1
|
Cohen-Sánchez A, Box A, Valencia JM, Pinya S, Tejada S, Sureda A. Exploring the impact of high salinity and parasite infection on antioxidant and immune systems in Coris julis in the Pityusic Islands (Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175848. [PMID: 39209167 DOI: 10.1016/j.scitotenv.2024.175848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Climate change associated with human activities alters marine ecosystems and causes imbalances and abrupt changes in sea conditions. Scarce freshwater resources for human consumption often prompt the construction of desalination plants, which discharge significant amounts of brine into the sea, potentially elevating salinity levels. Furthermore, global trade together with higher temperature and pollution can facilitate the spread of parasites. The aim of this study was to assess the potential effects of salinity, an abiotic stressor, and Scaphanocephalus sp. parasitic infection responsible for black spot disease, a biotic stressor, on Coris julis, a common fish in the Balearic Islands (Spain). Fish were sampled from an area affected by a desalination plant, one with a high rate of parasite infection and a control area, and biomarkers were analysed in the liver, gills and epithelial mucosa. Both salinity and the parasite induced increases in catalase (CAT) and glutathione s-transferase activities in the liver, while superoxide dismutase (SOD) did not show significant changes. The effects of salinity were evident to a greater extent in the gills with an increase in the activity of all enzymes, as well as in the production of reactive species. The effects of the parasite were mainly observed in the mucus with significant increases in CAT and SOD activities. Regarding immune response markers in the mucus, both stressors induced an increase in lysozyme and alkaline phosphatase activities, and in the case of the parasite, also an increase in immunoglobulins. Malondialdehyde, as an indicator of oxidative damage, remained unchanged. In conclusion, both abiotic and abiotic stress induce a stress situation in C. julis that responds by activating its antioxidant and immune defence mechanisms but does cause oxidative damage. The differential tissue response to different stressors highlights the value of analysing multiple tissues to detect early indicators of diverse impacts on marine fauna.
Collapse
Affiliation(s)
- Amanda Cohen-Sánchez
- Research Group in Community Nutrition and Oxidative Stress, University of Balearic Islands, 07122 Palma de Mallorca, Balearic Islands, Spain
| | - Antonio Box
- Department of Agricultura, Ramaderia, Pesca, Caça i Cooperació Municipal, Consell Insular d'Eivissa, 07800 Eivissa, Balearic Islands, Spain
| | - José María Valencia
- Instituto de Investigación y Formación Agroalimentaria y Pesquera de las Illes Balears (IRFAP)-LIMIA-Govern de les Illes Balears, 07157 Port d'Andratx, Balearic Islands, Spain; Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA) (INIA-CAIB-UIB), 07122 Palma de Mallorca, Balearic Islands, Spain
| | - Samuel Pinya
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, 07122 Palma de Mallorca, Balearic Islands, Spain; Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Balearic Islands, Spain
| | - Silvia Tejada
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Balearic Islands, Spain; Laboratory of Neurophysiology, Biology Department, University of the Balearic Islands, 07122 Palma de Mallorca, Balearic Islands, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of Balearic Islands, 07122 Palma de Mallorca, Balearic Islands, Spain; Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Balearic Islands, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain.
| |
Collapse
|
2
|
Peng Q, Zheng H, Quan L, Li S, Huang J, Li J, Xie G. Therapeutic Potential of Foodborne Indole Derived from Chinese Stinky Tofu in Reducing Intestinal Inflammation and Enhancing Barrier Function to Mitigate Alcoholic Liver Injury. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21829-21842. [PMID: 39300777 DOI: 10.1021/acs.jafc.4c06203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Indole, a compound in Chinese stinky tofu (ST), acts as a ligand for the aryl hydrocarbon receptor (AHR). Despite extensive research on prebiotic compounds, indole's specific role in ST remains unexplored. This study used an ethanol gavage method to create an ALD (alcoholic liver disease) mouse model and investigate dietary indole's effects on the intestinal barrier. Our findings indicate that after 6 weeks of being fed ST, the indole present (2 mg/day) robustly activated the intestinal AHR, upregulating its target gene, CYP1A1 (cytochrome P450 1A1 enzyme). This activation significantly reduced intestinal permeability, mitigated alcohol-induced oxidative stress and inflammation, and restored intestinal barrier function. Consequently, the study demonstrates that foodborne indole substantially reduces alcohol absorption and lowers the expression levels of liver inflammation-related factors, thereby slowing the progression of ALD. These results highlight indole's therapeutic potential for treating ALD and its role in developing functional foods.
Collapse
Affiliation(s)
- Qi Peng
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Huajun Zheng
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Leping Quan
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Shanshan Li
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Jiaxin Huang
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Jiachen Li
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Guangfa Xie
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
3
|
Jiang X, Song Z, Li C, Hu X, Ge Y, Cheng L, Shi X, Jia Z. Effects of Dietary Lipid Levels on the Growth, Muscle Fatty Acid and Amino Acid Composition, Antioxidant Capacity, and Lipid Deposition in Mirror Carp ( Cyprinus carpio). Animals (Basel) 2024; 14:2583. [PMID: 39272368 PMCID: PMC11394664 DOI: 10.3390/ani14172583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
In fish, increasing the crude lipid level of feed can save protein and improve feed utilization. Mirror carp (Cyprinus carpio) is one of the most widely farmed fish species in the world. In this study, mirror carp larvae were fed isonitrogenous diets with different lipid levels (3%, 5%, 7%, 9%, 11%, and 13%). The rearing trial lasted for eight weeks. The results revealed that when the fat content was 9%, the AWGR, WGR, and FCR were highest, whereas FCR was lowest. The AWGR was correlated with the dietary lipid level, and the regression equation was y = -2.312x2 + 45.01x + 214.49. Compared with those in the control group, the T-CHO and TG contents were significantly greater in the 13% lipid content groups and significantly lower in the 9% lipid content groups (p < 0.05). In terms of muscle quality, the contents of MUFAs, PUFAs, and DHA + EPA were significantly greater than those in the other experimental groups (p < 0.05). Oil red O staining revealed a lipid content of 13% with severe fat deposition. In addition, the results of the analysis of antioxidant enzyme activity revealed that the activities of GSH, CAT and T-AOC were significantly greater at the 9% lipid content, and that the MDA content was significantly greater at the 13% lipid content (p < 0.05). Similarly, the mRNA levels of GH, IGF-I, FAS, and LPL were significantly highest at a lipid level of 9% (p < 0.05). The above results revealed that the optimal dietary lipid requirement for the fast growth of mirror carp (6.86 ± 0.95 g) was 9.74% on the basis of nonlinear regression analysis of the AWGR. The dietary lipid level (9%) improved the growth, stress resistance, and lipid utilization of mirror carp to a certain extent.
