1
|
Huang Z, Yi G, Wang Q, Wang S, Xu Q, Huan C, Wang Y, Zhang W, Wang A, Liu W. Improving microbial activity in high-salt wastewater: A review of innovative approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176278. [PMID: 39278494 DOI: 10.1016/j.scitotenv.2024.176278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
The Zero discharge technology has become an important pathroute for sustainable development of high salt wastewater treatment. However, the cohabitation of organic and inorganic debris can cause serious problems such membrane clogging and the formation of hazardous impurity salts that further restrict the recovery of all salt varieties by evaporating and crystallizing. In highly salinized wastewater, biological treatments offer advantages in terms of cost and sustainability when used as a pre-treatment step to eliminate organic debris. On the other hand, high salinity is always a major obstacle to microbial diversity, abundance, and activity, which can result in low organic matter removal effectiveness or the failure of the microbial treatment system. Biofortification techniques can attenuate the negative effects of salt stress and other unfavourable conditions on microorganisms, while the regulation mechanisms of microbial and community collaboration by fortification methods have been an open question. Therefore, a comprehensive summary of the types, mechanisms, and effects of the major biofortification techniques is proposed. This review dialyzes the characteristics and sources of hypersaline wastewater and the main treatment methods. Then, the mechanisms of microbial salt tolerance are summarized and discussed based on microbial characteristics and the protective effects provided by the processes. Finally, the research and application of the main bioaugmentation methods are developed in detail, describing the characteristics, advantages and disadvantages of the different enhancement methods in their implementation. This review provides a more comprehensive perspective on the future engineering applications of bioaugmentation technology, and explores in depth the possibilities of applying biological methods to high-salinity wastewater treatment.
Collapse
Affiliation(s)
- Zongyi Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Genping Yi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Qiandi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Sihui Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Qiongying Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Changan Huan
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Yuqi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Wenzhe Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; China Testing & Certification International Group Co.,Ltd., Beijng 100024, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
2
|
Song Q, Chen X, Hua Y, Chen S, Ren L, Dai X. Biological treatment processes for saline organic wastewater and related inhibition mechanisms and facilitation techniques: A comprehensive review. ENVIRONMENTAL RESEARCH 2023; 239:117404. [PMID: 37838207 DOI: 10.1016/j.envres.2023.117404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Owing to its profound pollution-inducing properties and resistance to biodegradation, saline organic wastewater (SOW) has unavoidably emerged as a predominant focal point within the wastewater treatment domain. Substantial quantities of SOW are discharged by diverse industries encompassing food processing, pharmaceuticals, leather manufacturing, petrochemicals, and textiles. Within this review, the inhibitory repercussions of elevated salinity upon biological water treatment systems are subject to methodical scrutiny spanning from sludge characteristics, microbial consortia to the physiological functionality of microorganisms have been investigated. This exposition elucidates the application of both anaerobic and aerobic biological technologies for SOW treatment, which noting that conventional bioreactors can effectually treat SOW through microbial adaptation, and elaborating that cultivation of salt-tolerant bacteria and the design of advanced bioreactors represents a promising avenue for SOW treatment. Furthermore, the mechanisms underpinning microbial acclimatization to hypersaline milieus and the methodologies aimed at amplifying the efficacy of biological SOW treatment are delved into, which point out that microorganism exhibit salt tolerance via extracellular polymeric substance accumulation or by facilitating the influx of osmolarity-regulating agents into the bacterial matrix. Finally, the projections for future inquiry are proffered, encompassing the proliferation and deployment of high salt-tolerant strains, as well as the development of techniques enhancing the salt tolerance of microflora engaged in wastewater treatment.
