant exposure in a high exposure setting in South Africa. Environ Epidemiol 2022; 6:e228. [PMID: 36530932 PMCID: PMC9746739 DOI: 10.1097/ee9.0000000000000228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/05/2022] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Acute ambient air pollution impacts on the respiratory health of children may be lagged across time. We determined the short-term lagged effects of particulate matter (PM2.5), sulphur dioxide (SO2), and oxides of nitrogen (NOx) on the respiratory health of children living in low-income communities. METHODS A school-based study was conducted using a repeated measures design, across summer and winter, in four schools in each of four suburbs in the Vaal Triangle, South Africa. Data for PM2.5, NOx, and SO2 were obtained from monitoring stations within close proximity of the schools. Over 10 school days in each phase, grade 4 children completed a symptoms log and lung function tests. Parents completed a child respiratory questionnaire. Generalized estimation equations models adjusted for covariates of interest in relation to lung function outcomes and air pollutants including lag effects of 1-5 days. RESULTS Daily PM2.5, NOx, and SO2 median concentration levels were frequently higher than international standards. Among the 280 child participants (mean age 9 years), the prevalence of symptoms based on probable asthma was 9.6%. There was a consistent increased pollutant-related risk for respiratory symptoms, except for NOx and shortness of breath. Lung function, associated with pollutant fluctuations across the different lags, was most pronounced for peak expiratory flow rate (PEFR) for PM2.5 and SO2. A preceding 5-day average SO2 exposure had the largest loss (7.5 L/minute) in PEFR. CONCLUSIONS Lagged declines in daily lung function and increased odds of having respiratory symptoms were related to increases in PM2.5 and SO2 among a school-based sample of children.
Collapse
|
7
|
Han CH, Pak H, Lee JM, Chung JH. : Short-term effects of exposure to particulate matter on hospital admissions for asthma and chronic obstructive pulmonary disease. Medicine (Baltimore) 2022; 101:e30165. [PMID: 36107568 PMCID: PMC9439629 DOI: 10.1097/md.0000000000030165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We investigated the effects of particulate matter (PM) factors on hospitalization rates for asthma and chronic obstructive pulmonary disease (COPD). We obtained data on pollutants-PM10, PM2.5-in Seoul, South Korea. We also investigated data for asthma and COPD exacerbation that required hospitalization from 2006 to 2016. We used a time-stratified case-crossover design and generalized additive models with log transformation to assess adjusted risk, and conditional logistic regression was performed to analyze these data. Our study showed that PM10 and PM2.5, on different best lag days, were associated with increased risks of COPD or asthma hospitalization. The odds ratios (ORs) for each per-unit increase in PM10 and PM2.5 were higher in patients with male asthma (PM10: OR, 1.012; 95% confidence interval [CI], 1.008-1.016 and PM2.5: OR, 1.015; 95% CI, 1008-1.023), preschool asthma (PM10: OR, 1.015; 95% CI, 1.006-1.015 and PM2.5: OR, 1.015; 95% CI, 1.009-1.024), male COPD (PM10: OR, 1.012; 95% CI, 1.005-1.019 and PM2.5: OR, 1.013; 95% CI, 1.000-1.026), and senior COPD (PM10: OR, 1.016; 95% CI, 1.008-1.024 and PM2.5: OR, 1.022; 95% CI, 1.007-1.036). Increasing PM levels increased hospitalizations for asthma and COPD. Additionally, the consequences may be different according to age and sex, and PM2.5 may have a more significant effect on airway disease patients than PM10.
Collapse
Affiliation(s)
- Chang Hoon Han
- Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Haeyong Pak
- Research and Analysis Team, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Jung Mo Lee
- Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Jae Ho Chung
- Department of Internal Medicine, International St. Mary`s Hospital, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea
- *Correspondence: Jae Ho Chung, Department of Internal Medicine, International St. Mary`s Hospital, 22711 Simgokro 100Gil 25 Seo-gu Incheon, Republic of Korea (e-mail: )
| |
Collapse
|
8
|
Lawrence KG, Niehoff NM, Keil AP, Braxton Jackson W, Christenbury K, Stewart PA, Stenzel MR, Huynh TB, Groth CP, Ramachandran G, Banerjee S, Pratt GC, Curry MD, Engel LS, Sandler DP. Associations between airborne crude oil chemicals and symptom-based asthma. ENVIRONMENT INTERNATIONAL 2022; 167:107433. [PMID: 35921771 PMCID: PMC9378681 DOI: 10.1016/j.envint.2022.107433] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE The 2010 Deepwater Horizon (DWH) oil spill response and cleanup (OSRC) workers were exposed to airborne total hydrocarbons (THC), benzene, toluene, ethylbenzene, o-, m-, and p-xylenes and n-hexane (BTEX-H) from crude oil and PM2.5 from burning/flaring oil and natural gas. Little is known about asthma risk among oil spill cleanup workers. OBJECTIVES We assessed the relationship between asthma and several oil spill-related exposures including job classes, THC, individual BTEX-H chemicals, the BTEX-H mixture, and PM2.5 using data from the Gulf Long-Term Follow-up (GuLF) Study, a prospective cohort of 24,937 cleanup workers and 7,671 nonworkers following the DWH disaster. METHODS Our analysis largely focused on the 19,018 workers without asthma before the spill who had complete exposure, outcome, and covariate information. We defined incident asthma 1-3 years following exposure using both self-reported wheeze and self-reported physician diagnosis of asthma. THC and BTEX-H were assigned to participants based on measurement data and work histories, while PM2.5 used modeled estimates. We used modified Poisson regression to estimate risk ratios (RR) and 95% confidence intervals (CIs) for associations between spill-related exposures and asthma and a quantile-based g-computation approach to explore the joint effect of the BTEX-H mixture on asthma risk. RESULTS OSRC workers had greater asthma risk than nonworkers (RR: 1.60, 95% CI: 1.38, 1.85). Higher estimated THC exposure levels were associated with increased risk in an exposure-dependent manner (linear trend test p < 0.0001). Asthma risk also increased with increasing exposure to individual BTEX-H chemicals and the chemical mixture: A simultaneous quartile increase in the BTEX-H mixture was associated with an increased asthma risk of 1.45 (95% CI: 1.35,1.55). With fewer cases, associations were less apparent for physician-diagnosed asthma alone. CONCLUSIONS THC and BTEX-H were associated with increased asthma risk defined using wheeze symptoms as well as a physician diagnosis.
Collapse
Affiliation(s)
- Kaitlyn G Lawrence
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Nicole M Niehoff
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Alexander P Keil
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA; Department of Epidemiology, UNC Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - W Braxton Jackson
- Social and Scientific Systems Inc, a DLH Holdings company, Durham, NC, USA
| | - Kate Christenbury
- Social and Scientific Systems Inc, a DLH Holdings company, Durham, NC, USA
| | | | - Mark R Stenzel
- Exposure Assessment Applications, LLC, Arlington, VA, USA
| | - Tran B Huynh
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, PA, USA
| | - Caroline P Groth
- Department of Epidemiology and Biostatistics, West Virginia University, Morgantown, WV, USA
| | - Gurumurthy Ramachandran
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Sudipto Banerjee
- Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Gregory C Pratt
- Division of Environmental Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Matthew D Curry
- Social and Scientific Systems Inc, a DLH Holdings company, Durham, NC, USA
| | - Lawrence S Engel
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA; Department of Epidemiology, UNC Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA.
