1
|
Kazi SH, Sheraz MA, Ahmed S, Anwar Z. Degradation of fenamates. PROFILES OF DRUG SUBSTANCES, EXCIPIENTS, AND RELATED METHODOLOGY 2024; 50:229-275. [PMID: 39855777 DOI: 10.1016/bs.podrm.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Fenamates are the most crucial non-steroidal anti-inflammatory drugs (NSAIDs) used to treat pain-related diseases. The clinically prescribed drugs of the fenamate group include mefenamic acid, tolfenamic acid, meclofenamic acid, flufenamic acid, and niflumic acid. Due to their widespread use, all these drugs are considered as the most common water and sewerage pollutants. Studies have been performed to remove these contaminants from water sources by various forced degradation procedures, but the number of studies in this area is limited. In this chapter, an effort has been made to review the degradation of multiple fenamates in different systems and the factors affecting the degradation rates with the proposed degradation pathways.
Collapse
Affiliation(s)
- Sadia Hafeez Kazi
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Muhammad Ali Sheraz
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan.
| | - Sofia Ahmed
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Zubair Anwar
- Department of Pharmaceutical Chemistry, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| |
Collapse
|
2
|
Naduvilpurakkal B. S, Menacherry SPM, Nair SR, Nguyen TP, Nair PG, Aravind UK, Aravindakumar CT. Exploring the Oxidation Chemistry of Hydroxy Naphthoic Acid: An Experimental and Theoretical Study. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Sunil Paul M. Menacherry
- School of Environmental Sciences Mahatma Gandhi University Kottayam Kerala India
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Soil Science and Soil Protection Prague 6 Czech Republic
| | - Sreekanth R. Nair
- School of Chemical Sciences Mahatma Gandhi University Kottayam Kerala India
- Department of Chemistry NSS College Nilamel Kollam Kerala India
| | - Thao P. Nguyen
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang Republic of Korea
| | - Pramod G. Nair
- Department of Chemistry N.S.S. Hindu College Changanachery Kerala India
| | - Usha K. Aravind
- Advanced Centre of Environmental Studies and Sustainable Development Mahatma Gandhi University Kottayam Kerala India
- School of Environmental Studies, Cochin University of Science and Technology (CUSAT) Kochi Kerala India
| | - Charuvila T. Aravindakumar
- School of Environmental Sciences Mahatma Gandhi University Kottayam Kerala India
- Inter University Instrumentation Centre, Mahatma Gandhi University Kottayam Kerala India
| |
Collapse
|
3
|
Lozano I, Pérez-Guzmán CJ, Mora A, Mahlknecht J, Aguilar CL, Cervantes-Avilés P. Pharmaceuticals and personal care products in water streams: Occurrence, detection, and removal by electrochemical advanced oxidation processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154348. [PMID: 35257780 DOI: 10.1016/j.scitotenv.2022.154348] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/16/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceutical and personal care products (PPCPs) are part of the emerging contaminants (ECs) in the environment due to their known or suspected adverse effects in aquatic and terrestrial organisms, as well as in human health. Presence of PPCPs in aquatic and terrestrial ecosystems has been mainly attributed to the effluents of wastewater treatment plants (WWTPs). Although several PPCPs have been detected in wastewater, their removal from wastewater via biological processes is limited. Removal of PPCPs depends on their chemical structure, concentration, solubility, and technology used to treat the wastewater. Electrochemical Advanced Oxidation Processes (EAOPs) are some of the most sought-after methods for dealing with organic pollutants in water including PPCPs, due to generation of strong oxidants such as •OH, H2O2 and O3- by using directly or indirectly electrochemical technology. This review is focused on the removal of main PPCPs via EAOPs such as, anodic oxidation, electro-Fenton, photoelectron-Fenton, solar photoelectron-Fenton, photoelectrocatalysis and sonoelectrochemical processes. Although more than 40 PPCPs have been identified through different analytical approaches, antibiotics, anti-inflammatory and antifungal are the main categories of PPCPs detected in different water matrices. Application of EAOPs has been centered in the removal of antibiotics and analgesics of high consumption by using model media, e.g. Na2SO4. Photoelectrocatalysis and Electro-Fenton processes have been the most versatile EAOPs applied for PPCPs removal under a wide range of operating conditions and a variety of electrodes. Although EAOPs have gained significant scientific interest due to their effectiveness, low environmental impact, and simplicity, further research about the removal of PPCPs and their by-products under realistic concentrations and media is needed. Moreover, mid-, and long-term experiments that evaluate EAOPs performance will provide knowledge about key parameters that allow these technologies to be scaled and reduce the potential risk of PPCPs in aquatic and terrestrial ecosystem.