Collapse
Affiliation(s)
- Qi Song
- National Engineering Research Center for Urban Pollution Control and State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiaoguang Chen
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Yu Hua
- National Engineering Research Center for Urban Pollution Control and State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Shuxian Chen
- National Engineering Research Center for Urban Pollution Control and State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Luotong Ren
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Xiaohu Dai
- National Engineering Research Center for Urban Pollution Control and State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
3
|
Belli TJ, Bassin JP, de Sousa Vidal CM, Hassemer MEN, Rodrigues C, Lapolli FR. Effects of solid retention time and exposure mode to electric current on Remazol Brilliant Violet removal in an electro-membrane bioreactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58412-58427. [PMID: 36991202 DOI: 10.1007/s11356-023-26593-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/18/2023] [Indexed: 05/10/2023]
Abstract
The performance of an electrochemically assisted anoxic-oxic membrane bioreactor (A/O-eMBR) was assessed as an alternative for azo dye (Remazol Brilhant Violet (RBV)) removal from simulated textile wastewater. The A/O-eMBR was operated under three experimental conditions (runs I, II, and III), in which different solids retention time (SRT) (45 and 20 d) and exposure mode to electric current (6'ON/30'OFF and 6'ON/12'OFF) were assessed. The reactor exhibited excellent decolorization performance for all runs, with average dye removal efficiency ranging from 94.3 to 98.2%. Activity batch assays showed that the dye removal rate (DRR) decreased from 16.8 to 10.2 mg RBV L-1 h-1 when the SRT was reduced from 45 to 20 d, likely attributed to the lower biomass content under lower sludge age. At the electric current exposure mode of 6' ON/12'OFF, a more substantial decrease of DRR to 1.5 mg RBV L-1 h-1 was noticed, suggesting a possible inhibitory effect on dye removal via biodegradation. By reducing the SRT to 20 d, a worse mixed liquor filterability condition was observed, with a membrane fouling rate (MFR) of 0.979 kPa d-1. In contrast, using the electric current exposure mode of 6'ON/12'OFF resulted in lower membrane fouling propensity, with an MFR of 0.333 kPa d-1. A more attractive cost-benefit ratio for dye removal was obtained using the exposure mode of 6'ON/30'OFF, for which the energy demand was estimated at 21.9-22.6 kWh kg dye-1 removed, almost two times lower than that observed for the mode of 6'ON/12'OFF.
Collapse
Affiliation(s)
- Tiago José Belli
- Civil Engineering Department, Santa Catarina State University, Ibirama, SC, ZIP 89140-000, Brazil.
| | - João Paulo Bassin
- Chemical Engineering Program, COPPE, Federal University of Rio de Janeiro, P.O. Box 68502, Rio de Janeiro, RJ, 21941-972, Brazil
| | - Carlos Magno de Sousa Vidal
- Environmental and Sanitary Engineering Department, State University of Centro-Oeste (UNICENTRO), PR 153, Km 07, Riozinho, P.O. Box 21, Irati, PR, Brazil
| | - Maria Eliza Nagel Hassemer
- Environmental Engineering Program, PPGEA, Federal University of Santa Catarina, P.O. Box 476, Florianópolis, SC, ZIP 88040-900, Brazil
| | - Caroline Rodrigues
- Environmental Engineering Program, PPGEA, Federal University of Santa Catarina, P.O. Box 476, Florianópolis, SC, ZIP 88040-900, Brazil
| | - Flávio Rubens Lapolli
- Environmental Engineering Program, PPGEA, Federal University of Santa Catarina, P.O. Box 476, Florianópolis, SC, ZIP 88040-900, Brazil
| |
Collapse
|
4
|
Singh A, Srivastava A, Saidulu D, Gupta AK. Advancements of sequencing batch reactor for industrial wastewater treatment: Major focus on modifications, critical operational parameters, and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115305. [PMID: 35642808 DOI: 10.1016/j.jenvman.2022.115305] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/24/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Industrial wastewater discharge has increased manifolds over the last few decades. Efficient industrial wastewater treatment is mandatory to meet stringent discharge regulations. Biological treatment systems, such as the sequencing batch reactor (SBR) are generally employed for domestic wastewater treatment. However, low infrastructure and energy requirements, as well as low footprint, make SBR a prominent technique to treat industrial wastewater. In the present review, the feasibility of SBR to treat wastewater generated from industries, such as textile, pulp and paper, pharmaceutical, tannery, etc., has been discussed. The factors affecting the treatment efficacy of the SBR in terms of organics and nutrient removal have also been investigated. It has been observed that the SBR system is effective for industrial wastewater treatment as it is easy to operate, resistant to shock loads, and can retain high biomass concentrations. The modifications to the conventional SBR, such as sludge granulation, the addition of bio-film carriers, and the incorporation of adsorbents, salt-tolerant microbes, and coagulants have been discussed. Further, various novel combinations of SBR with the other advanced treatment technologies, such as Fenton, membrane-based process, and electrochemical process have shown enhanced removal of various conventional and recalcitrant pollutants. The current review also accentuates the sustainability aspects of SBR technology to treat industrial wastewater which may be beneficial for researchers and engineers working in this field.