| |
Collapse
|
9
|
He M, Zhong Y, Chen Y, Zhong N, Lai K. Association of short-term exposure to air pollution with emergency visits for respiratory diseases in children. iScience 2022; 25:104879. [PMID: 36065191 PMCID: PMC9440288 DOI: 10.1016/j.isci.2022.104879] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/07/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Ambient air pollutants are health hazards to children. This study comprised 773,504 emergency department visits (EDVs) at 0–14 years of age with respiratory diseases in southern China. All air pollutants were positively associated with EDVs of total respiratory diseases, especially pneumonia. NO2, PM10, and PM2.5 had intraday effects and cumulative effects on asthma EDVs. The effect of SO2, PM10, and PM2.5 on pneumonia EDVs was stronger in girls than in boys. The effect of NO2 on acute upper respiratory tract infection EDVs was greater in children aged 0–5 years old; however, the effect of PM10 on acute upper respiratory tract infection EDVs was greater in the 6–14 years group. In a two-pollutant model, NO2 was associated with bronchitis and pneumonia, and PM10 was associated with acute upper respiratory tract infection. In this time-series study, NO2 and PM10 were risk indicators for respiratory diseases in children. Air pollution associates with children emergency visits for respiratory diseases NO2 and PM10 are risk indicators for respiratory diseases in children Young children are more sensitive to gaseous pollutants School-age children are more sensitive to PM10
Collapse
|
10
|
Cheng CY, Tseng YL, Huang KC, Chiu IM, Pan HY, Cheng FJ. Association between Ambient Air Pollution and Emergency Room Visits for Pediatric Respiratory Diseases: The Impact of COVID-19 Pandemic. TOXICS 2022; 10:toxics10050247. [PMID: 35622660 PMCID: PMC9146083 DOI: 10.3390/toxics10050247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 02/05/2023]
Abstract
The level and composition of air pollution have changed during the coronavirus disease 2019 (COVID-19) pandemic. However, the association between air pollution and pediatric respiratory disease emergency department (ED) visits during the COVID-19 pandemic remains unclear. The study was retrospectively conducted between 2017 and 2020 in Kaohsiung, Taiwan, from 1 January 2020 to 1 May 2020, defined as the period of the COVID-19 pandemic, and 1 January 2017 to 31 May 2019, defined as the pre-COVID-19 pandemic period. We enrolled patients under 17 years old who visited the ED in a medical center and were diagnosed with respiratory diseases such as pneumonia, asthma, bronchitis, and acute pharyngitis. Measurements of particulate matter (PM) with aerodynamic diameters of <10 μm (PM10) and < 2.5 μm (PM2.5), nitrogen dioxide (NO2), and Ozone (O3) were collected. During the COVID-19 pandemic, an increase in the interquartile range of PM2.5, PM10, and NO2 levels was associated with increases of 72.5% (95% confidence interval [CI], 50.5−97.7%), 98.0% (95% CI, 70.7−129.6%), and 54.7% (95% CI, 38.7−72.6%), respectively, in the risk of pediatric respiratory disease ED visits on lag 1, which were greater than those in the pre-COVID-19 pandemic period. After adjusting for temperature and humidity, the risk of pediatric respiratory diseases after exposure to PM2.5 (inter p = 0.001) and PM10 (inter p < 0.001) was higher during the COVID-19 pandemic. PM2.5, PM10, and NO2 may play important roles in pediatric respiratory events in Kaohsiung, Taiwan. Compared with the pre-COVID-19 pandemic period, the levels of PM2.5 and PM10 were lower; however, the levels were related to a greater increase in ED during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Chi-Yung Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (C.-Y.C.); (K.-C.H.); (I.-M.C.); (H.-Y.P.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Computer Science and Engineering, National Sun Yat-sen University, 70, Lian-Hai Road, Kaohsiung 804, Taiwan
| | - Yu-Lun Tseng
- Institute of Environmental Engineering, National Sun Yat-sen University, 70, Lian-Hai Road, Kaohsiung 804, Taiwan;
| | - Kuo-Chen Huang
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (C.-Y.C.); (K.-C.H.); (I.-M.C.); (H.-Y.P.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - I-Min Chiu
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (C.-Y.C.); (K.-C.H.); (I.-M.C.); (H.-Y.P.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Computer Science and Engineering, National Sun Yat-sen University, 70, Lian-Hai Road, Kaohsiung 804, Taiwan
| | - Hsiu-Yung Pan
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (C.-Y.C.); (K.-C.H.); (I.-M.C.); (H.-Y.P.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Fu-Jen Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (C.-Y.C.); (K.-C.H.); (I.-M.C.); (H.-Y.P.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-975056646; Fax: +886-7-7317123
| |
Collapse
|
11
|
Effects of Fine Particulate Matter and Its Components on Emergency Room Visits for Pediatric Pneumonia: A Time-Stratified Case-Crossover Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010599. [PMID: 34682345 PMCID: PMC8535937 DOI: 10.3390/ijerph182010599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022]
Abstract
Pneumonia, one of the important causes of death in children, may be induced or aggravated by particulate matter (PM). Limited research has examined the association between PM and its constituents and pediatric pneumonia-related emergency department (ED) visits. Measurements of PM2.5, PM10, and four PM2.5 constituents, including elemental carbon (EC), organic carbon (OC), nitrate, and sulfate, were extracted from 2007 to 2010 from one core station and two satellite stations in Kaohsiung City, Taiwan. Furthermore, the medical records of patients under 17 years old who had visited the ED in a medical center and had a diagnosis of pneumonia were collected. We used a time-stratified, case-crossover study design to estimate the effect of PM. The single-pollutant model demonstrated interquartile range increase in PM2.5, PM10, nitrate, OC, and EC on lag 3, which increased the risk of pediatric pneumonia by 18.2% (95% confidence interval (Cl), 8.8-28.4%), 13.1% (95% CI, 5.1-21.7%), 29.7% (95% CI, 16.4-44.5%), 16.8% (95% CI, 4.6-30.4%), and 14.4% (95% Cl, 6.5-22.9%), respectively. After PM2.5, PM10, and OC were adjusted for, nitrate and EC remained significant in two-pollutant models. Subgroup analyses revealed that nitrate had a greater effect on children during the warm season (April to September, interaction p = 0.035). In conclusion, pediatric pneumonia ED visit was related to PM2.5 and its constituents. Moreover, PM2.5 constituents, nitrate and EC, were more closely associated with ED visits for pediatric pneumonia, and children seemed to be more susceptible to nitrate during the warm season.
Collapse
|
12
|
Ho YN, Cheng FJ, Tsai MT, Tsai CM, Chuang PC, Cheng CY. Fine particulate matter constituents associated with emergency room visits for pediatric asthma: a time-stratified case-crossover study in an urban area. BMC Public Health 2021; 21:1593. [PMID: 34445977 PMCID: PMC8393716 DOI: 10.1186/s12889-021-11636-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 08/18/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Global asthma-related mortality tallies at around 2.5 million annually. Although asthma may be triggered or exacerbated by particulate matter (PM) exposure, studies investigating the relationship of PM and its components with emergency department (ED) visits for pediatric asthma are limited. This study aimed to estimate the impact of short-term exposure to PM constituents on ED visits for pediatric asthma. METHODS We retrospectively evaluated non-trauma patients aged younger than 17 years who visited the ED with a primary diagnosis of asthma. Further, measurements of PM with aerodynamic diameter of < 10 μm (PM10), PM with aerodynamic diameter of < 10 μm (PM2.5), and four PM2.5 components (i.e., nitrate (NO3-), sulfate (SO42-), organic carbon (OC), and elemental carbon (EC)) were collected between 2007 and 2010 from southern particulate matter supersites. These included one core station and two satellite stations in Kaohsiung City, Taiwan. A time-stratified case-crossover study was conducted to analyze the hazard effect of PM. RESULTS Overall, 1597 patients were enrolled in our study. In the single-pollutant model, the estimated risk increase for pediatric asthma incidence on lag 3 were 14.7% [95% confidence interval (CI), 3.2-27.4%], 13.5% (95% CI, 3.3-24.6%), 14.8% (95% CI, 2.5-28.6%), and 19.8% (95% CI, 7.6-33.3%) per interquartile range increments in PM2.5, PM10, nitrate, and OC, respectively. In the two-pollutant models, OC remained significant after adjusting for PM2.5, PM10, and nitrate. During subgroup analysis, children were more vulnerable to PM2.5 and OC during cold days (< 26 °C, interaction p = 0.008 and 0.012, respectively). CONCLUSIONS Both PM2.5 concentrations and its chemical constituents OC and nitrate are associated with ED visits for pediatric asthma. Among PM2.5 constituents, OC was most closely related to ED visits for pediatric asthma, and children are more vulnerable to PM2.5 and OC during cold days.