Collapse
Affiliation(s)
- Iván Lozano
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Vía Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Puebla, Mexico
| | - Carlos J Pérez-Guzmán
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Vía Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Puebla, Mexico
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Vía Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Puebla, Mexico
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Monterrey, 64149, Nuevo León, Mexico
| | - Claudia López Aguilar
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio, Ciudad Universitaria, Puebla 72570, Puebla, Mexico
| | - Pabel Cervantes-Avilés
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Vía Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Puebla, Mexico.
| |
Collapse
|
4
|
Oxidative Degradation of Pharmaceutical Waste, Theophylline, from Natural Environment. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The elimination of organic contaminants from natural resources is extremely important to ensure their (re-)usability. In this report, the degradation of a model pharmaceutical compound, theophylline, is compared between natural and laboratory-controlled environments. While the concentration of H2O2 variably affected the degradation efficiency (approximately from 8 to 20 min for complete degradation) in the photo-irradiation experiments, the inorganic compounds (NaNO3, KH2PO4 and ZnSO4) present in the medium seemed to affect the degradation by scavenging hydroxyl radicals (•OH). The end-product studies using high-resolution mass spectrometry (HRMS) ruled out the involvement of secondary radicals in the degradation mechanism. The quantitative calculation with the help of authentic standards pointed out the predominant role of hydroxylation pathways, especially in the initial stages. Although a noticeable decline in the degradation efficiency was observed in river water samples (complete degradation after 25 min with an approximately 20% total organic carbon (TOC) removal), appreciable TOC removal (70%) was eventually achieved after prolonged irradiation (1 h) and in the presence of additional H2O2 (5 times), revealing the potential of our technique. The results furnished in this report could be considered as a preliminary step for the construction of •OH-based wastewater treatment methodologies for the remediation of toxic pollutants from the real environment.
Collapse
|
5
|
Brillas E. Progress of homogeneous and heterogeneous electro-Fenton treatments of antibiotics in synthetic and real wastewaters. A critical review on the period 2017-2021. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153102. [PMID: 35041950 DOI: 10.1016/j.scitotenv.2022.153102] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics are widely supplied over all the world to animals and humans to fight and heal bacteriological diseases. The uptake of antibiotics has largely increased the average-life expectancy of living beings. However, these recalcitrant products have been detected at low concentrations in natural waters, with potential health risks due to alterations in food chains and an increase in the resistance to bacterial infection, control of infectious diseases, and damage of the beneficial bacteria. The high stability of antibiotics at mild conditions prevents their effective removal in conventional wastewater treatment plants. A powerful advanced oxidation processes such as the electro-Fenton (EF) process is being developed as a guarantee for their destruction by •OH generated as strong oxidant. This review presents a critical, exhaustive, and detailed analysis on the application of EF to remediate synthetic and real wastewaters contaminated with common antibiotics, covering the period 2017-2021. Homogeneous EF and heterogeneous EF involving iron solid catalysts or iron functionalized cathodes, as well as their hybrid and sequential treatments, are exhaustively examined. Their fundamentals and characteristics are detailed, and the main results obtained for the removal of the most used antibiotic families are carefully described and discussed. The role of generated oxidizing agents is explained, and the by-products generated, and reaction sequences proposed are detailed.