Collapse
Affiliation(s)
- Adarsh Singh
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Ashish Srivastava
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Duduku Saidulu
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
5
|
Isaka K, Masuda T, Omae S, Mishima I, Ike M. Effect of nitrogen, phosphorus, and sulfur on the start-up of a biological 1,4-dioxane removal process using Pseudonocardia sp. D17. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Fan B, Wang Q, Wu W, Zhou Q, Li D, Xu Z, Fu L, Zhu J, Karimi-Maleh H, Lin CT. Electrochemical Fingerprint Biosensor for Natural Indigo Dye Yielding Plants Analysis. BIOSENSORS-BASEL 2021; 11:bios11050155. [PMID: 34068869 PMCID: PMC8153556 DOI: 10.3390/bios11050155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023]
Abstract
Indigo is a plant dye that has been used as an important dye by various ancient civilizations throughout history. Today, due to environmental and health concerns, plant indigo is re-entering the market. Strobilanthes cusia (Nees) Kuntze is the most widely used species in China for indigo preparation. However, other species under Strobilanthes have a similar feature. In this work, 12 Strobilanthes spp. were analyzed using electrochemical fingerprinting technology. Depending on their electrochemically active molecules, they can be quickly identified by fingerprinting. In addition, the fingerprint obtained under different conditions can be used to produce scattered patter and heatmap. These patterns make plant identification more convenient. Since the electrochemically active components in plants reflect the differences at the gene level to some extent, the obtained electrochemical fingerprints are further used for the discussion of phylogenetics.
Collapse
Affiliation(s)
- Boyuan Fan
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (B.F.); (W.W.); (Q.Z.)
| | - Qiong Wang
- Institute of Botany, Jiangsu Province & Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (Q.W.); (D.L.); (Z.X.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Weihong Wu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (B.F.); (W.W.); (Q.Z.)
| | - Qinwei Zhou
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (B.F.); (W.W.); (Q.Z.)
| | - Dongling Li
- Institute of Botany, Jiangsu Province & Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (Q.W.); (D.L.); (Z.X.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Zenglai Xu
- Institute of Botany, Jiangsu Province & Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; (Q.W.); (D.L.); (Z.X.)
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (B.F.); (W.W.); (Q.Z.)
- Correspondence:
| | - Jiangwei Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China;
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, Chengdu 611731, China;
- Department of Chemical Engineering, Quchan University of Technology, Quchan 9477177870, Iran
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China;
| |
Collapse
|
7
|
Zeng Q, Xu J, Hou Y, Li H, Du C, Jiang B, Shi S. Effect of Fe 3O 4 nanoparticles exposure on the treatment efficiency of phenol wastewater and community shifts in SBR system. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124828. [PMID: 33340972 DOI: 10.1016/j.jhazmat.2020.124828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Increasing magnetic Fe3O4 nanoparticles (Fe3O4 NPs) application has aroused concern about its potential environmental toxicity. During acute and chronic exposure, key enzymes involved in phenol biodegradation were promoted at 0-600 mg/L Fe3O4 NPs, while were inhibited at 800 mg/L Fe3O4 NPs, correspondingly affected phenol degradation efficiency. Lactic dehydrogenase (LDH) increased when Fe3O4 NPs exceeded 600 mg/L, indicated the more severe cell rupture at high Fe3O4 NPs concentration. At the same Fe3O4 NPs concentration, the removal of EPS further inhibited key enzymes, decreased phenol degradation, and increased LDH, indicating that the existence of EPS relieved the adverse effects on microorganisms. Spectroscopic analysis showed that protein and polysaccharide associated bonds in EPS decreased at 0-600 mg/L Fe3O4 NPs, while increased when Fe3O4 NPs exceeded 600 mg/L, which was in accordance with EPS content. Biopolymer-degrading and phenol-degrading genera increased at 0-600 mg/L Fe3O4 NPs, while decreased at Fe3O4 NPs exceeded 600 mg/L, which conformed to EPS content and phenol degradation efficiency.