Collapse
Affiliation(s)
- Yu-Ni Ho
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, No.123, Dapi Rd, Niao-Sung Dist, Kaohsiung City, 833, Taiwan.,Chang Gung University College of Medicine, No.259, Wenhua 1st Road, Guishan District, Taoyuan City, 333, Taiwan
| | - Fu-Jen Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, No.123, Dapi Rd, Niao-Sung Dist, Kaohsiung City, 833, Taiwan. .,Chang Gung University College of Medicine, No.259, Wenhua 1st Road, Guishan District, Taoyuan City, 333, Taiwan.
| | - Ming-Ta Tsai
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, No.123, Dapi Rd, Niao-Sung Dist, Kaohsiung City, 833, Taiwan.,Chang Gung University College of Medicine, No.259, Wenhua 1st Road, Guishan District, Taoyuan City, 333, Taiwan
| | - Chih-Min Tsai
- Chang Gung University College of Medicine, No.259, Wenhua 1st Road, Guishan District, Taoyuan City, 333, Taiwan.,Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, No.123, Dapi Rd, Niao-Sung Dist, Kaohsiung City, 833, Taiwan
| | - Po-Chun Chuang
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, No.123, Dapi Rd, Niao-Sung Dist, Kaohsiung City, 833, Taiwan.,Chang Gung University College of Medicine, No.259, Wenhua 1st Road, Guishan District, Taoyuan City, 333, Taiwan
| | - Chi-Yung Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, No.123, Dapi Rd, Niao-Sung Dist, Kaohsiung City, 833, Taiwan. .,Chang Gung University College of Medicine, No.259, Wenhua 1st Road, Guishan District, Taoyuan City, 333, Taiwan. .,Department of Computer Science and Engineering, National Sun Yat-sen University, No. 70, Lianhai Rd., Gushan Dist, Kaohsiung City, 804, Taiwan.
| |
Collapse
|
13
|
Wu Y, Jin T, He W, Liu L, Li H, Liu C, Zhou Y, Hong J, Cao L, Lu Y, Dong X, Xia M, Ding B, Qian L, Wang L, Zhou W, Gui Y, Zhang X, Chen R. Associations of fine particulate matter and constituents with pediatric emergency room visits for respiratory diseases in Shanghai, China. Int J Hyg Environ Health 2021; 236:113805. [PMID: 34271373 DOI: 10.1016/j.ijheh.2021.113805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/13/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Although ambient fine particulate matter (PM2.5) has been associated with adverse respiratory outcomes in children, few studies have examined PM2.5 constituents with respiratory diseases in children in China. OBJECTIVES To investigate the associations of short-term exposure to PM2.5 and its constituents with pediatric emergency room visits (ERVs) for respiratory diseases in Shanghai, China. METHODS We collected daily concentrations of PM2.5 and its constituents in urban Shanghai from January 1, 2016, to December 31, 2018. Daily pediatric ERVs for four major respiratory diseases, including upper respiratory tract infection, bronchitis, pneumonia, and asthma, were obtained from 66 hospitals in Shanghai during the same period. Associations of exposure to daily PM2.5 and constituents with respiratory ERVs were estimated using the over-dispersed generalized additive models. RESULT Short-term exposure to PM2.5 and its constituents were associated with increased pediatric ERVs for respiratory diseases. Specifically, an interquartile range increase in the 3-day average PM2.5 level (31 μg/m3) was associated with 1.86% (95%CI: 0.52, 3.22), 1.53% (95%CI: 0.01, 3.08), 1.90% (95%CI: 0.30, 3.52), and 2.67% (95%CI: 0.70, 4.68) increase of upper respiratory tract infection, bronchitis, pneumonia, and asthma ERVs, respectively. As for PM2.5 constituents, we found organic carbon, ammonium, nitrate, selenium, and zinc were associated with higher risk of respiratory ERVs in the single constituent and the constituent-PM2.5 models. CONCLUSION Short-term exposure to PM2.5 was associated with increased pediatric ERVs for respiratory diseases. Constituents related to anthropogenic combustion and traffic might be the dominant contributors of the observed associations.
Collapse
Affiliation(s)
- Yihan Wu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Tingting Jin
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Wen He
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Lijuan Liu
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Hongjin Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yufeng Zhou
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai 201102, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jianguo Hong
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Lanfang Cao
- Department of Pediatrics, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yanming Lu
- Department of Pediatrics, South Campus, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 201112, China
| | - Xiaoyan Dong
- Department of Respiratory Medicine, Children's Hospital of Shanghai Jiaotong University, Shanghai, 200040, China
| | - Min Xia
- Department of Pediatrics, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Bo Ding
- Department of Pediatrics, South Campus, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 201112, China
| | - Liling Qian
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Libo Wang
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Wenhao Zhou
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Yonghao Gui
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Xiaobo Zhang
- Department of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai, 201102, China.
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
14
|
Misiukiewicz-Stepien P, Paplinska-Goryca M. Biological effect of PM 10 on airway epithelium-focus on obstructive lung diseases. Clin Immunol 2021; 227:108754. [PMID: 33964432 DOI: 10.1016/j.clim.2021.108754] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 12/11/2022]
Abstract
Recently, a continuous increase in environmental pollution has been observed. Despite wide-scale efforts to reduce air pollutant emissions, the problem is still relevant. Exposure to elevated levels of airborne particles increased the incidence of respiratory diseases. PM10 constitute the largest fraction of air pollutants, containing particles with a diameter of less than 10 μm, metals, pollens, mineral dust and remnant material from anthropogenic activity. The natural airway defensive mechanisms against inhaled material, such as mucus layer, ciliary clearance and macrophage phagocytic activity, may be insufficient for proper respiratory function. The epithelium layer can be disrupted by ongoing oxidative stress and inflammatory processes induced by exposure to large amounts of inhaled particles as well as promote the development and exacerbation of obstructive lung diseases. This review draws attention to the current state of knowledge about the physical features of PM10 and its impact on airway epithelial cells, and obstructive pulmonary diseases.
Collapse
Affiliation(s)
- Paulina Misiukiewicz-Stepien
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland; Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Poland.
| | | |
Collapse
|
15
|
Huang YT, Chen CC, Ho YN, Tsai MT, Tsai CM, Chuang PC, Cheng FJ. Short-Term Effects of Particulate Matter and Its Constituents on Emergency Room Visits for Chronic Obstructive Pulmonary Disease: A Time-Stratified Case-Crossover Study in an Urban Area. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094400. [PMID: 33919089 PMCID: PMC8122505 DOI: 10.3390/ijerph18094400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022]
Abstract
Background: PM2.5 exposure is associated with pulmonary and airway inflammation, and the health impact might vary by PM2.5 constitutes. This study evaluated the effects of increased short-term exposure to PM2.5 constituents on chronic obstructive pulmonary disease (COPD)-related emergency department (ED) visits and determined the susceptible groups. Methods: This retrospective observational study performed in a medical center from 2007 to 2010, and enrolled non-trauma patients aged >20 years who visited the emergency department (ED) and were diagnosed as COPD. Concentrations of PM2.5, PM10, and the four PM2.5 components, including organic carbon (OC), elemental carbon (EC), nitrate (NO3−), and sulfate (SO42−), were collected by three PM supersites in Kaohsiung City. We used an alternative design of the Poisson time series regression models called a time-stratified and case-crossover design to analyze the data. Results: Per interquartile range (IQR) increment in PM2.5 level on lag 2 were associated with increments of 6.6% (95% confidence interval (CI), 0.5–13.0%) in risk of COPD exacerbation. An IQR increase in elemental carbon (EC) was significantly associated with an increment of 3.0% (95% CI, 0.1–5.9%) in risk of COPD exacerbation on lag 0. Meanwhile, an IQR increase in sulfate, nitrate, and OC levels was not significantly associated with COPD. Patients were more sensitive to the harmful effects of EC on COPD during the warm season (interaction p = 0.019). The risk of COPD exacerbation after exposure to PM2.5 was higher in individuals who are currently smoking, with malignancy, or during cold season, but the differences did not achieve statistical significance. Conclusion: PM2.5 and EC may play an important role in COPD events in Kaohsiung, Taiwan. Patients were more susceptible to the adverse effects of EC on COPD on warm days.
Collapse
Affiliation(s)
- Yii-Ting Huang
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung City 833, Taiwan; (Y.-T.H.); (C.-C.C.); (Y.-N.H.); (M.-T.T.); (P.-C.C.)
- College of Medicine, Chang Gung University, Guishan District, Taoyuan City 333, Taiwan;
| | - Chien-Chih Chen
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung City 833, Taiwan; (Y.-T.H.); (C.-C.C.); (Y.-N.H.); (M.-T.T.); (P.-C.C.)