Collapse
Affiliation(s)
- Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
6
|
Use of WO2.72 Nanoparticles/Vulcan® XC72 GDE Electrocatalyst Combined with the Photoelectro-Fenton Process for the Degradation of 17α-Ethinylestradiol (EE2). Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00724-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Rapid removal of fungicide thiram in aqueous medium by electro-Fenton process with Pt and BDD anodes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119837] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Kim JG, Kim HB, Shin DH, Alessi DS, Kwon E, Baek K. In-situ generation of reactive oxygen species using combination of electrochemical oxidation and metal sulfide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147961. [PMID: 34052499 DOI: 10.1016/j.scitotenv.2021.147961] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/12/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
In-situ chemical oxidation (ISCO) is commonly practiced to degrade organic pollutants in various fields. However, ISCO is deteriorated the oxidation efficiency due to the non-selective and self-decomposition of reagents. Therefore, in-situ generation of oxidants is being proposed to compensate for the demerits of conventional ISCO. In this study, the aim is to suggest a novel in-situ generation system using the combination of electrochemical oxidation (EO) and pyrite oxidation. It is hypothesized that EO system can generate the oxygen species, which can activate the pyrite surface to produce more oxidants. We evaluated three systems (1) EO system (2) pyrite oxidation system (3) combined system using sulfanilamide as a common antibiotic. The EO system degraded completely sulfanilamide and generated 150 μM of H2O2 and 8 mg/L of DO even at 10 mA. In other words, EO system can directly oxidize the sulfanilamide and produce oxygen species. The pyrite system produced 204 and 24 μM of hydroxyl radicals at pH 3 under oxic and anoxic conditions, respectively, and 118 and 20 μM at pH 7. Pyrite oxidation can generate more reactive species in the presence of oxygen. The combined system enhanced the oxidation-rate constant to 1.5 times (from 0.2561 to 0.3502 h-1). The additional supply of oxygen showed a higher oxidation rate to 1.5 and 1.3 times higher than single EO or pyrite oxidation, respectively. As a result, the co-presence of pyrite and oxygen shows a synergistic effect on the oxidation of the organic pollutant. Our results suggest that electrochemical generation of the oxygen species in the presence of pyrite is a promising technique to oxidize organic pollutants in groundwater.
Collapse
Affiliation(s)
- Jong-Gook Kim
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Hye-Bin Kim
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Dong-Hun Shin
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Eilhann Kwon
- Department of Energy and Environment, Sejong University, Seoul 05006, Republic of Korea
| | - Kitae Baek
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea.
| |
Collapse
|
9
|
Electro-Fenton process for the removal of Direct Red 23 using BDD anode in chloride and sulfate media. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115560] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Oturan N, Bo J, Trellu C, Oturan MA. Comparative Performance of Ten Electrodes in Electro‐Fenton Process for Removal of Organic Pollutants from Water. ChemElectroChem 2021. [DOI: 10.1002/celc.202100588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nihal Oturan
- Université Gustave Eiffel Laboratoire Géomatériaux et Environnement (LGE) EA 4508 77454 Marne-la-Vallée France
| | - Jiang Bo
- Qingdao University of Technology School of Environmental and Municipal Engineering Qingdao 266033 P. R. China
| | - Clément Trellu
- Université Gustave Eiffel Laboratoire Géomatériaux et Environnement (LGE) EA 4508 77454 Marne-la-Vallée France
| | - Mehmet A. Oturan
- Université Gustave Eiffel Laboratoire Géomatériaux et Environnement (LGE) EA 4508 77454 Marne-la-Vallée France
| |
Collapse
|
11
|
Impact of Active Chlorines and •OH Radicals on Degradation of Quinoline Using the Bipolar Electro-Fenton Process. WATER 2021. [DOI: 10.3390/w13020128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Quinoline is a typical nitrogenous heterocyclic compound, which is carcinogenic, teratogenic, and mutagenic to organisms, and its wastewater is difficult to biodegrade directly. The bipolar electro-Fenton process was employed to treat quinoline solution. The process/reaction conditions were optimized through the single factor experiment. The degradation kinetics of chemical oxygen demand (COD) was analyzed. To get the degradation mechanism and pathways of quinoline, the intermediate products were identified by gas chromatograph–mass spectrometer (GC–MS). By using sodium chloride as supporting electrolyte in the electro-Fenton reaction system with initial pH 3.0, conductivity 15,800 µs/cm, H2O2 concentration 71 mmol/L, current density 30.5 mA/cm2, and applied voltage 26.5 V, 75.56% of COD was decreased by indirect oxidation with electrogeneration of hydroxyl radicals (•OH) and active chloric species in 20 min. The COD decrease of quinoline solution followed the first order reaction kinetic model. The main products of quinoline degradation were 2(1H)-quinolinone, 4-chloro-2(1H)-quinolinone, 5-chloro-8-hydroxyquinoline, and 5,7-dichloro-8-hydroxyquinoline. Furthermore, two possible degradation pathways of quinoline were proposed, supported with Natural charge distribution on quinoline and intermediates calculated at the theoretical level of MN15L/6-311G(d).