Collapse
Affiliation(s)
- Qianzhi Zeng
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Jin Xu
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Yuan Hou
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Hongxin Li
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Cong Du
- Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bei Jiang
- School of Life Science, Liaoning Normal University, Dalian 116081, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Shengnan Shi
- School of Life Science, Liaoning Normal University, Dalian 116081, China.
| |
Collapse
|
8
|
Jagaba AH, Kutty SRM, Lawal IM, Abubakar S, Hassan I, Zubairu I, Umaru I, Abdurrasheed AS, Adam AA, Ghaleb AAS, Almahbashi NMY, Al-Dhawi BNS, Noor A. Sequencing batch reactor technology for landfill leachate treatment: A state-of-the-art review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 282:111946. [PMID: 33486234 DOI: 10.1016/j.jenvman.2021.111946] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/06/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Landfill has become an underlying source of surface and groundwater pollution if not efficiently managed, due to the risk of leachate infiltration into to land and aquifers. The generated leachate is considered a serious environmental threat for the public health, because of the toxic and recalcitrant nature of its constituents. Thus, it must be collected and appropriately treated before being discharged into the environment. At present, there is no single unit process available for proper leachate treatment as conventional wastewater treatment processes cannot achieve a satisfactory level for degrading toxic substances present. Therefore, there is a growing interest in examination of different leachate treatment processes for maximum operational flexibility. Based on leachate characteristics, discharge requirements, technical possibilities, regulatory requirements and financial considerations, several techniques have been applied for its degradation, presenting varying degrees of efficiency. Therefore, this article presents a comprehensive review of existing research articles on the pros and cons of various leachate degradation methods. In line with environmental sustainability, the article stressed on the application and efficiency of sequencing batch reactor (SBR) system treating landfill leachate due to its operational flexibility, resistance to shock loads and high biomass retention. Contributions of integrated leachate treatment technologies with SBR were also discussed. The article further analyzed the effect of different adopted materials, processes, strategies and configurations on leachate treatment. Environmental and operational parameters that affect SBR system were critically discussed. It is believed that information contained in this review will increase readers fundamental knowledge, guide future researchers and be incorporated into future works on experimentally-based SBR studies for leachate treatment.
Collapse
Affiliation(s)
- A H Jagaba
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria.
| | - S R M Kutty
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - I M Lawal
- Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria; Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK
| | - S Abubakar
- Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - I Hassan
- Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - I Zubairu
- Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - I Umaru
- Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - A S Abdurrasheed
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Civil Engineering, Ahmadu Bello University, Zaria, Nigeria
| | - A A Adam
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - A A S Ghaleb
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - N M Y Almahbashi
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - B N S Al-Dhawi
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - A Noor
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
9
|
Tang W, Zhou B, Xing K, Tan L. Co-enhanced activated sludge system by static magnetic field and two halotolerant yeasts for azo dye treatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:2095-2104. [PMID: 32534479 DOI: 10.1002/wer.1375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
The effect of static magnetic field (SMF) on azo dye Acid Red B (ARB) decolorization by the co-culture of activated sludge (AS) and two halotolerant yeasts Candida tropicalis A1 and Pichia occidentalis A2 was investigated. Microbial community structure of the co-cultures before and after treatment with SMFs of different intensity was analyzed through high-throughput sequencing and quantitative real-time polymerase chain reaction. The results showed that ARB decolorization efficiency by the defined co-culture was 1.25-fold to 1.51-fold elevated by 24.6-305.0 mT SMF. The best ARB decolorization and chemical oxygen demand (COD) removal performances by the co-culture were both achieved with 95.0 mT SMF. By contrast, biomass multiplication and sedimentation property of AS systems were not significantly influenced by SMF. Higher activities of intracellular key enzymes were determined (with 95.0 mT SMF) as responsible for better decolorization and COD removal performances. Bacteria belonging to Prolixibacter, Corynebacterium, Pelagibacterium, Demequina, and Sphingobacterium which might be responsible for azo dye decolorization and aromatic compounds biodegradation were significantly enriched only in presence of SMF. Fungal genera Candida and Pichia were also significantly enriched by 41.4-305.0 mT SMF, which might be responsible for higher treatment efficiency. PRACTITIONER POINTS: Dye degradation was enhanced by combination of static magnetic field and yeasts. Improvement of enzyme activity was responsible for better treatment performance. Putative azo-degrading-related bacteria and fungi were selectively enriched. High relative abundance of Candida and Pichia ensured high decolorization effects. Potentially effective improvement of bioprocesses for treating hypersaline wastewater.