- College of Medicine, Chang Gung University, Guishan District, Taoyuan City 333, Taiwan;
| | - Yu-Ni Ho
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung City 833, Taiwan; (Y.-T.H.); (C.-C.C.); (Y.-N.H.); (M.-T.T.); (P.-C.C.)
- College of Medicine, Chang Gung University, Guishan District, Taoyuan City 333, Taiwan;
| | - Ming-Ta Tsai
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung City 833, Taiwan; (Y.-T.H.); (C.-C.C.); (Y.-N.H.); (M.-T.T.); (P.-C.C.)
- College of Medicine, Chang Gung University, Guishan District, Taoyuan City 333, Taiwan;
| | - Chih-Min Tsai
- College of Medicine, Chang Gung University, Guishan District, Taoyuan City 333, Taiwan;
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung City 833, Taiwan
| | - Po-Chun Chuang
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung City 833, Taiwan; (Y.-T.H.); (C.-C.C.); (Y.-N.H.); (M.-T.T.); (P.-C.C.)
- College of Medicine, Chang Gung University, Guishan District, Taoyuan City 333, Taiwan;
| | - Fu-Jen Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung City 833, Taiwan; (Y.-T.H.); (C.-C.C.); (Y.-N.H.); (M.-T.T.); (P.-C.C.)
- College of Medicine, Chang Gung University, Guishan District, Taoyuan City 333, Taiwan;
- Correspondence:
| |
Collapse
|
16
|
Lee W, Ku SK, Kim TI, Kim EN, Park EK, Jeong GS, Bae JS. Inhibitory effects of cudratricusxanthone O on particulate matter-induced pulmonary injury. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:271-284. [PMID: 31407590 DOI: 10.1080/09603123.2019.1652252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Particulate matter 2.5 (PM2.5), aerodynamic diameter ≤ 2.5 μm, is the primary air pollutant that plays the key role for lung injury resulted from the loss of vascular barrier integrity. Cudratricusxanthone O (CTXO) is a novel xanthone compound isolated from the root of Cudrania tricuspidata Bureau. Here, we investigated the beneficial effects of CTXO against PM-induced lung endothelial cell (EC) barrier disruption and pulmonary inflammation. Permeability, leukocyte migration, activation of proinflammatory proteins, generation of reactive oxygen species (ROS), and histology were examined in PM2.5-treated ECs and mice. CTXO significantly scavenged PM2.5-induced ROS and inhibited the ROS-induced activation of p38 mitogen-activated protein kinase (MAPK). Concurrently, CTXO activated Akt, which helped maintain endothelial integrity. Furthermore, CTXO reduced vascular protein leakage, leukocyte infiltration, and proinflammatory cytokine release in the bronchoalveolar lavage fluid in PM-induced lung tissues. These results indicated that CTXO may exhibit protective effects against PM-induced inflammatory lung injury and vascular hyperpermeability.
Collapse
Affiliation(s)
- Wonhwa Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Deajeon, Republic of Korea
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University , Daegu, Republic of Korea
| | - Sae-Kwang Ku
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University , Gyeongsan-si, Republic of Korea
| | - Tae In Kim
- College of Pharmacy, Keimyung University , Daegu, Republic of Korea
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine , Dong-gu, Daegu, Republic of Korea
| | - Eun-Nam Kim
- College of Pharmacy, Keimyung University , Daegu, Republic of Korea
| | - Eui Kyun Park
- Department of Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University , Daegu, Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University , Daegu, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University , Daegu, Republic of Korea
| |
Collapse
|
17
|
Chen T, Chen F, Wang K, Ma X, Wei X, Wang W, Huang P, Yang D, Xia Z, Zhao Z. Acute respiratory response to individual particle exposure (PM 1.0, PM 2.5 and PM 10) in the elderly with and without chronic respiratory diseases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116329. [PMID: 33370612 DOI: 10.1016/j.envpol.2020.116329] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Limited data were on the acute respiratory responses in the elderly in response to personal exposure of particulate matter (PM). In order to evaluate the changes of airway inflammation and pulmonary functions in the elderly in response to individual exposure of particles (PM1.0, PM2.5 and PM10), we analyzed 43 elderly subjects with either asthma, chronic obstructive pulmonary disease (COPD) or Asthma COPD Overlap (ACO) and 40 age-matched subjects without asthma nor COPD in an urban community in Shanghai, China. Data were collected at the baseline and in 6 follow-ups from August 2016 to December 2018, once every 3 months except for the last twice with a 6-month interval. In each follow-up, pulmonary functions, fractional exhaled nitric oxide (FeNO), 7-day continuous personal exposure to airborne particles were measured. Multivariate linear mixed effect regression models were applied to investigate the quantitative changes of pulmonary functions and FeNO in two respective groups. The results showed that on average 4.7 follow-up visits were completed in each participant. In subjects with CRDs, an inter-quartile range (IQR) increase of personal exposure to PM1.0, PM2.5 and PM10 was significantly associated with an average increase of FeNO(Lag1) of 6.7 ppb (95%CI 1.2, 9.9 ppb), 6.2 ppb (95%CI 1.5, 12.0 ppb) and 5.6 ppb (95%CI 1.5, 11.0 ppb), respectively, and an average decrease of FEV1(Lag2) of -3.6 L (95%CI -6.0, -1.1 L), -3.6 L (95%CI -6.4, -0.8 L) and -3.2 L (95%CI -5.8, -0.6 L), respectively, in the single-pollutant model. These associations remained consistent in the two-pollutant models adjusting for gaseous air pollutants. Stratified analysis showed that subjects with lower BMI, females and non-allergies were more sensitive to particle exposure. No robust significant effects were observed in the subjects without CRDs. Our study provided data on the susceptibility of the elderly with CRDs to particle exposure of PM1.0 and PM2.5, and the modification effects by BMI, gender and history of allergies.
Collapse
Affiliation(s)
- Tianyi Chen
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Fei'er Chen
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai, China
| | - Kan Wang
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Xuedong Ma
- Shanghai Minhang District Gumei Community Health Center affiliated to Fudan University, Shanghai, 201102, China
| | - Xinping Wei
- Shanghai Minhang District Gumei Community Health Center affiliated to Fudan University, Shanghai, 201102, China
| | - Weigang Wang
- Shanghai Minhang District Gumei Community Health Center affiliated to Fudan University, Shanghai, 201102, China
| | - Pengyu Huang
- Shanghai Minhang District Gumei Community Health Center affiliated to Fudan University, Shanghai, 201102, China
| | - Dong Yang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhaolin Xia
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Zhuohui Zhao
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China; Key Laboratory of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment (Fudan University), Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai, 200030, China.
| |
Collapse
|
18
|
Characterization of Atmospheric PM2.5 Inorganic Aerosols Using the Semi-Continuous PPWD-PILS-IC System and the ISORROPIA-II. ATMOSPHERE 2020. [DOI: 10.3390/atmos11080820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A semi-continuous monitoring system, a parallel plate wet denuder and particle into liquid sampler coupled with ion chromatography (PPWD-PILS-IC), was used to measure the hourly precursor gases and water-soluble inorganic ions in ambient particles smaller than 2.5 µm in diameter (PM2.5) for investigating the thermodynamic equilibrium of aerosols using the ISORROPIA-II thermodynamic equilibrium model. The 24-h average PPWD-PILS-IC data showed very good agreement with the daily data of the manual 5 L/min porous-metal denuder sampler with R2 ranging from 0.88 to 0.98 for inorganic ions (NH4+, Na+, K+, NO3−, SO42−, and Cl−) and 0.89 to 0.98 for precursor gases (NH3, HNO3, HONO, and SO2) and slopes ranging from 0.94 to 1.17 for ions and 0.87 to 0.95 for gases, respectively. In addition, the predicted ISORROPIA-II results were in good agreement with the hourly observed data of the PPWD-PILS-IC system for SO42− (R2 = 0.99 and slope = 1.0) and NH3 (R2 = 0.97 and slope = 1.02). The correlation of the predicted results and observed data was further improved for NH4+ and NO3− with the slope increasing from 0.90 to 0.96 and 0.95 to 1.09, respectively when the HNO2 and NO2− were included in the total nitrate concentration (TN = [NO3−] + [HNO3] + [HONO] + [NO2−]). The predicted HNO3 data were comparable to the sum of the observed [HNO3] and [HONO] indicating that HONO played an important role in the thermodynamic equilibrium of ambient PM2.5 aerosols but has not been considered in the ISORROPIA-II thermodynamic equilibrium model.