Collapse
Affiliation(s)
- Xiaona Jiang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Zhenguo Song
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Chitao Li
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Xuesong Hu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Yanlong Ge
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Lei Cheng
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Xiaodan Shi
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Zhiying Jia
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| |
Collapse
|
4
|
Xie Q, Li Z, Chen Y, Zhao Y, Xu Y, Hong Z, Chen Z, Zhang Z, Xu H, Yin Z, Wu X. Mass Spectrometry Imaging Reveals the Morphology-Dependent Toxicological Effects of Nanosilvers on Multiple Organs of Adult Zebrafish ( Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10015-10027. [PMID: 38798012 DOI: 10.1021/acs.est.4c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Nanosilvers with multifarious morphologies have been extensively used in many fields, but their morphology-dependent toxicity toward nontarget aquatic organisms remains largely unclear. Herein, we used matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to investigate the toxicological effects of silver nanomaterials with various morphologies on spatially resolved lipid profiles within multiple organs in adult zebrafish, especially for the gill, liver, and intestine. Integrated with histopathology, enzyme activity, accumulated Ag contents and amounts, as well as MSI results, we found that nanosilvers exhibit morphology-dependent nanotoxicity by disrupting lipid levels and producing oxidative stress. Silver nanospheres (AgNSs) had the highest toxicity toward adult zebrafish, whereas silver nanoflakes (AgNFs) exhibited greater toxicity than silver nanowires (AgNWs). Levels of differential phospholipids, such as PC, PE, PI, and PS, were associated with nanosilver morphology. Notably, we found that AgNSs induced greater toxicity in multiple organs, such as the brain, gill, and liver, while AgNWs and AgNFs caused greater toxicity in the intestine than AgNSs. Lipid functional disturbance and oxidative stress further caused inflammation and membrane damage after exposure to nanosilvers, especially with respect to sphere morphology. Taken together, these findings will contribute to clarifying the toxicological effects and mechanisms of different morphologies of nanosilvers in adult zebrafish.
Collapse
Affiliation(s)
- Qingrong Xie
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yingying Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yuhui Zhao
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yizhu Xu
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhouyi Hong
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zilong Chen
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhibin Yin
- Institute of Advanced Science Facilities, Shenzhen 518107, China
| | - Xinzhou Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Kong L, Chen P, Chang C. Drought Resistance and Ginsenosides Biosynthesis in Response to Abscisic Acid in Panax ginseng C. A. Meyer. Int J Mol Sci 2023; 24:ijms24119194. [PMID: 37298144 DOI: 10.3390/ijms24119194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/08/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Drought stress adversely affects the production of the perennial medicinal herb Panax ginseng C.A. Meyer. Phytohormone abscisic acid (ABA) regulates many processes in plant growth, development, and response to environments. However, whether drought resistance is regulated by ABA in Panax ginseng remains unknown. In this study, we characterized the response of drought resistance to ABA in Panax ginseng. The results showed that the growth retardation and root shrinking under drought conditions in Panax ginseng were attenuated by exogenous ABA application. Spraying ABA was shown to protect the photosynthesis system, enhance the root activity, improve the performance of the antioxidant protection system, and alleviate the excessive accumulation of soluble sugar in Panax ginseng under drought stress. In addition, ABA treatment leads to the enhanced accumulation of ginsenosides, the pharmaceutically active components, and causes the up-regulation of 3-hydroxy-3-methylglutaryl CoA reductase (PgHMGR) in Panax ginseng. Therefore, this study supports that drought resistance and ginsenosides biosynthesis in Panax ginseng were positively regulated by ABA, providing a new direction for mitigating drought stress and improving ginsenosides production in the precious medicinal herb.
Collapse
Affiliation(s)
- Lingyao Kong
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Peng Chen
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Cheng Chang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
6
|
Salih AHM, Patra I, Sivaraman R, Alhamzawi R, Khalikov KM, Al-qaim ZH, Golgouneh S, Jawad MA, Adhab AH, Vázquez-Cárdenas AL, Abarghouei S. The Probiotic Lactobacillus sakei Subsp. Sakei and Hawthorn Extract Supplements Improved Growth Performance, Digestive Enzymes, Immunity, and Resistance to the Pesticide Acetamiprid in Common Carp ( Cyprinus carpio). AQUACULTURE NUTRITION 2023; 2023:8506738. [PMID: 36922956 PMCID: PMC10010885 DOI: 10.1155/2023/8506738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/08/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
This study evaluated the impacts of the probiotic, Lactobacillus sakei (L. sakei), and the extract of hawthorn, Crataegus elbursensis, on growth and immunity of the common carp exposed to acetamiprid. Fish (mean ± SE: 11.48 ± 0.1 g) feeding was done with formulated diets (T 1 (control): no supplementation, T 2: 1 × 106 CFU/g LS (Lactobacillus sakei), T3: 1 × 108 CFU/g LS, T 4: 0.5% hawthorn extract (HWE), and T 5: 1% HWE) for 60 days and then exposed to acetamiprid for 14 days. The growth performance improved in the fish fed LS at dietary level of 1 × 108 CFU/g, even after exposure to acetamiprid (P < 0.05). Intestinal Lactobacillus sakei (CFU/g) load increased (P < 0.05), following supplementation with the probiotic-enriched diet. The LS-treated fish had increases in the activity of digestive enzymes (P < 0.05). Both LS and HWE stimulated antioxidant enzymes and immune system components in serum and mucus (alkaline phosphatase (ALP), protease, total Ig, and lysozyme) (P < 0.05). However, the changes were different depending on the kind of the supplement. The malondialdehyde (MDA) levels decreased in HWE-treated fish after acetamiprid exposure (P < 0.05). Both LS and HWE reduced the liver metabolic enzymes (LDH, ALP, AST, ALT, and LDH) in serum both before and after exposure to the pesticide (P < 0.05). However, each enzyme exhibited a different change trend depending on the type of the supplement. HWE showed a stress-ameliorating effect, as glucose and cortisol levels declined in the HWE-treated fish (P < 0.05). This study indicated the immunomodulatory impacts of LS (1 × 108 CFU/g) and HWE (at dietary levels of 0.5-1%). The probiotic showed more performance compared to HWE. However, the HWE mitigated oxidative stress more efficiently than the probiotic.
