1
|
Botha TL, Bamuza-Pemu E, Roopnarain A, Ncube Z, De Nysschen G, Ndaba B, Mokgalaka N, Bello-Akinosho M, Adeleke R, Mushwana A, van der Laan M, Mphahlele P, Vilakazi F, Jaca P, Ubomba-Jaswa E. Development of a GIS-based knowledge hub for contaminants of emerging concern in South African water resources using open-source software: Lessons learnt. Heliyon 2023; 9:e13007. [PMID: 36747952 PMCID: PMC9898659 DOI: 10.1016/j.heliyon.2023.e13007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
With population growth and dwindling freshwater sources, protecting such sources has come to the forefront of water resource management. Historically, society's response to a problem is based on funding availability, current threat, and public outcry. Achieving this is largely dependent on the knowledge of the factors that are resulting in compromised water sources. These factors are constantly changing as novel contaminants are introduced into surface water sources. As we are in the information age, the interest in contaminants of emerging concern (CEC) is gaining ground. Whilst research is being conducted to identify contaminants in South African water sources, the research outputs and available information is not collated and presented to the science community and stakeholders in readily available formats and platforms. Current research outcomes need to be made known to regulators in order to develop environmental laws. By using fourth industrial revolution technology, we were able to collate available data in literature and display these in a user-friendly online format to regulatory bodies as well as researchers. A standardized excel spreadsheet was developed and uploaded to a PostgreSQL, running a PostGIS extension and was then processed in the GeoServer to allow for visualization on an interactive map which can be continuously updated. The near real-time access to information will reduce the possibility of duplication of research efforts, enhance collaboration in the discipline, and act as a CEC early warning system.
Collapse
Affiliation(s)
- Tarryn Lee Botha
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1710, South Africa
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- Corresponding author. Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1710, South Africa.
| | - Emomotimi Bamuza-Pemu
- OptimalEnviro; Postnet Suite 073, Private Bag X21, Queenswood, Pretoria, 0121, South Africa
| | - Ashira Roopnarain
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council – Natural Resources and Engineering, Pretoria, South Africa
| | - Zibusiso Ncube
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council – Natural Resources and Engineering, Pretoria, South Africa
| | - Gert De Nysschen
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council – Natural Resources and Engineering, Pretoria, South Africa
| | - Busiswa Ndaba
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council – Natural Resources and Engineering, Pretoria, South Africa
| | - Ntebogeng Mokgalaka
- University of Pretoria, Mamelodi Campus, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
- Tshwane University of Technology, Faculty of Science, Department of Chemistry, Private Bag X680, Pretoria, 0001, South Africa
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Maryam Bello-Akinosho
- Pathogenic Yeast Research Group, Department of Microbiology and Biochemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, North-West University, South Africa
| | - Akani Mushwana
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council – Natural Resources and Engineering, Pretoria, South Africa
| | - Michael van der Laan
- Agricultural Research Council (ARC) – Natural Resources and Engineering, Private Bag X79, Pretoria, 0001, South Africa
- Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20 Hatfield, Pretoria, 0028, South Africa
| | - Phedisho Mphahlele
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council – Natural Resources and Engineering, Pretoria, South Africa
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Fanelesibonge Vilakazi
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council – Natural Resources and Engineering, Pretoria, South Africa
- Unit for Environmental Sciences and Management, North-West University, South Africa
| | - Penny Jaca
- Water Research Commission, Lynnwood Bridge Office Park, Bloukrans Building, 4 Daventry Street, Lynnwood Manor, Pretoria, 0081, South Africa
| | - Eunice Ubomba-Jaswa
- Water Research Commission, Lynnwood Bridge Office Park, Bloukrans Building, 4 Daventry Street, Lynnwood Manor, Pretoria, 0081, South Africa
| |
Collapse
|
2
|
Vaudreuil MA, Vo Duy S, Munoz G, Sauvé S. Pharmaceutical pollution of hospital effluents and municipal wastewaters of Eastern Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157353. [PMID: 35842153 DOI: 10.1016/j.scitotenv.2022.157353] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Quantification of drugs residues in wastewaters of different sources could help better understand contamination pathways, eventually leading to effluent regulation. However, limited data are available for hospital-derived wastewaters. Here, an analytical method based on automated on-line solid-phase extraction liquid chromatography tandem mass spectrometry (on-line SPE - UPLC-MS/MS) was developed for the quantification of multi-class pharmaceuticals in wastewaters. Filtrate phase and suspended solids (SPM) were both considered to evaluate the distribution of targeted analytes. Experimental design optimization involved testing different chromatographic columns, on-line SPE columns, and loading conditions for the filtrate phase, and different organic solvents and cleanup strategies for suspended solids. The selected methods were validated with suitable limits of detection, recovery, accuracy, and precision. A total of 30 hospital effluents and 6 wastewater treatment plants were sampled to evaluate concentrations in real field-collected samples. Certain pharmaceuticals were quantified at high levels such as caffeine at 670,000 ng/L in hospital wastewaters and hydroxyibuprofen at 49,000 ng/L in WWTP influents. SPM samples also had high contaminant concentrations such as ibuprofen at 31,000 ng/g in hospital effluents, fluoxetine at 529 ng/g in WWTP influents or clarithromycin at 295 ng/g in WWTP effluents. Distribution coefficients (Kd) and particle-associated fractions (Φ) indicate that pharmaceuticals tend to have better affinity to suspended solids in hospital wastewater than in municipal wastewaters. The results also bring arguments for at source treatment of these specific effluents before their introduction into urban wastewater systems.