Collapse
|
19
|
Yu HR, Lin CHR, Tsai JH, Hsieh YT, Tsai TA, Tsai CK, Lee YC, Liu TY, Tsai CM, Chen CC, Chang CH, Hsu TY, Niu CK. A Multifactorial Evaluation of the Effects of Air Pollution and Meteorological Factors on Asthma Exacerbation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17114010. [PMID: 32512940 PMCID: PMC7313451 DOI: 10.3390/ijerph17114010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/14/2020] [Accepted: 06/02/2020] [Indexed: 01/05/2023]
Abstract
In the real world, dynamic changes in air pollutants and meteorological factors coexist simultaneously. Studies identifying the effects of individual pollutants on acute exacerbation (AE) of asthma may overlook the health effects of the overall combination. A comprehensive study examining the influence of air pollution and meteorological factors is required. Asthma AE data from emergency room visits were collected from the Taiwan National Health Insurance Research Database. Complete monitoring data for air pollutants (SO2; NO2; O3; CO; PM2.5; PM10) and meteorological factors were collected from the Environmental Protection Agency monitoring stations. A bi-directional case-crossover analysis was used to investigate the effects of air pollution and meteorological factors on asthma AE. Among age group divisions, a 1 °C temperature increase was a protective factor for asthma ER visits with OR = 0.981 (95% CI, 0.971–0.991) and 0.985 (95% CI, 0.975–0.994) for pediatric and adult patients, respectively. Children, especially younger females, are more susceptible to asthma AE due to the effects of outdoor air pollution than adults. Meteorological factors are important modulators for asthma AE in both asthmatic children and adults. When studying the effects of air pollution on asthma AE, meteorological factors should be considered.
Collapse
Affiliation(s)
- Hong-Ren Yu
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung 83301, Taiwan; (H.-R.Y.); (T.-A.T.); (C.-K.T.); (Y.-C.L.); (T.-Y.L.); (C.-M.T.); (C.-C.C.); (C.-K.N.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kaohsiung 83301, Taiwan
| | - Chun-Hung Richard Lin
- Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Correspondence: ; Tel.: +886-7-5252000 (ext. 4339); Fax: +886-7-5254-301
| | - Jui-Hsiu Tsai
- Department of Psychiatry, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi 62247, Taiwan;
- PhD Program in Environmental and Occupation Medicine, (Taiwan) National Health Research Institutes and Kaohsiung Medical University, Kaohsiung 80737, Taiwan
| | - Yun-Ting Hsieh
- Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Ti-An Tsai
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung 83301, Taiwan; (H.-R.Y.); (T.-A.T.); (C.-K.T.); (Y.-C.L.); (T.-Y.L.); (C.-M.T.); (C.-C.C.); (C.-K.N.)
| | - Chang-Ku Tsai
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung 83301, Taiwan; (H.-R.Y.); (T.-A.T.); (C.-K.T.); (Y.-C.L.); (T.-Y.L.); (C.-M.T.); (C.-C.C.); (C.-K.N.)
| | - Yi-Chen Lee
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung 83301, Taiwan; (H.-R.Y.); (T.-A.T.); (C.-K.T.); (Y.-C.L.); (T.-Y.L.); (C.-M.T.); (C.-C.C.); (C.-K.N.)
| | - Ta-Yu Liu
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung 83301, Taiwan; (H.-R.Y.); (T.-A.T.); (C.-K.T.); (Y.-C.L.); (T.-Y.L.); (C.-M.T.); (C.-C.C.); (C.-K.N.)
| | - Chih-Min Tsai
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung 83301, Taiwan; (H.-R.Y.); (T.-A.T.); (C.-K.T.); (Y.-C.L.); (T.-Y.L.); (C.-M.T.); (C.-C.C.); (C.-K.N.)
| | - Chih-Cheng Chen
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung 83301, Taiwan; (H.-R.Y.); (T.-A.T.); (C.-K.T.); (Y.-C.L.); (T.-Y.L.); (C.-M.T.); (C.-C.C.); (C.-K.N.)
| | - Chih-Hao Chang
- Department of Respiratory Therapy, Chang Gung Memorial Hospital–Kaohsiung Medical Center, Kaohsiung 83301, Taiwan;
| | - Te-Yao Hsu
- Department of Obstetrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung 83301, Taiwan;
| | - Chen-Kuang Niu
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung 83301, Taiwan; (H.-R.Y.); (T.-A.T.); (C.-K.T.); (Y.-C.L.); (T.-Y.L.); (C.-M.T.); (C.-C.C.); (C.-K.N.)
| |
Collapse
|
20
|
Use of Tracer Elements for Estimating Community Exposure to Marcellus Shale Development Operations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17061837. [PMID: 32178331 PMCID: PMC7143288 DOI: 10.3390/ijerph17061837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 12/31/2022]
Abstract
Since 2009, unconventional natural gas development (UNGD) has significantly increased in Appalachia's Marcellus Shale formation. Elevations of fine particulate matter <2.5 µm (PM2.5), have been documented in areas surrounding drilling operations during well stimulation. Furthermore, many communities are experiencing increased industrial activities and probable UNGD air pollutant exposures. Recent studies have associated UNGD emissions with health effects based on distances from well pads. In this study, PM2.5 filter samples were collected on an active gas well pad in Morgantown, West Virginia, and three locations downwind during hydraulic stimulation. Fine particulate samples were analyzed for major and trace elements. An experimental source identification model was developed to determine which elements appeared to be traceable downwind of the UNGD site and whether these elements corresponded to PM2.5 measurements. Results suggest that 1) magnesium may be useful for detecting the reach of UNGD point source emissions, 2) complex surface topographic and meteorological conditions in the Marcellus Shale region could be modeled and confounding sources discounted, and 3) well pad emissions may be measurable at distances of at least 7 km. If shown to be more widely applicable, future tracer studies could enhance epidemiological studies showing health effects of UNGD-associated emissions at ≥15 km.
Collapse
|
21
|
Zuo B, Liu C, Chen R, Kan H, Sun J, Zhao J, Wang C, Sun Q, Bai H. Associations between short-term exposure to fine particulate matter and acute exacerbation of asthma in Yancheng, China. CHEMOSPHERE 2019; 237:124497. [PMID: 31400740 DOI: 10.1016/j.chemosphere.2019.124497] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Scarce evidence existed on the association between short-term exposure to fine particulate matter (PM2.5) and asthma in China. In this study, we aimed to explore the relationship of PM2.5 with acute asthma exacerbation in a coastal city of China. Cases of acute asthma exacerbation were identified from hospital outpatient visits in Yancheng, China, from 2015 to 2018. We utilized the generalized additive model linked by a quasi-Poisson distribution to assess the association between PM2.5 and daily acute asthma exacerbation. Different lag structures were built, and we conducted stratification analyses by gender, age, and season. Two-pollutant models were fitted, and concentration-response (C-R) curves were pooled. A total of 3,520 cases of acute asthma exacerbation were recorded, with a daily average of 3. We observed positive and significant associations of PM2.5 on lag 1, 2, lag 02, and lag 03 day. For each 10-μg/m3 increase in PM2.5 (lag 02), the associated increment in asthma was 3.15% (95% CI: 0.99%, 5.31%). The association remained after adjusting for gaseous co-pollutants. We observed significant PM2.5-asthma associations in males, patients ≤64 years, and during cold seasons. The C-R curves were positive and almost linear for total and strata-specific associations. In conclusion, this study provided robust evidence on the association of PM2.5 with acute asthma exacerbation, which may benefit future prevention strategy and policy making.