Collapse
|
12
|
Arellano M, Oturan N, Oturan MA, Pazos M, Sanromán MÁ, González-Romero E. Differential pulse voltammetry as a powerful tool to monitor the electro-Fenton process. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Xu S, Lv Y, Zhang Y. 3D hydrangea-like Mn3O4@(PSS/PDDA/Pt)n with ultrafine Pt nanoparticles modified anode for electrochemical oxidation of tetracycline. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Becerril-Estrada V, Robles I, Martínez-Sánchez C, Godínez LA. Study of TiO 2/Ti4O 7 photo-anodes inserted in an activated carbon packed bed cathode: Towards the development of 3D-type photo-electro-Fenton reactors for water treatment. Electrochim Acta 2020; 340:135972. [PMID: 32355361 PMCID: PMC7182296 DOI: 10.1016/j.electacta.2020.135972] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this work, commercially available Polymethyl-meta-acrylate (PMMA) spectroscopy cells were modified on the external walls with films of TiO2, Ti4O7 or TiO2/Ti4O7 mixtures. Film characterization was carried out using SEM and UV–vis spectroscopy. The results of photocatalytic (PC), electro-oxidation (EO), and photoelectrochemical (PEC) experiments on the decolorization of a methyl orange (MO) model dye solution showed that while anatase provides better photocatalytic properties and the partially reduced Ti4O7 larger electronic conductivity, the TiO2/Ti4O7 composite film behaves as a semiconductor substrate that combines the advantages of both materials (for PEC experiments for instance, decolorization values for the model dye solution using TiO2, Ti4O7 and a TiO2/Ti4O7 mixed film, corresponded to 35%, 46% and 53%, respectively). In order to test this film as an effective photoanode material in a 3-D type reactor for water treatment processes, a TiO2/Ti4O7 modified PMMA spectroscopy cell was inserted in an activated carbon (AC) bed so that the semiconductor material could be illuminated using an external UV source positioned inside the PMMA cell. The connected AC particles that were previously saturated with MO dye were used as cathode sites for the oxygen reduction reaction so that the photoelectrochemical reactions that take place in the anode could be complemented with coupled electro-Fenton processes in the cathode. As expected, the combination resulted in an effective decolorization of the dye solution that results from a complex combination of processes. The experimental decolorization data was successfully fitted to a pseudo-first order kinetic model so that a deeper understanding of the contribution of each process in the reactor could be obtained.
Collapse
Affiliation(s)
- V Becerril-Estrada
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C., Parque Tecnológico Querétaro, 76703, Sanfandila, Pedro Escobedo, Querétaro, Mexico
| | - I Robles
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C., Parque Tecnológico Querétaro, 76703, Sanfandila, Pedro Escobedo, Querétaro, Mexico
| | - C Martínez-Sánchez
- CONACYT - Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Querétaro, Mexico
| | - Luis A Godínez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C., Parque Tecnológico Querétaro, 76703, Sanfandila, Pedro Escobedo, Querétaro, Mexico
| |
Collapse
|
15
|
Chang R, Chen X, Yu H, Tan G, Wen H, Huang J, Hao Z. Modified EDTA selectively recognized Cu2+ and its application in the disaggregation of β-amyloid-Cu (II)/Zn (II) aggregates. J Inorg Biochem 2020; 203:110929. [DOI: 10.1016/j.jinorgbio.2019.110929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/26/2022]
|
16
|
Paz EC, Pinheiro VS, Joca JFS, de Souza RAS, Gentil TC, Lanza MRV, de Oliveira HPM, Neto AMP, Gaubeur I, Santos MC. Removal of Orange II (OII) dye by simulated solar photoelectro-Fenton and stability of WO 2.72/Vulcan XC72 gas diffusion electrode. CHEMOSPHERE 2020; 239:124670. [PMID: 31505441 DOI: 10.1016/j.chemosphere.2019.124670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
The objectives of this study were to determine the viability of removing Orange II (OII) dye by simulated solar photoelectro-Fenton (SSPEF) and to evaluate the stability of a WO2.72/Vulcan XC72 gas diffusion electrode (GDE) and thus determine its best operating parameters. The GDE cathode was combined with a BDD anode for decolorization and mineralization of 350 mL of 0.26 mM OII by anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF) and photoelectro-Fenton (PEF) at 100, 150 and 200 mA cm-2 and SSPEF at 150 mA cm-2. The GDE showed successful operation for electrogeneration, good reproducibility and low leaching of W. Decolorization and OII decay were directly proportional to the current density (j). AO-H2O2 had a reduced performance that was only half of the SSPEF, PEF and EF treatments. The mineralization efficiency was in the following order: AO-H2O2 < EF < PEF ≈ SSPEF. This showed that the GDE, BDD anode and light radiation combination was advantageous and indicated that the SSPEF process is promising with both a lower cost than using UV lamps and simulating solar photoelectro-Fenton process. The PEF process with the lowest j (100 mA cm-2) showed the best performance-mineralization current efficiency.