Collapse
Affiliation(s)
| | | | - Ramaswamy Sivaraman
- Institution of Dwaraka Doss Goverdhan Doss Vaishnav College, Arumbakkam, University of Madras, Chennai, India
| | - Rahim Alhamzawi
- College of Administration and Economics, University of Al-Qadisiyah, Al Diwaniyah, Iraq
| | - Kakhor M. Khalikov
- Department of Biological Chemistry, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | - Sahar Golgouneh
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Tehran, Iran
| | | | - Ali Hussein Adhab
- Department of Medical Laboratory Technics, Al-Zahrawi University College, Karbala, Iraq
| | | | - Safoura Abarghouei
- Baharavaran Nastaran Agricultural Applied Scientific Training Center, Applied Scientific University, Qom, Iran
| |
Collapse
|
7
|
Dong Z, Li X, Chen Y, Zhang N, Wang Z, Liang YQ, Guo Y. Short-term exposure to norethisterone affected swimming behavior and antioxidant enzyme activity of medaka larvae, and led to masculinization in the adult population. CHEMOSPHERE 2023; 310:136844. [PMID: 36252902 DOI: 10.1016/j.chemosphere.2022.136844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Norethisterone (NET), one of the synthetic progestins, is detected with increasing frequency in the water environment and distributed in the ocean, with a potential toxicity risk to marine organisms. However, current studies on the adverse effects of progestins (including NET) in aquatic environments have focused on freshwater organisms, mainly fish. In the present, marine medaka (Oryzias melastigma) larvae were exposed to 91.31 ng/L NET for 10 days, and then the swimming behavior, oxidation-antioxidant-related enzyme activities, sex and thyroid hormone levels, and the gene transcription patterns of the larvae were measured. After NET treatment, medaka larvae were raised in artificial seawater until 5 months of age, and the sex ratio was counted. Ten-day exposure to 91.31 ng/L NET inhibited swimming behavior, of marine medaka larvae, which showed that the time in the resting state was significantly prolonged, while the time in the large motor state was significantly reduced; disrupted oxidative-antioxidant system, significantly up-regulated the enzymatic activities of reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px); affected the hormone levels of larvae, lowered 11- keto testosterone (11-KT) and triiodothyronine (T3) concentrations. RNA-seq results showed that 91.31 ng/L NET exposure for 10 days changed the transcript levels of 275 genes, of which 28 were up-regulated and 247 were down-regulated. Differentially expressed genes (DEGs) were mainly significantly enriched in piwi interacting RNA (piRNA), gonadal development, gametogenesis, and steroidogenesis biological processes, etc. After removing NET exposure and returning to breeding for 140 days, a significant increase in male proportions (69.67%) was observed in sexually mature medaka populations in the NET-treated group. These results show that exposure to 91.31 ng/L NET for 10 days can lead to various adverse effects on marine medaka larvae. These findings shed light on the potential ecological risks of synthetic progestins to marine organisms.
Collapse
Affiliation(s)
- Zhongdian Dong
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| | - Xueyou Li
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| | - Yuebi Chen
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| | - Ning Zhang
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China; State Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University School, Changsha, 410081, PR China.
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| | - Yusong Guo
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| |
Collapse
|
8
|
Li X, Yang Y, Wu R, Hou K, Allen SC, Zhu L, Du Z, Li B, Wang J, Wang J. Toxicity comparison of atrazine on Eisenia fetida in artificial soil and three natural soils. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109485. [PMID: 36220545 DOI: 10.1016/j.cbpc.2022.109485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/17/2022] [Accepted: 10/05/2022] [Indexed: 11/19/2022]
Abstract
Atrazine has been widely used in the world and caused environmental pollution, especially soil pollution. When assessing the toxicity of atrazine in soil, most studies used standardized artificial soils, while few studies focused on the real soil environments. In the present study, three natural soils and artificial soil were selected as test soils to study and compare the toxicities of atrazine to Eisenia fetida. Acute toxicity of atrazine was determined by filter paper and soil tests. In chronic toxicity study, after atrazine exposure, the content of reactive oxygen species in Eisenia fetida significantly increased and showed a dose-response relationship. The activity changes of three antioxidant enzymes and glutathione transferase showed that atrazine had obvious oxidative stress effect on earthworms. The contents of malondialdehyde and 8-hydroxy deoxyguanosine in 0.1 and 1 mg/kg atrazine treatment groups were significantly higher than the control, indicating that medium and high concentrations of atrazine could cause lipid and DNA damage in Eisenia fetida. The acute toxicity results and the integrated biomarker response index for chronic toxicity indicated that the toxicity order of atrazine was: red clay > fluvo-aquic soil > artificial soil > black soil, and that the toxicity of atrazine in artificial soil was not representative of its toxicity in real soil environment. The results of correlation analysis showed that three soil property parameters of organic carbon, organic matter and sand were most related to the toxicity of atrazine.
Collapse
Affiliation(s)
- Xiaoying Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian 271018, China
| | - Yue Yang
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Ruolin Wu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian 271018, China
| | - Kaixuan Hou
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian 271018, China.
| | | | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian 271018, China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian 271018, China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian 271018, China
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian 271018, China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Taian 271018, China.