Collapse
Affiliation(s)
- Bingqing Zuo
- Department of Respiratory Medicine, The First People's Hospital of Yancheng, The Fourth Affiliated Hospital of Nantong University, Jiangsu Province, 224006, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Jian Sun
- Department of Respiratory Medicine, The First People's Hospital of Yancheng, The Fourth Affiliated Hospital of Nantong University, Jiangsu Province, 224006, China
| | - Jing Zhao
- Department of Respiratory Medicine, The First People's Hospital of Yancheng, The Fourth Affiliated Hospital of Nantong University, Jiangsu Province, 224006, China
| | - Can Wang
- Department of Respiratory Medicine, The First People's Hospital of Yancheng, The Fourth Affiliated Hospital of Nantong University, Jiangsu Province, 224006, China
| | - Qian Sun
- Department of Respiratory Medicine, The First People's Hospital of Yancheng, The Fourth Affiliated Hospital of Nantong University, Jiangsu Province, 224006, China
| | - Hongjian Bai
- Department of Respiratory Medicine, The First People's Hospital of Yancheng, The Fourth Affiliated Hospital of Nantong University, Jiangsu Province, 224006, China.
| |
Collapse
|
22
|
Chi R, Li H, Wang Q, Zhai Q, Wang D, Wu M, Liu Q, Wu S, Ma Q, Deng F, Guo X. Association of emergency room visits for respiratory diseases with sources of ambient PM 2.5. J Environ Sci (China) 2019; 86:154-163. [PMID: 31787180 DOI: 10.1016/j.jes.2019.05.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 06/10/2023]
Abstract
Previous studies have reported associations of short-term exposure to different sources of ambient fine particulate matter (PM2.5) and increased mortality or hospitalizations for respiratory diseases. Few studies, however, have focused on the short-term effects of source-specific PM2.5 on emergency room visits (ERVs) of respiratory diseases. Source apportionment for PM2.5 was performed with Positive Matrix Factorization (PMF) and generalized additive model was applied to estimate associations between source-specific PM2.5 and respiratory disease ERVs. The association of PM2.5 and total respiratory ERVs was found on lag4 (RR = 1.011, 95%CI: 1.002, 1.020) per interquartile range (76 μg/m3) increase. We found PM2.5 to be significantly associated with asthma, bronchitis and chronic obstructive pulmonary disease (COPD) ERVs, with the strongest effects on lag5 (RR = 1.072, 95%CI: 1.024, 1.119), lag4 (RR = 1.104, 95%CI: 1.032, 1.176) and lag3 (RR = 1.091, 95%CI: 1.047, 1.135), respectively. The estimated effects of PM2.5 changed little after adjusting for different air pollutants. Six primary PM2.5 sources were identified using PMF analysis, including dust/soil (6.7%), industry emission (4.5%), secondary aerosols (30.3%), metal processing (3.2%), coal combustion (37.5%) and traffic-related source (17.8%). Some of the sources were identified to have effects on ERVs of total respiratory diseases (dust/soil, secondary aerosols, metal processing, coal combustion and traffic-related source), bronchitis ERVs (dust/soil) and COPD ERVs (traffic-related source, industry emission and secondary aerosols). Different sources of PM2.5 contribute to increased risk of respiratory ERVs to different extents, which may provide potential implications for the decision making of air quality related policies, rational emission control and public health welfare.
Collapse
Affiliation(s)
- Rui Chi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Hongyu Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Qian Wang
- Chinese Academy for Environmental Planning, Beijing 100012, China
| | - Qiangrong Zhai
- Emergency Department, Peking University Third Hospital, Beijing 100191, China
| | - Daidai Wang
- Emergency Department, Peking University Third Hospital, Beijing 100191, China
| | - Meng Wu
- Emergency Department, Peking University Third Hospital, Beijing 100191, China
| | - Qichen Liu
- Beijing Center for Disease Control and Prevention, Beijing 100013, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Qingbian Ma
- Emergency Department, Peking University Third Hospital, Beijing 100191, China.
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
23
|
Hajiloo F, Hamzeh S, Gheysari M. Impact assessment of meteorological and environmental parameters on PM 2.5 concentrations using remote sensing data and GWR analysis (case study of Tehran). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:24331-24345. [PMID: 29497943 DOI: 10.1007/s11356-018-1277-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/11/2018] [Indexed: 05/22/2023]
Abstract
The PM2.5 as one of the main pollutants in Tehran city has a devastating effect on human health. Knowing the key parameters associated with PM2.5 concentration is essential to take effective actions to reduce the concentration of these particles. This study assesses the relationship between meteorological (humidity, pressure, temperature, precipitation, and wind speed) and environmental parameters (normalize difference vegetation index and land surface temperature of MODIS satellite data) on PM2.5 concentration in Tehran city. The Geographically Weighted Regression (GWR) was employed to assess the impact of key parameters on PM2.5 concentrations in winter and summer. For this purpose, first the seasonal average of meteorological data were extracted and synchronized to satellite data. Then, using the ordinary least square model, the important parameters related to PM2.5 concentration were determined and evaluated. Finally, using the GWR model, the relationships between parameters related to PM2.5 concentration were analyzed. The results of this study indicate that meteorological and environmental parameters in winter season (71%) have a much higher ability to explain PM2.5 concentration than summer season (40%). In winter, PM2.5 concentration has a negative correlation with vegetation at most parts of the study area, a negative correlation with LST in the western and a positive correlation in the eastern part of the study area, a positive correlation with temperature, and a negative correlation with wind speed in the northeastern part of the study area. Precipitation has a positive correlation with PM2.5 concentration in most parts of the study area in both seasons. But, it was investigated in case of higher precipitation (more than 2 mm), PM2.5 concentration decreases. But, there is no negative relationship in any of the dependent parameters with PM2.5 concentration in summer. In this season, the air temperature parameter showed a high correlation with PM2.5 concentration. Also, spatial variations of the local coefficients for all parameters are higher in winter than in summer.
Collapse
Affiliation(s)
- Fakhreddin Hajiloo
- Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Tehran, 141556465, Iran
| | - Saeid Hamzeh
- Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Tehran, 141556465, Iran.
| | - Mahsa Gheysari
- Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Tehran, 141556465, Iran
| |
Collapse
|
24
|
Lee W, Jeong SY, Gu MJ, Lim JS, Park EK, Baek MC, Kim JS, Hahn D, Bae JS. Inhibitory effects of compounds isolated from Dioscorea batatas Decne peel on particulate matter-induced pulmonary injury in mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:727-740. [PMID: 31342870 DOI: 10.1080/15287394.2019.1646174] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Particulate matter 2.5 (PM2.5), with an aerodynamic diameter of ≤2.5 μm, is the primary air pollutant that plays a key role associated with lung injury produced by loss of vascular barrier integrity. Dioscorea batatas Decne (Chinese yam), a perennial plant belonging to Dioscoreaceae family, is widely cultivated in tropical and subtropical regions across Asia. Both aerial parts and root of D. batatas are consumed for nutritional and medicinal purposes. The aim of this study was to (1) identify the bioactive compounds present in D. batatas peel which may be responsible for inhibition of PM2.5-induced pulmonary inflammation in mice and (2) examine in vitro mechanisms underlying the observed effects of these compounds on mouse lung microvascular endothelial cells. The measured parameters include permeability, leukocyte migration, proinflammatory protein activation, reactive oxygen species (ROS) generation, and histology. Two phenanthrene compounds, 2,7-dihydroxy-4,6-dimethoxyphenanthrene (1) and 6,7-dihydroxy-2,4-dimethoxyphenanthrene (2) were isolated from D. batatas peels. Both these phenanthrene compounds exhibited significant scavenging activity against PM2.5-induced ROS and inhibited ROS-induced activation of p38 mitogen-activated protein kinase. In addition, enhancement of Akt pathway, involved in the maintenance of endothelial integrity, was noted. These phenanthrene compounds also reduced vascular protein leakage, leukocyte infiltration, and proinflammatory cytokine release in the bronchoalveolar lavage fluid obtained from PM2.5-induced lung tissues. Evidence thus indicates that phenanthrene compounds derived from D. batatas may exhibit protective effects against PM2.5-induced inflammatory lung injury and vascular hyperpermeability in mice.