Collapse
Affiliation(s)
- Edson C Paz
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal Do ABC (UFABC), Rua Santa Adélia, 166, CEP 09.210-170, Santo André, SP, Brazil; Instituto Federal de Educação, Ciência e Tecnologia Do Maranhão (IFMA), Campus Açailândia, R. Projetada, s/n, CEP 65.930-000, Açailândia, MA, Brazil
| | - Victor S Pinheiro
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal Do ABC (UFABC), Rua Santa Adélia, 166, CEP 09.210-170, Santo André, SP, Brazil
| | - Jhonny Frank Sousa Joca
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal Do ABC (UFABC), Rua Santa Adélia, 166, CEP 09.210-170, Santo André, SP, Brazil
| | - Rafael Augusto Sotana de Souza
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas (CECS), Universidade Federal Do ABC (UFABC), Rua Santa Adélia, 166, CEP 09.210-170, Santo André, SP, Brazil
| | - Tuani C Gentil
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal Do ABC (UFABC), Rua Santa Adélia, 166, CEP 09.210-170, Santo André, SP, Brazil
| | - Marcos R V Lanza
- Instituto de Química de São Carlos (IQSC), Universidade de São Paulo (USP), Caixa Postal, 780, CEP 13.566-590, São Carlos, SP, Brazil; Instituto Nacional de Tecnologias Alternativas Para Detecção, Avaliação Toxicológica e Remoção de Micropoluentes e Radioativos (INCT-DATREM), Instituto de Química, UNESP, CEP 14800-900, Araraquara, SP, Brazil
| | - Hueder Paulo Moisés de Oliveira
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal Do ABC (UFABC), Rua Santa Adélia, 166, CEP 09.210-170, Santo André, SP, Brazil
| | - Ana Maria Pereira Neto
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas (CECS), Universidade Federal Do ABC (UFABC), Rua Santa Adélia, 166, CEP 09.210-170, Santo André, SP, Brazil
| | - Ivanise Gaubeur
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal Do ABC (UFABC), Rua Santa Adélia, 166, CEP 09.210-170, Santo André, SP, Brazil
| | - Mauro C Santos
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal Do ABC (UFABC), Rua Santa Adélia, 166, CEP 09.210-170, Santo André, SP, Brazil.
| |
Collapse
|
17
|
Chandran J, Zheng Z, Thomas VI, Rajalakshmi C, Attygalle AB. LC-MS analysis of p-aminosalicylic acid under electrospray ionization conditions manifests a profound solvent effect. Analyst 2020; 145:5333-5344. [DOI: 10.1039/d0an00680g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Under identical mass spectrometric conditions, chromatographic peak intensities of p-aminosalicylic acid recorded by LC-MS, using methanol as the mobile phase are drastically different from those acquired using is it acetonitrile as the eluent.
Collapse
Affiliation(s)
- Jisha Chandran
- Inter University Instrumentation Centre (IUIC)
- School of Environmental Sciences
- Mahatma Gandhi University
- Kottayam
- 686560 India
| | - Zhaoyu Zheng
- Center for Mass Spectrometry
- Department of Chemistry and Chemical Biology
- Stevens Institute of Technology
- Hoboken
- USA
| | | | | | - Athula B. Attygalle
- Center for Mass Spectrometry
- Department of Chemistry and Chemical Biology
- Stevens Institute of Technology
- Hoboken
- USA
| |
Collapse
|
18
|
Arellano M, Sanromán MA, Pazos M. Electro-assisted activation of peroxymonosulfate by iron-based minerals for the degradation of 1-butyl-1-methylpyrrolidinium chloride. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.05.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Sennaoui A, Alahiane S, Sakr F, El Ibrahimi B, El Issami S, Addi EHA, Assabbane A. Electro-Fenton Degradation of Trimellitic and Pyromellitic Acids: Kinetics and Mechanism. Electrocatalysis (N Y) 2018. [DOI: 10.1007/s12678-018-0482-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|