| |
Collapse
|
9
|
Wang X, Liu X, Yang X, Wang L, Yang J, Yan X, Liang T, Bruun Hansen HC, Yousaf B, Shaheen SM, Bolan N, Rinklebe J. In vivo phytotoxic effect of yttrium-oxide nanoparticles on the growth, uptake and translocation of tomato seedlings (Lycopersicon esculentum). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113939. [PMID: 35930836 DOI: 10.1016/j.ecoenv.2022.113939] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 05/09/2023]
Abstract
The potential toxicity and ecological risks of rare-earth nanoparticles in the environment have become a concern due to their widespread application and inevitable releases. The integration of hydroponics experiments, partial least squares structural equation modeling (PLS-SEM), and Transmission Electron Microscopy (TEM) were utilized to investigate the physiological toxicity, uptake and translocation of yttrium oxide nanoparticles (Y2O3 NPs) under different hydroponic treatments (1, 5, 10, 20, 50 and 100 mg·L-1 of Y2O3 NPs, 19.2 mg·L-1 Y(NO3)3 and control) in tomato (Lycopersicon esculentum) seedlings. The results indicated that Y2O3 NPs had a phytotoxic effect on tomato seedlings' germination, morphology, physiology, and oxidative stress. The Y2O3 NPs and soluble YIII reduced the root elongation, bud elongation, root activity, chlorophyll, soluble protein content and superoxide dismutase and accelerated the proline and malondialdehyde in the plant with increasing concentrations. The phytotoxic effects of Y2O3 NPs on tomato seedlings had a higher phytotoxic effect than soluble YIII under the all treatments. The inhibition rates of different levels of Y2O3 NPs in shoot and root biomass ranged from 0.2% to 6.3% and 1.0-11.3%, respectively. The bioaccumulation and translocation factors were less than 1, which suggested that Y2O3 NPs significantly suppressed shoot and root biomass of tomato seedlings and easily bioaccumulated in the root. The observations were consistent with the process of concentration-dependent uptake and translocation factor and confirmed by TEM. Y2O3 NPs penetrate the epidermis, enter the cell wall, and exist in the intercellular space and cytoplasm of mesophyll cells of tomato seedlings by endocytic pathway. Moreover, PLS-SEM revealed that the concentration of NPs significantly negatively affects the morphology and physiology, leading to the change in biomass of plants. This study demonstrated the possible pathway of Y2O3 NPs in uptake, phytotoxicity and translocation of Y2O3 NPs in tomato seedlings.
Collapse
Affiliation(s)
- Xueping Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojie Liu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jun Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiulan Yan
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hans Chr Bruun Hansen
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefai 230026, Anhui, China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516 Kafr El-Sheikh, Egypt.
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India.
| |
Collapse
|
10
|
Koubová A, Van Nguyen T, Grabicová K, Burkina V, Aydin FG, Grabic R, Nováková P, Švecová H, Lepič P, Fedorova G, Randák T, Žlábek V. Metabolome adaptation and oxidative stress response of common carp (Cyprinus carpio) to altered water pollution levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119117. [PMID: 35276249 DOI: 10.1016/j.envpol.2022.119117] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/15/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Treated wastewater ponds (TWPs) serve as recipients and passive tertiary treatment mediators for recycled water. These nutrient-rich habitats are increasingly utilised in aquaculture, nevertheless multiple loads of various contaminants with adverse effects on aquatic fauna, including fish, have been recorded. In the present study, we investigated the effects of fish transfer in response to altered levels of pollution on liver metabolic profiles and tissue-specific oxidative stress biomarkers during short- and long-term exposure. In a field experiment, common carp (Cyprinus carpio) originating in severely polluted TWP were restocked after one year to a reference pond with a background pollutant concentration typical of the regional river. In contrast, fish that originated in the reference pond were restocked to TWP. Fish were sampled 0, 7, 14, 60, and 180 days after restocking and fish liver, kidney, intestine, and gill tissues were subjected to biomarker analysis. Pharmaceutically active compounds (PhACs) and metabolic profiles were determined in fish liver using liquid chromatography high-resolution mass spectrometry (LC-HRMS). Fish transferred from reference to polluted pond increased the antioxidant response and absorbed PhACs into metabolism within seven days. Fish liver metabolic profiles were shifted rapidly, but after 180 days to a lesser extent than profiles in fish already adapted in polluted water. Restocked fish from polluted to reference pond eliminated PhACs during the short phase within 14 days, and the highest antioxidant response accompanied the depuration process. Numerous elevated metabolic compounds persisted in such exposed fish for at least 60 days. The period of two weeks was suggested as sufficient for PhACs depuration, but more than two months after restocking is needed for fish to stabilise their metabolism. This study contributed to determining the safe handling with marketed fish commonly restocked to wastewaters and clarified that water pollution irreversibly altered fish metabolic profile.
Collapse
Affiliation(s)
- Anna Koubová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic.
| | - Tuyen Van Nguyen
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Viktoriia Burkina
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Farah Gönül Aydin
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic; Ankara University, Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Diskapi, 06110, Altindag, Ankara, Turkey
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Petra Nováková
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Helena Švecová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Pavel Lepič
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Ganna Fedorova
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Vladimír Žlábek
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| |
Collapse
|
11
|
Dawood MAO, Alkafafy M, Sewilam H. The antioxidant responses of gills, intestines and livers and blood immunity of common carp (Cyprinus carpio) exposed to salinity and temperature stressors. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:397-408. [PMID: 35171388 PMCID: PMC9005402 DOI: 10.1007/s10695-022-01052-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/20/2022] [Indexed: 05/14/2023]
Abstract
Aquaculture activity is affected by various environmental factors, including water salinity and high temperatures. The present study investigated the impact of using varying water salinity (0, 5, 10, 15 and 20 ppt) on the growth behavior, immune responses and antioxidative responses of common carp. Fish were raised under optimal conditions except for water salinity for 8 weeks; fish were then subjected to high-temperature stress (32 °C) for 48 h. The results indicated a reduced final weight (FBW), weight gain (WG), specific growth rate (SGR), condition factor (CF), feed intake and feed efficiency ratio (FER) in common carp reared in 15 and 20 ppt (p < 0.05). The lowest FBW, WG, SGR, CF, feed intake and FER values were observed in fish reared in 20 ppt water salinity (p < 0.05). In gills, the superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were markedly decreased, but malondialdehyde (MDA) levels increased in fish challenged with 15 and 20 ppt before they were subjected to heat stress (p < 0.05). After heat stress, the SOD, CAT and GPx were decreased, and the MDA increased in fish reared in varying salinity levels (p < 0.05). Before heat stress, the intestinal SOD, CAT and GPx markers were decreased by 15 and 20 ppt, while the MDA level was increased by 15 and 20 ppt (p < 0.05). Generally, heat stress lowered the SOD, CAT and GPx activity in the intestines and liver tissues but increased MDA levels in common carp stressed by varying salinity levels (p < 0.05). The most decreased lysozyme activity, SOD, CAT and GPx and increased MDA levels were observed in common carp exposed to 20 ppt before and after heat stress (p < 0.05). After heat stress, fish exposed to 15 and 20 ppt had lower NBT than the remaining groups, and fish exposed to 20 ppt had the lowest values (p < 0.05). Overall, the heat stress markedly suppressed the antioxidant and immune responses of common carp reared in hypersalinity conditions.