Collapse
Affiliation(s)
- Wonhwa Lee
- a College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University , Daegu , Republic of Korea
- b Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon , Republic of Korea
| | - So Yeon Jeong
- a College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University , Daegu , Republic of Korea
| | - Myeong Ju Gu
- c School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University , Daegu , Republic of Korea
| | - Ji Sun Lim
- c School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University , Daegu , Republic of Korea
| | - Eui Kyun Park
- d Department of Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University , Daegu , Republic of Korea
| | - Moon-Chang Baek
- e Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University , Daegu , Republic of Korea
| | - Jong-Sang Kim
- c School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University , Daegu , Republic of Korea
- f Institute of Agricultural Science and Technology, College of Agriculture and Life Sciences, Kyungpook National University , Daegu , Republic of Korea
| | - Dongyup Hahn
- c School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University , Daegu , Republic of Korea
- f Institute of Agricultural Science and Technology, College of Agriculture and Life Sciences, Kyungpook National University , Daegu , Republic of Korea
| | - Jong-Sup Bae
- a College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University , Daegu , Republic of Korea
| |
Collapse
|
25
|
Zhao Y, Zhang H, Yang X, Zhang Y, Feng S, Yan X. Fine particulate matter (PM 2.5) enhances airway hyperresponsiveness (AHR) by inducing necroptosis in BALB/c mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 68:155-163. [PMID: 30986632 DOI: 10.1016/j.etap.2019.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To observe the effects of prolonged exposure to high concentrations of PM2.5 on the trachea and lungs of mice and to determine whether the damages to the trachea and lung are induced by necroptosis. METHODS Six- to eight-week-old female Balb/C mice of PM group were restrained in an animal restraining device using a nose-only "PM2.5 online enrichment system" for 8 weeks, in Shijiazhuang, Hebei, China. Anti -Fas group was exposed to PM2.5 inhalation and anti-Fas treatment via intranasal instillation. The mice in the control group inhaled filtered clean air. PM2.5 sample was collected and analyzed. Airway Hyperresponsiveness (AHR) was tested. Lung tissue and bronchoalveolar lavage fluid (BALF) were analyzed for Hematoxylin and eosin (HE) staining, electron microscopy, cellular inflammation, cytokines, Tunel, Fas, RIPK3 and MLKL expression. RESULTS Compared to the other two groups, PM group displayed significantly increased AHR, neutrophils in BALF, significant bronchitis and alveolar epithelial hyperplasia and inflammation and necroptosis which were indicated by increased TUNEL, Fas, RIPK3 and MLKL measure. CONCLUSION Our findings suggest that PM2.5 can enhance AHR and these changes are induced by necroptosis-related inflammation.
Collapse
Affiliation(s)
- Yunxia Zhao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China; Department of Respiratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
| | - Huiran Zhang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Xiuna Yang
- Department of Respiratory Medicine, The Third Hospital of Shijiazhuang. Shijiazhuang, Hebei, 050000, China
| | - Yuhao Zhang
- Department of Emergency Medicine, Jinzhou General Hospital, Hebei, 052260, China
| | - Shan Feng
- Department of Internal Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
| | - Xixin Yan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.
| |
Collapse
|
26
|
Tao S, Zhang H, Xue L, Jiang X, Wang H, Li B, Tian H, Zhang Z. Vitamin D protects against particles-caused lung injury through induction of autophagy in an Nrf2-dependent manner. ENVIRONMENTAL TOXICOLOGY 2019; 34:594-609. [PMID: 30698894 DOI: 10.1002/tox.22726] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/05/2019] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
Fine particulate matter is a well-known air pollutant threatening public health. Studies have confirmed long-term exposure to the particles could decrease the pulmonary function, induce asthma exacerbation, and chronic obstructive pulmonary disease, as well as increase the incidence and mortality of lung cancer. A clinical study has explored that the prevalence and risks of vitamin D (VD) deficiency in various chronic disease and toxins induced tissue damage. Our current study aimed to explore the mechanism and further therapeutic potential of VD administration to ameliorate fine particles exposure induced pulmonary damage in vivo and in vitro. To elucidate the effects and mechanisms of VD in particles-induced pulmonary damage, a murine model was established with fine particles intratracheal instillation along with VD intramuscular injection. Our study demonstrated that treatment with VD attenuated particles-induced pulmonary damage and promoted tissue repair by repressing of TGFβ1 signaling pathway and upregulation of MMP9 expression. VD treatment could also regulate the autophagy-related signals along with activation of Nrf2 transcription factor. Furthermore, the results from the in vitro study demonstrated that VD protected against particles-induced cells' damage through the induction of autophagy in an Nrf2-dependent manner. VD treatment caused the degradation of P62 and its bound Keap1, which decreased the Nrf2 ubiquitination and increasing its protein stability. Our work explored a novel potential mechanism in the protection of VD in particles-induced pulmonary injury and tissue repair, and could further bring insights into exploring antifine particles exposure caused inflammation among other natural products and contributes to inflammation disease medical therapies.
Collapse
Affiliation(s)
- Shasha Tao
- Department of Endocrinology and Nephrology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, Suzhou, China
| | - Hong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, Suzhou, China
| | - Lian Xue
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, Suzhou, China
| | - Xiaoyan Jiang
- Department of Endocrinology and Nephrology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China
| | - Hongyan Wang
- Department of Endocrinology and Nephrology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China
| | - Bingyan Li
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, Suzhou, China
| | - Hailin Tian
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, Suzhou, China
| | - Zengli Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, Suzhou, China
| |
Collapse
|
27
|
Wang J, Wang S, Li S. Examining the spatially varying effects of factors on PM 2.5 concentrations in Chinese cities using geographically weighted regression modeling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:792-803. [PMID: 30851589 DOI: 10.1016/j.envpol.2019.02.081] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/05/2019] [Accepted: 02/23/2019] [Indexed: 05/25/2023]
Abstract
Whilst numerous studies have explored the spatial patterns and underlying causes of PM2.5, little attention has been paid to the spatial heterogeneity of the factors affecting PM2.5. In this study, a geographically weighted regression (GWR) model was used to explore the strength and direction of nexus between various factors and PM2.5 in Chinese cities. A comprehensive interpretive framework was established, composed of 18 determinants spanning the three categories of natural conditions, socioeconomic factors, and city features. Our results indicate that PM2.5 concentration levels were spatially heterogeneous and markedly higher in cities in eastern China than in cities in the west of the country. Based on the results of GWR, significant spatial heterogeneity was identified in both the direction and strength of the determinants at the local scale. Among all of the natural variables, elevation was found to be statistically significant with its effects on PM2.5 in 95.60% of the cities and it correlated negatively with PM2.5 in 99.63% cities, with its effect gradually weakening from the eastern to the western parts of China. The variable of built-up areas emerged as the strongest variable amongst the socioeconomic variables studied; it maintained a positive significant relationship in cities located in the Pearl River Delta and surrounding areas, while in other cities it exhibited a negative relationship to PM2.5. The highest coefficients were located in cities in northeast China. As the strongest variable amongst the six landscape factors, patch density maintained a positive relationship in part of cities. While in cities in the northeast regions, patch density exhibited a negative relationship with PM2.5, revealing that increasing urban fragmentation was conducive to PM2.5 reductions in those regions. These empirical results provide a basis for the formulation of targeted and differentiated air quality improvement measures in the task of regional PM2.5 governances.
Collapse
Affiliation(s)
- Jieyu Wang
- Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shaojian Wang
- Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Shijie Li
- Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
28
|
Zhang H, Xue L, Li B, Tian H, Zhang Z, Tao S. Therapeutic potential of bixin in PM2.5 particles-induced lung injury in an Nrf2-dependent manner. Free Radic Biol Med 2018; 126:166-176. [PMID: 30120979 DOI: 10.1016/j.freeradbiomed.2018.08.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/12/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022]
Abstract
Fine particulate matter (PM 2.5) is a well-known air pollutant threatening public health. Studies has confirmed that long-term exposure to the particles could reduce the pulmonary function, cause exacerbation of asthma and chronic obstructive pulmonary disease, and increase incidence and mortality of lung cancer. Bixin is a natural compound that is widely used as a food additive. Our previous studies demonstrated that bixin i.p. administration could protect against particles intratracheal exposure (56 days)-induced lung injury in an Nrf2-dependent manner. But the detail mechanisms are still unclarified. Our current study aimed to explore the further therapeutic potential and mechanism of bixin to slow the progression of lung injury and inflammation in vivo and in vitro. The results from the in vivo study showed that bixin treatment attenuated the accumulation of inflammatory cells, decreased the levels of tissue apoptosis, and increase the ability of cell proliferation. Besides that, bixin also could regulate the expression of MMP9, TGFβ1, and its downstream Fibronectin (FN), along with activation of Nrf2 signals. In vitro experiments in human bronchial epithelial cells demonstrated that Nrf2 activated by bixin contributes to tissue repair by alleviating oxidative stress, increasing proliferation and migration, decreasing apoptosis, which may be partially through modulating the expression of MMP9, TGFβ1, and FN. This study provides convincing experimental evidences that bixin could be used therapeutically to promote tissue repair and improve pulmonary injury induced by particles exposure.