Collapse
Affiliation(s)
- Wenjing Tang
- School of Life Science, Liaoning Normal University, Dalian, China
| | - Bihui Zhou
- School of Life Science, Liaoning Normal University, Dalian, China
| | - Kexin Xing
- School of Life Science, Liaoning Normal University, Dalian, China
| | - Liang Tan
- School of Life Science, Liaoning Normal University, Dalian, China
| |
Collapse
|
10
|
Li H, Meng F, Duan W, Lin Y, Zheng Y. Biodegradation of phenol in saline or hypersaline environments by bacteria: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109658. [PMID: 31520955 DOI: 10.1016/j.ecoenv.2019.109658] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/27/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
With the continuous demand from industry for chemical raw materials, a large amount of high-salinity wastewater containing phenol is discharged into the aquatic environment, and the leakage of dangerous chemicals into the sea may lead to phenol pollution of the ocean. Phenol is a common chemical posing serious environmental hazard. Biodegradation is an effective, low-cost, environment-friendly method of removing phenol from water, but in hypersaline environments, traditional freshwater organisms are less efficacious. Here, at least 17 genera of bacteria from three phyla are found that can degrade phenol in different saline environments. The sources and taxonomy of halotolerant and halophilic bacteria are reviewed. Moreover, the pathway of phenol removal, kinetics of biodegradation, influencing factors, and recent treatment processes of wastewater are discussed.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, 266100, China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Weiyan Duan
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, 266100, China
| | - Yufei Lin
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People's Republic of China, Beijing, 100194, China
| | - Yang Zheng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People's Republic of China, Beijing, 100194, China
| |
Collapse
|
11
|
Basereh Taromsary N, Bonakdarpour B, Amoozegar MA, Fallah N, Fadaei Tehran A. Quantifying the organic content of saline wastewaters: Is chemical oxygen demand always an achievable parameter? Talanta 2019; 197:509-516. [PMID: 30771969 DOI: 10.1016/j.talanta.2019.01.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 10/27/2022]
Abstract
The study presented in this paper takes a comprehensive approach to the measurement of the COD of saline industrial wastewaters taking into account both their widely varying salinity levels and the substantial interference of chloride with the conventional method of COD measurement. To this end, three approaches for combating the chloride interference associated with the measurement of COD using the conventional method were considered. The dilution of saline samples prior to analysis yielded reasonably accurate COD results as long as the COD after dilution was 40 mg L-1 or above. In the second approach, the previously reported modifications of the standard method were stretched to their practical limits (increasing HgSO4 to 130 g L-1 and decreasing K2Cr2O7 to 1.022 g L-1) accompanied by prior addition of HgSO4:Cl- at a ratio of 20:1 combined with chloride interference error estimation. This brought about an increase in chloride interference threshold of the standard method to 42.5 g L-1, which is considerably higher than previous reports. Since some raw or treated saline industrial wastewaters have a combination of chloride and COD concentration which makes the first two approaches inapplicable, the approach of chloride removal from the sample via a modification of DIN 38409-H41-2 and subsequent measurement of COD using a slight variation of the closed reflux standard method was also considered. Fairly accurate COD determinations for samples with chloride concentrations up to 148.6 and 182 g L-1 for COD contents of 50 and 900 mg L-1, respectively were achieved. However, excessive precipitation of the desalination reaction products made the method inapplicable to samples with chloride concentrations above 182 g L-1.
Collapse
Affiliation(s)
| | - Babak Bonakdarpour
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Mohammad Ali Amoozegar
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Narges Fallah
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Arezou Fadaei Tehran
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
12
|
Zhou H, Li X, Xu G, Yu H. Overview of strategies for enhanced treatment of municipal/domestic wastewater at low temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:225-237. [PMID: 29936164 DOI: 10.1016/j.scitotenv.2018.06.100] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
Biological wastewater treatment has been widely applied to municipal/domestic wastewater treatment systems. However, low temperature significantly decreases process performance. Furthermore, increasingly stringent effluent discharge standards are causing wastewater treatment facilities to have to improve and maintain contaminants removal under low temperature. Hence, this review aims to summarize strategies for enhanced treatment of municipal/domestic wastewater at low temperature. First, mechanisms of the effects of low temperature on wastewater treatment, including physiological characteristics, microbial growth rate, microbial activity, microbial community structure and sludge settleability, are analyzed. Strategies for performance intensifications at low temperature, mainly operational parameters regulation, bioaugmentation, biofilm technology, chemical phosphorus precipitation and application of novel process technologies, are then reviewed. Finally, future directions to address low temperature wastewater are highlighted. A special emphasis is given to the application of novel process/technology configurations to enhance process performance at low temperature in practical engineering.
Collapse
Affiliation(s)
- Hexi Zhou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xin Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guoren Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; National Engineering Laboratory for Sustainable Sludge Management & Resourcelization Technology, Harbin Institute of Technology, Harbin 150090, China.
| | - Huarong Yu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|