Collapse
Affiliation(s)
- Mahmoud A. O. Dawood
- Animal Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
- The Center for Applied Research On the Environment and Sustainability, The American University in Cairo, Cairo, 11835 Egypt
| | - Mohamed Alkafafy
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944 Saudi Arabia
| | - Hani Sewilam
- The Center for Applied Research On the Environment and Sustainability, The American University in Cairo, Cairo, 11835 Egypt
- Department of Engineering Hydrology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
12
|
Zhao H, Ke H, Zhang L, Zhao Z, Lai J, Zhou J, Huang Z, Li H, Du J, Li Q. Integrated analysis about the effects of heat stress on physiological responses and energy metabolism in Gymnocypris chilianensis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151252. [PMID: 34710409 DOI: 10.1016/j.scitotenv.2021.151252] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
The temperature of the rivers in the Qilian Mountains, China varies widely from day to night, and Gymnocypris chilianensis living in these rivers may experience a change of 10 °C to 20 °C within a day. To explore the mechanisms underlying G. chilianensis responses to heat stress, we conducted an acute temperature stress experiment. In response to heat stress, levels of antioxidant enzymes (SOD\CAT\MDA) first increased and then decreased with time, but T-AOC levels only decreased. The activities of key glycolytic enzymes HK and PFK in the liver also first increased and then decreased and transaminase (AST/ALT) activity increased significantly. We obtained 5350 significantly different genes through transcriptome sequencing with enrichment pathways including primarily glycine, serine and threonine metabolism, cysteine and methionine metabolism, tryptophan metabolism, fructose and mannose metabolism, steroid hormone biosynthesis, and fatty acid degradation. A total of 457 differential metabolites were identified in the liver under thermal stress, most of which are involved in biochemical pathways of amino acid metabolism. Biosynthesis of amino acids indicated that G. chilianensis maintained physiological homeostasis by enhancing glucose metabolism and regulating lipid and amino acid metabolism pathways under thermal stress. We also randomly selected 12 key response genes for validation using qRT-PCR. This is the first study describing the mechanisms underlying responses to thermal stress in G. chilianensis, and may also provide reference data for the study of environmental mutations in indigenous fish in the Qinghai-Tibet Plateau and Qilian Mountains.
Collapse
Affiliation(s)
- Han Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China
| | - Hongyu Ke
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China
| | - Lu Zhang
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China
| | - Zhongmeng Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China
| | - Jiansheng Lai
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China
| | - Jian Zhou
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China
| | - Zhipeng Huang
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China
| | - Huadong Li
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China
| | - Jun Du
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China
| | - Qiang Li
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, Sichuan, China.
| |
Collapse
|
13
|
Dietary silymarin, Silybum marianum extract ameliorates cadmium chloride toxicity in common carp, Cyprinus carpio. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
The present study evaluated the protective effects of silymarin extract (SIE) on cadmium chloride toxicity in common carp, Cyprinus carpio. Four experimental group were considered for the experiment including: SIE0 (control): non-SIE-supplemented fish, SIE1: fish supplemented with 400 mg SIE/kg diet, SIE2: fish supplemented with1400mg SIE/kg diet, SIE3: fish supplemented with 2400 mg SIE/kg diet). Fish were fed experimental diet for 60 days and then exposed to cadmium chloride (1.5 mg/l or 25% of LC50–96 h) and antioxidant defense components and the survival rate assayed. After 60 days feeding trial, total antioxidant capacity (TAC) levels significantly increased (P<0.01) in 1400–2400 mg SIE/kg diet treatments compared to those in control and 400 mg SIE/kg diet treatment. Malondialdehyde (MDA) (P>0.01) and acetylcholinesterase (AChE) levels (P>0.01) remained unchanged during the feeding period in all treatments. Hepatic catalase (CAT) in all SIE supplemented groups and superoxide dismutase (SOD) and glutathione peroxidase (GPx) in 1400–2400 mg SIE/kg diet treatments significantly elevated (P<0.01) in response to SIE. Plasma levels of hepatic metabolic enzymes [alanine transaminase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), creatine kinase (CK), lactate dehydrogenase (LDH) ] remained unchanged (P>0.01) in all experimental groups over feeding period. After exposure to cadmium chloride, TAC levels were significantly elevated (P<0.01) in all experimental groups. In control and 400 mg SIE/kg diet treatment, TAC showed lower levels (P<0.01) compared to other groups. MDA levels were significantly increased (P<0.01) in control and fish supplemented with 400 and 1400 mg SIE/kg diet. TAC in the fish of 2400 mg SIE/kg diet treatment remained unchanged (P>0.01), following the exposure. CAT (P<0.01), SOD (P<0.01) and GPx (P<0.01) were significantly elevated in response to cadmium chloride in all groups. However, the treatments, 1400 and 2400 mg SIE/kg diet, showed lower increases (P<0.01) of enzymes. AChE activity (P<0.01) in the liver were significantly decreased in control and fish fed 400 and 1400 mg SIE/kg diet. Exposure to cadmium significantly increased (P<0.01) the plasma levels of ALT, AST, ALP and LDH in control and those fed 400 and 1400 mg SIE/kg diet. The findings of the current study indicated that SIE at a rate of 1400–2400mg/kg diet might enhance antioxidant defense and protect hepatocytes against toxic effects of cadmium.