Collapse
Affiliation(s)
- Hong Zhang
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Lian Xue
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Bingyan Li
- Medical College of Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Hailin Tian
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Zengli Zhang
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Shasha Tao
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, Suzhou 215123, China; School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
29
|
Wu JZ, Ge DD, Zhou LF, Hou LY, Zhou Y, Li QY. Effects of particulate matter on allergic respiratory diseases. Chronic Dis Transl Med 2018; 4:95-102. [PMID: 29988900 PMCID: PMC6034084 DOI: 10.1016/j.cdtm.2018.04.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Indexed: 01/30/2023] Open
Abstract
The health impact of airborne particulate matter (PM) has long been a concern to clinicians, biologists, and the general public. With many epidemiological studies confirming the association of PM with allergic respiratory diseases, an increasing number of follow-up empirical studies are being conducted to investigate the mechanisms underlying the toxic effects of PM on asthma and allergic rhinitis. In this review, we have briefly introduced the characteristics of PM and discussed its effects on public health. Subsequently, we have focused on recent studies to elucidate the association between PM and the allergic symptoms of human respiratory diseases. Specifically, we have discussed the mechanism of action of PM in allergic respiratory diseases according to different subtypes: coarse PM (PM2.5-10), fine PM (PM2.5), and ultrafine PM.
Collapse
Affiliation(s)
- Jin-Zhun Wu
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, China
| | - Dan-Dan Ge
- Children's Medicine Institute of Medical College, Xiamen University, Xiamen, Fujian 361102, China
- Department of Translational Medicine, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| | - Lin-Fu Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ling-Yun Hou
- Department of Translational Medicine, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| | - Ying Zhou
- Department of Translational Medicine, Medical College of Xiamen University, Xiamen, Fujian 361102, China
- Center for BioMedical Big Data Research, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| | - Qi-Yuan Li
- Children's Medicine Institute of Medical College, Xiamen University, Xiamen, Fujian 361102, China
- Department of Translational Medicine, Medical College of Xiamen University, Xiamen, Fujian 361102, China
- Center for BioMedical Big Data Research, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
30
|
Hwang SL, Chi MC, Guo SE, Lin YC, Chou CT, Lin CM. Seasonal variation and source apportionment of PM 2.5-bound trace elements at a coastal area in southwestern Taiwan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:9101-9113. [PMID: 29335875 DOI: 10.1007/s11356-017-1144-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/26/2017] [Indexed: 05/13/2023]
Abstract
The aim of this study is to investigate the seasonal variations and source apportionment on atmospheric fine particulate matter (PM2.5) mass and associated trace element concentrations at a coastal area, in Chiayi County of southwestern Taiwan. Particle measurements were conducted in 2015. Twenty-three trace elements in PM2.5 were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). Multiple approaches of the enrichment factor (EF) analysis and positive matrix fraction (PMF) model were used to identify potential sources of PM2.5-bound trace elements. Daily mean concentration of PM2.5 in cold season (25.41 μg m-3) was higher than that in hot season (13.10 μg m-3). The trace elements contributed 11.02 and 10.74% in total PM2.5 mass concentrations in cold season and hot season, respectively. The results of EF analysis confirmed that Sb, Mo, and Cd were the top three anthropogenic trace elements in the PM2.5; furthermore, carcinogenic elements (Cr, Ni, and As) and other trace elements (Na, K, V, Cu, Zn, Sr, Sn, Ba, and Pb) were attributable to anthropogenic emissions in both cold and hot seasons; however, highly enriched Li and Mn were observed only in cold season. The PMF model identified four main sources: iron and steel industry, soil and road dust, coal combustion, and traffic-related emission. Each of these sources has an annual mean contribution of 8.2, 27.5, 11.2, and 53.1%, respectively, to PM2.5. The relative dominance of each identified source varies with changing seasons. The highest contributions occurred in cold season for iron and steel industry (66.2%), in hot season for traffic-related emission (58.4%), soil and road dust (22.0%), and coal combustion (2.8%). These findings revealed that the PM2.5 mass concentration, PM2.5-bound trace element concentrations, and their contributions were various by seasons.
Collapse
Affiliation(s)
- Su-Lun Hwang
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi Campus, Puzi City, 613, Chiayi County, Taiwan.
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, 613, Chiayi County, Taiwan.
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital Chiayi Branch, Puzi City, 613, Chiayi County, Taiwan.
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi Campus, No. 2 Sec. W., Jiapu Rd., Puzi City, 61363, Chiayi County, Taiwan, Republic of China.
| | - Miao-Ching Chi
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, 613, Chiayi County, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi Campus, Puzi City, 613, Chiayi County, Taiwan
| | - Su-Er Guo
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi Campus, Puzi City, 613, Chiayi County, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, 613, Chiayi County, Taiwan
| | - Yu-Ching Lin
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital Chiayi Branch, Puzi City, 613, Chiayi County, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi Campus, Puzi City, 613, Chiayi County, Taiwan
- Department of Respiratory Care, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chiang-Ting Chou
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi Campus, Puzi City, 613, Chiayi County, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, 613, Chiayi County, Taiwan
| | - Chieh-Mo Lin
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi Campus, Puzi City, 613, Chiayi County, Taiwan
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital Chiayi Branch, Puzi City, 613, Chiayi County, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| |
Collapse
|
31
|
Hehua Z, Qing C, Shanyan G, Qijun W, Yuhong Z. The impact of prenatal exposure to air pollution on childhood wheezing and asthma: A systematic review. ENVIRONMENTAL RESEARCH 2017; 159:519-530. [PMID: 28888196 DOI: 10.1016/j.envres.2017.08.038] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND AND OBJECTIVES There has been no clear consensus about whether prenatal exposure to air pollution contributes to the development of wheezing and asthma in children. We conducted a systematic review to analyze the association between exposure to different pollutants during pregnancy and the development of childhood wheezing and asthma. METHODS We systematically reviewed epidemiological studies published through June 6, 2017 available in the MEDLINE and Web of Science databases. We included studies that examined the association between prenatal exposure to any air pollutants except tobacco smoke and the incidence or prevalence of "wheezing" or "asthma" from birth to 14 years of age. We extracted key characteristics of each included study using a template of predefined data items. We used the Critical Appraisal Skills Programme checklists to assess the validity of each included study. We conducted overall and subgroup meta-analyses for each summary exposure-outcome association. Pooled odds ratios (OR) with 95% confidence intervals (CI) were estimated by using a random effects model. RESULTS Eighteen studies met our eligibility criteria. There was notable variability in exposure assessment methods. The overall random effects risk estimates (95% CI) of different pollutants were 1.04 (0.94-1.15) aromatic hydrocarbons (PAH), 1.04 (1.01-1.07) NO2, 1.4 (0.97-2.03) PM2.5 for childhood wheeze and 1.07 (1.01-1.14) NO2, 1 (0.97-1.03) PM2.5, 1.02 (0.98-1.07) SO2, 1.08 (1.05-1.12) PM10 for childhood asthma. Minimal heterogeneity was seen for PAH and SO2, while some heterogeneity was observed for PM10, PM2.5 and NO2. CONCLUSIONS The overall and subgroup risk estimates from the meta-analyses showed statistically significant associations between prenatal exposures to NO2, SO2, and PM10 and the risk of wheezing and asthma development in childhood. There is insufficient evidence to show an effect of prenatal exposure to BC, CO, and O3 on childhood wheezing and asthma. Further studies are needed to examine the individual compounds' effects.
Collapse
Affiliation(s)
- Zhang Hehua
- Shengjing Hospital of China Medical University, Huaxiang Road No. 39, Tiexi District, China
| | - Chang Qing
- Shengjing Hospital of China Medical University, Sanhao Street, No. 36, Heping District, China
| | - Gao Shanyan
- Shengjing Hospital of China Medical University, Sanhao Street, No. 36, Heping District, China
| | - Wu Qijun
- Shengjing Hospital of China Medical University, Sanhao Street, No. 36, Heping District, China
| | - Zhao Yuhong
- Shengjing Hospital of China Medical University, Huaxiang Road No. 39, Tiexi District, China; Shengjing Hospital of China Medical University, Sanhao Street, No. 36, Heping District, China.
| |
Collapse
|