Collapse
|
14
|
Jiao L, Dai T, Zhong S, Jin M, Sun P, Zhou Q. Vibrio parahaemolyticus Infection Influenced Trace Element Homeostasis, Impaired Antioxidant Function, and Induced Inflammation Response in Litopenaeus vannamei. Biol Trace Elem Res 2021; 199:329-337. [PMID: 32198646 DOI: 10.1007/s12011-020-02120-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) caused huge diseases and economic losses in shrimp aquaculture. Understanding the infection mechanism might help develop new strategies for controlling pathogen outbreak. Redistribution of trace element homeostasis, accompanied by impairment of antioxidant status and immune response, was observed during various infections. Accordingly, we hypothesized that V. parahaemolyticus infection might influence trace element homeostasis, impair antioxidant function, and induce inflammation response in shrimp. In the present study, the aim of this study was to investigate the influence of V. parahaemolyticus infection on trace element homeostasis, antioxidant status, and inflammation response in Litopenaeus vannamei (L. vannamei). The results showed that compared with the control group, V. parahaemolyticus infection significantly increased (P < 0.05) intestinal V. parahaemolyticus number, serum copper (Cu) concentration at 24, 48, and 72 h and significantly increased (P < 0.05) serum zinc (Zn), iron (Fe), and manganese (Mn) concentrations at 24 h but decreased (P < 0.05) at 72 h. The intestinal gene expressions of metal transporters ZIP13, CTR1, and MT1 were significantly decreased at 24, 48, and 72 h, and DMT1 was significantly decreased at 48 h and 72 h in the infection group. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) were suppressed at 48 h and 72 h, and the malondialdehyde (MDA) content was increased at 24, 48, and 72 h in the infection group; the pro-inflammatory genes including necrosis factor-α (TNF-α), lipopolysaccharide-induced TNF-α factor (LITAF), and Ras-related protein Rab6A (RAB6A) were significantly upregulated at 48 and 72 h in the infection group. These results suggest that V. parahaemolyticus infection influenced trace element homeostasis, impaired antioxidant function, and induced inflammation response in L. vannamei, which might help understand the infection mechanism. The results provide a better understanding of the L. vannamei and V. parahaemolyticus interactions and may deliver the basis for further research in preventing the bacterial diseases.
Collapse
Affiliation(s)
- Lefei Jiao
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Tianmeng Dai
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Sunqian Zhong
- Ningbo Economic Technical Development Area Bolun Marine Surveyors Office, Ningbo, 315800, People's Republic of China
| | - Min Jin
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Peng Sun
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Qicun Zhou
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China.
| |
Collapse
|
15
|
Sun M, Ye S, Xu Z, Wan L, Zhao Y. Endophytic Bacillus altitudinis Q7 from Ginkgo biloba inhibits the growth of Alternaria alternata in vitro and its inhibition mode of action. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1936639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Mingqi Sun
- Department of Food Science and Engineering, School of Food Science, Dalian Polytechnic University, Dalian, Liaoning, PR China
| | - Shuhong Ye
- Department of Food Science and Engineering, School of Food Science, Dalian Polytechnic University, Dalian, Liaoning, PR China
| | - Zhichao Xu
- Department of Food Science and Engineering, School of Food Science, Dalian Polytechnic University, Dalian, Liaoning, PR China
| | - Lu Wan
- Department of Food Science and Engineering, School of Food Science, Dalian Polytechnic University, Dalian, Liaoning, PR China
| | - Yuguang Zhao
- Department of Food Science and Engineering, School of Food Science, Dalian Polytechnic University, Dalian, Liaoning, PR China
| |
Collapse
|
16
|
Xia SR, Wen XY, Fan XL, Chen XR, Wei ZW, Li QH, Sun L. Wnt2 overexpression protects against PINK1 mutant‑induced mitochondrial dysfunction and oxidative stress. Mol Med Rep 2020; 21:2633-2641. [PMID: 32323790 DOI: 10.3892/mmr.2020.11066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 03/12/2020] [Indexed: 11/06/2022] Open
Abstract
The PTEN induced putative kinase 1 (PINK1) mutation is the second most common cause of autosomal recessive adolescent Parkinson's disease (PD). Furthermore, mitochondrial disorders and oxidative stress are important mechanisms in the pathogenesis of PD. Numerous members of the Wnt family have been found to be associated with neurodegenerative diseases. Therefore, the present study investigated the role of the Wnt2 gene in PINK1B9 transgenic flies, which is a PD model, and its underlying mechanism. It was identified that overexpression of Wnt2 reduced the abnormality rate of PD transgenic Drosophila and improved their flight ability, while other intervention groups had no significant effect. Furthermore, an increase in ATP concentration normalized mitochondrial morphology, and increased the mRNA expression levels of NADH‑ubiquinone oxidoreductase chain 1 (ND1), ND42, ND75, succinate dehydrogenase complex subunits B, Cytochrome b and Cyclooxygenase 1, which are associated with Wnt2 overexpression. Moreover, overexpression of Wnt2 in PD transgenic Drosophila resulted in the downregulation of reactive oxygen species and malondialdehyde production, and increased manganese superoxide dismutase (MnSOD), while glutathione was not significantly affected. It was found that overexpression of Wnt2 did not alter the protein expression of β‑catenin in PINK1B9 transgenic Drosophila, but did increase the expression levels of PPARG coactivator 1α (PGC‑1α) and forkhead box sub‑group O (FOXO). Collectively, the present results indicated that the Wnt2 gene may have a protective effect on PD PINK1B9 transgenic Drosophila. Thus, it was speculated that the reduction of oxidative stress and the restoration of mitochondrial function via Wnt2 overexpression may be related to the PGC‑1α/FOXO/MnSOD signaling pathway in PINK1 mutant transgenic Drosophila.
Collapse
Affiliation(s)
- Sui-Rui Xia
- Department of Hospital Infection‑Control, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541002, P.R. China
| | - Xue-Yi Wen
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Xiao-Li Fan
- Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Xiao-Rong Chen
- Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Zai-Wa Wei
- Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Qing-Hua Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Li Sun
- Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| |
Collapse
|
17
|
Garcia D, Lima D, da Silva DGH, de Almeida EA. Decreased malondialdehyde levels in fish (Astyanax altiparanae) exposed to diesel: Evidence of metabolism by aldehyde dehydrogenase in the liver and excretion in water. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110107. [PMID: 31901814 DOI: 10.1016/j.ecoenv.2019.110107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/07/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Increased malondialdehyde (MDA) levels are commonly considered an indicator of lipid peroxidation derived from oxidative stress insults promoted by exposure of fish to pollutants. However, a decrease in MDA levels after xenobiotic exposure has been also reported, an effect that is mostly attributed to enhanced antioxidant defenses. In this study, we assessed whether pollutant-mediated MDA decrease would be associated with antioxidant enhancement or with its metabolism by aldehyde dehydrogenase (ALDH) in the liver and gills of lambari (Astyanax altiparanae) exposed to diesel oil (0.001, 0.01, and 0.1 mL/L). MDA levels were decreased in the liver of lambari exposed to diesel. The activities of the antioxidant enzymes, catalase (CAT) and glutathione peroxidase (GPx), were unchanged in the liver, while that of glucose-6-phosphate dehydrogenase (G6PDH) was decreased. In contrast, levels of total glutathione (tGSH) and the activity of glutathione S-transferase (GST) were increased in the liver, which partly support antioxidant protection against lipid peroxidation. More importantly, ALDH activity increased in a concentration-dependent manner, being negatively correlated with MDA levels, indicating MDA metabolism by ALDH. In the gills, diesel exposure increased MDA and lipid hydroperoxide levels, and promoted increases in antioxidant defenses, indicating oxidative stress. Curiously, ALDH activity was undetectable in the gills, supporting the possibility of direct MDA excretion in the water by the gills. Analyses of MDA in the water revealed increased levels of MDA in the aquaria in which the fish were exposed to diesel, compared to control aquaria. A second experiment was carried out in which the fish were intraperitoneally injected with MDA (10 mg/kg) and analyzed after 1, 6, and 12 h. MDA injection caused a time-dependent decrease in hepatic MDA levels, did not alter ALDH, CAT, GPx, and GST activities, and decreased G6PDH activity and tGSH levels. In the gills, MDA injection caused a slight increase in MDA levels after 1 h, but did not alter GPx, G6PDH, and GST activities. MDA injection also enhanced CAT activity and tGSH levels in the gills. MDA concentration in water increased progressively after 1, 6, and 12 h, supporting the hypothesis of direct MDA excretion as an alternative route for MDA elimination in fish. Our results suggest that the decreased MDA levels after exposure of lambari to diesel oil pollutant probably reflects an association between enhanced antioxidant protection, MDA metabolism, and MDA excretion in water.
Collapse
Affiliation(s)
- Danielly Garcia
- UNESP - Sao Paulo State University, Department of Chemistry and Environmental Sciences, São Paulo, Brazil
| | - Daína Lima
- UFSC - Federal University of Santa Catarina, Department of Biochemistry, Florianópolis, SP, Brazil
| | | | - Eduardo Alves de Almeida
- FURB - Fundação Universidade Regional de Blumenau, Department of Natural Sciences, Blumenau, SC, Brazil.
| |
Collapse
|
18
|
Liu HT, Gao Y. Efficacy of short-term intensive treatment with insulin pump to improve islet β-cell function in newly diagnosed type 2 diabetes via inhibition of oxidative stress. Exp Ther Med 2019; 18:2293-2298. [PMID: 31452715 DOI: 10.3892/etm.2019.7821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 04/11/2019] [Indexed: 11/06/2022] Open
Abstract
The present study (Chinese Trial Registry GTB7027) assessed the effects of short-term intensive treatment with insulin pump on islet cell function in patients with newly diagnosed type 2 diabetes and the possible mechanism. A total of 100 patients newly diagnosed with type 2 diabetes and hospitalized between January 2016 and December 2017 were divided into a control and an experimental group (n=50 in each group). The subjects of the control group were administered multiple insulin injections for intensive treatment, while the experimental group received short-term intensive treatment with an insulin pump. Analysis of blood parameters, including lipids and glucose, as well as islet β-cell function were performed. The level of reactive oxygen species (ROS) in the peripheral blood mononuclear cells (PBMCs) from the patients was also measured. Oxidative stress indicators, including serum malondialdehyde (MDA) and superoxide dismutase (SOD), were also examined to explore the possible mechanism. The mRNA expression of heme oxygenase 1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) in PBMCs were analyzed by reverse transcription-quantitative PCR. The results indicated that the blood lipid levels were significantly improved in the two groups at two weeks, while the experimental group had significantly lower levels of total cholesterol and triglyceride, as well as low- and high-density lipoprotein cholesterol. The function of islet β-cells was significantly improved in the two groups. The insulin secretion index [homeostasis model assessment (HOMA) of β-cell function] in the experimental group was higher, while the insulin resistance (IR) index (HOMA of IR) was significantly lower than that in the control group. The serum MDA level in the experimental group was significantly lower and the SOD level was significantly higher compared with that in the control group. Following treatment, the level of ROS in diabetic PBMCs was significantly reduced, and the transcription level of HO-1 and Nrf2 were also significantly reduced (P<0.05). These results demonstrated that short-term intensive treatment with an insulin pump significantly improved lipid and blood glucose metabolism to protect islet function as well as significantly reducing the level of oxidative stress in patients with newly diagnosed type 2 diabetes.
Collapse
Affiliation(s)
- Hai-Tong Liu
- Endocrine Department, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163001, P.R. China
| | - Yan Gao
- Endocrine Department, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163001, P.R. China
| |
Collapse
|
19
|
Mijošek T, Filipović Marijić V, Dragun Z, Krasnići N, Ivanković D, Erk M. Evaluation of multi-biomarker response in fish intestine as an initial indication of anthropogenic impact in the aquatic karst environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:1079-1090. [PMID: 30743905 DOI: 10.1016/j.scitotenv.2019.01.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
In order to assess the extent of existing anthropogenic influence on biota of the vulnerable karst ecosystem of the Krka River, multi-biomarker approach was applied in the intestinal tissue of brown trout Salmo trutta Linnaeus, 1758. Biomarkers of the general stress (total cytosolic proteins), oxidative stress (malondialdehyde), antioxidant capacity (catalase activity, total glutathione) and of an exposure and effect of contaminants, especially metals (metallothionein) and organophosphorous pesticides and metals (acetylcholine esterase activity) were compared in the intestine of fish from the reference site (river source) and downstream of the technological and municipal wastewater impacted site (town of Knin) in two seasons, October 2015 and May 2016. Biological response was additionally evaluated by metal/metalloid concentrations in intestinal cytosol. Site-specific differences were observed as significantly higher As, Ca, Co, Cu, Se and Sr concentrations in intestinal cytosol of fish from the contaminated compared to the reference site. Significant seasonal differences existed for Ni, Cd, Mo, Cs and Na, with higher levels in autumn, following the trend of most of the dissolved metal levels in the river water. Impact of improperly treated wastewaters was also confirmed by significantly increased levels of glutathione, total proteins and Foulton condition indices, with 1.5, 1.13 and 1.12 times higher average values in fish from that site compared to the river source, respectively. The other biomarkers showed similar trend and pointed to specific biological changes regarding oxidative stress or metal exposure in fish from the anthropogenically impacted site, especially in autumn, but without significant differences. Thus, the anthropogenic impact still seems to be only moderate, although cytosolic metals and most of the biomarkers in fish intestine were confirmed as initial indicators of pollution impact, which pointed to the need of continuous monitoring of the Krka River in order to protect this natural karst world phenomenon.
Collapse
Affiliation(s)
- Tatjana Mijošek
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, 10000 Zagreb, Croatia.
| | - Vlatka Filipović Marijić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, 10000 Zagreb, Croatia.
| | - Zrinka Dragun
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, 10000 Zagreb, Croatia.
| | - Nesrete Krasnići
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, 10000 Zagreb, Croatia.
| | - Dušica Ivanković
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, 10000 Zagreb, Croatia.
| | - Marijana Erk
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, 10000 Zagreb, Croatia.
| |
Collapse
|
20
|
Dragun Z, Tepić N, Ramani S, Krasnići N, Filipović Marijić V, Valić D, Kapetanović D, Erk M, Rebok K, Kostov V, Jordanova M. Mining waste as a cause of increased bioaccumulation of highly toxic metals in liver and gills of Vardar chub (Squalius vardarensis Karaman, 1928). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:564-576. [PMID: 30708319 DOI: 10.1016/j.envpol.2019.01.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Freshwater contamination with mining waste can result with high concentrations of toxic metals in the water and in fish organs. In North-Eastern Macedonia, several rivers (e.g., Zletovska, Kriva) are exposed to acid mine drainage from active Pb/Zn mines. Previous studies confirmed high concentrations of dissolved metals in their water. This study was performed in liver and gills of Vardar chub (Squalius vardarensis Karaman, 1928) from three Macedonian rivers (Bregalnica, Kriva and Zletovska) in spring and autumn 2012. The aim was to establish if increased exposure to certain metals have resulted with their increased bioaccumulation. The concentrations of 19 elements were measured in cytosolic tissue fractions, to obtain information on metabolically available metal species. The following ranges of cytosolic concentrations of highly toxic elements were measured in the Vardar chub liver (in μg/L): Cd, 1.18-184; Cs, 0.25-25.4; Tl, 0.02-5.80; Pb, 0.70-61.1. Their ranges measured in the gills (in μg/L) were the following: Cd, 0.24-59.2; Cs, 0.39-24.4; Tl, 0.01-1.00; Pb, 0.65-87.2. Although the water of the mining impacted Zletovska River was highly contaminated with several essential metals, especially with Mn and Zn, the majority of essential elements (Na, K, Ca, Mg, Co, Cu, Fe, Mn, Mo, and Zn) did not reflect the exposure level. In contrast, seven nonessential elements reflected the level of exposure in the water. Significantly increased hepatic and gill concentrations of Cs, Rb, Sr, and Tl were detected in Vardar chub from the Zletovska River compared to the other two rivers, of Cd and Pb in the Zletovska and Kriva River compared to Bregalnica, and of V in the Bregalnica River compared to Zletovska and Kriva rivers. Observed significant metal bioaccumulation, in particular of highly toxic elements, as a consequence of exposure to water contaminated with mining waste points to necessity of intensified supervision of mining impacted rivers.
Collapse
Affiliation(s)
- Zrinka Dragun
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, P.O. Box 180, 10002, Zagreb, Croatia.
| | - Nataša Tepić
- National Center for External Evaluation of Education, Petračićeva 4, 10000, Zagreb, Croatia.
| | - Sheriban Ramani
- National Hydrometeorological Service, Hydrology and Ecology Department, Skupi 28, 1000, Skopje, Macedonia.
| | - Nesrete Krasnići
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, P.O. Box 180, 10002, Zagreb, Croatia.
| | - Vlatka Filipović Marijić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, P.O. Box 180, 10002, Zagreb, Croatia.
| | - Damir Valić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Aquaculture and Pathology of Aquatic Organisms, Bijenička c. 54, Zagreb, Croatia.
| | - Damir Kapetanović
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Aquaculture and Pathology of Aquatic Organisms, Bijenička c. 54, Zagreb, Croatia.
| | - Marijana Erk
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, P.O. Box 180, 10002, Zagreb, Croatia.
| | - Katerina Rebok
- Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Arhimedova 3, 1000, Skopje, Macedonia.
| | - Vasil Kostov
- Institute of Animal Sciences, Ile Ilievski 92a, 1000, Skopje, Macedonia.
| | - Maja Jordanova
- Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Arhimedova 3, 1000, Skopje, Macedonia.
| |
Collapse
|
21
|
Yin S, Li G, Liu M, Wen C, Zhao Y. Biochemical responses of the Protaetia brevitarsis Lewis larvae to subchronic copper exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:18570-18578. [PMID: 29704175 DOI: 10.1007/s11356-018-2031-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Copper (Cu) is one of the most commonly detected heavy metals in livestock manure pollution. Protaetia brevitarsis Lewis larvae are widely used in the decomposition of livestock manure. During decomposition, heavy metals in livestock manure can accumulate in P. brevitarsis larvae and affect normal growth and reproduction. Therefore, this research focused on characterizing the toxic effects of Cu to P. brevitarsis Lewis larvae. Larvae were exposed to Cu concentrations of 0, 100, 200, 400, and 800 mg kg-1 in edible fungi residue for 7, 14, 21, and 28 days. Results showed that the soluble protein content was markedly increased in 200 and 400 mg kg-1 treatment groups on day 28. Compared to the control group, superoxide dismutase (SOD) and glutathione S-transferase (GST) activities were significantly stimulated on day 7 and then decreased as exposure length was increased (e.g., after 14, 21, and 28 days). Catalase (CAT) activity was also significantly increased after 7 days of exposure. Malondialdehyde (MDA) levels were markedly increased in the 100, 200, and 400 mg kg-1 treatment groups on day 7. However, as time and Cu concentration were increased, MDA levels gradually decreased. These results indicate that Cu has biochemical effects on P. brevitarsis Lewis larvae, and both time and dose affect this biochemical response.
Collapse
Affiliation(s)
- Suzhen Yin
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Tai'an, 271018, China
- Shandong Research Institute of Coal Geological Planning and Prospecting, Shandong Zhengdao Resources and Environment Developing Co., Ltd., Jinan, 250101, China
| | - Guangde Li
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Mingming Liu
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Tai'an, 271018, China
| | - Changlei Wen
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Tai'an, 271018, China
| | - Yiyi Zhao
- College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer, Key Laboratory of Colleges and Universities in Shandong Province Agricultural Environment, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|