Collapse
Affiliation(s)
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
3
|
Method optimisation and application based on solid phase extraction of non steroidal anti-inflammatory drugs, antiretroviral drugs, and a lipid regulator from coastal areas of Durban, South Africa. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05120-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
AbstractThis study presents an optimized method that is applicable in monitoring the occurrence of pharmaceuticals in a wide range of aquatic environments. The optimised Solid Phase Extraction method is based on Bond Elut Plexa cartridges for the identification and quantification of three non-steroidal anti-inflammatory drugs, three antiretroviral drugs and a lipid regulator in the coastal area of Durban city, South Africa covering four seasons. The extracted compounds are qualitatively and quantitatively detected by a high-performance liquid phase chromatographic instrument coupled to a photodiode array detector. The recoveries range from 62 to 110% with a Relative Standard Deviation of 0.56−4.68%, respectively, for the determination of emtricitabine, tenofovir, naproxen, diclofenac, ibuprofen, efavirenz, and gemfibrozil. The analytical method is validated by spiking estuarine water samples with 5 µg L− 1 of a mixture containing the target pharmaceuticals and the matrix detection limit is established to be 0.62–1.78 µg L− 1 for the target compounds. The optimized method is applied to seasonal monitoring of pharmaceuticals at chosen study sites from winter and spring of 2019 and summer and autumn of 2020. The results indicate the concentration of the pharmaceuticals studied varies with the type of aquatic environment and season.
Collapse
|
4
|
Li P, Zhao J, Li N, Liu B, Zhang W, Zhu Z, Yan C, Xiao N, Lai H. Polyimidazolyl acetate ionic liquid grafted on cellulose filter paper as Thin‐Film extraction phase for extraction of Non‐Steroidal Anti‐Inflammatory drugs from water. J Sep Sci 2022; 45:2621-2631. [DOI: 10.1002/jssc.202200042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Pei‐Ying Li
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jia‐Hui Zhao
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Nian Li
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Bo Liu
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 China
- University of Chinese Academy of Sciences Beijing 100049 China
- CAS Testing Technical Services (Guangzhou) Co. Ltd. Guangzhou 510650 China
- New Materials Research Institute of CASCHEM (Chongqing) Co. Ltd. Chongqing 400714 China
| | - Wen‐Ge Zhang
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zi‐Fan Zhu
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chao Yan
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ning‐Lan Xiao
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hua‐Jie Lai
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 China
- University of Chinese Academy of Sciences Beijing 100049 China
- CAS Testing Technical Services (Guangzhou) Co. Ltd. Guangzhou 510650 China
- CAS Engineering Laboratory for Special Fine Chemicals Chinese Academy of Sciences Guangzhou 510650 China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics Guangzhou 510650 China
| |
Collapse
|
5
|
Omotola EO, Oluwole AO, Oladoye PO, Olatunji OS. Occurrence, detection and ecotoxicity studies of selected pharmaceuticals in aqueous ecosystems- a systematic appraisal. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 91:103831. [PMID: 35151848 DOI: 10.1016/j.etap.2022.103831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceutical compounds (PCs) have globally emerged as a significant group of environmental contaminants due to the constant detection of their residues in the environment. The main scope of this review is to fill the void of information on the knowledge on the African occurrence of selected PCs in environmental matrices in comparison with those outside Africa and their respective toxic actions on both aquatic and non-aquatic biota through ecotoxicity bioassays. To achieve this objective, the study focused on commonly used and detected pharmaceutical drugs (residues). Based on the conducted literature survey, Africa has the highest levels of ciprofloxacin, sulfamethoxazole, lamivudine, acetaminophen, and diclofenac while Europe has the lowest of all these PC residues in her physical environments. For ecotoxicity bioassays, the few data available are mostly on individual groups of pharmaceuticals whereas there is sparsely available data on their combined forms.
Collapse
Affiliation(s)
- Elizabeth Oyinkansola Omotola
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South Africa; Department of Chemical Sciences, Tai Solarin University of Education, Ijebu Ode PMB 2118, Ogun State, Nigeria.
| | | | - Peter Olusakin Oladoye
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL 33199, United States
| | | |
Collapse
|
6
|
Effect of Calcination Conditions on the Properties and Photoactivity of TiO2 Modified with Biuret. Catalysts 2021. [DOI: 10.3390/catal11121546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A simple wet impregnation-calcination method was used to obtain a series of novel non-metal doped TiO2 photocatalysts. Biuret was applied as C and N source, while raw titanium dioxide derived from sulfate technology process was used as TiO2 and S source. The influence of the modification with biuret and the effect of the atmosphere (air or argon) and temperature (500–800 °C) of calcination on the physicochemical properties and photocatalytic activity of the photocatalysts towards ketoprofen decomposition under simulated solar light was investigated. Moreover, selected photocatalysts were applied for ketoprofen photodecomposition under visible and UV irradiation. Crucial features affecting the photocatalytic activity were the anatase to rutile phase ratio, anatase crystallites size and non-metals content. The obtained photocatalysts revealed improved activity in the photocatalytic ketoprofen decomposition compared to the crude TiO2. The best photoactivity under all irradiation types exhibited the photocatalyst calcined in the air atmosphere at 600 °C, composed of 96.4% of anatase with 23 nm crystallites, and containing 0.11 wt% of C, 0.05 wt% of N and 0.77 wt% of S.
Collapse
|
7
|
Madikizela LM, Ncube S. Occurrence and ecotoxicological risk assessment of non-steroidal anti-inflammatory drugs in South African aquatic environment: What is known and the missing information? CHEMOSPHERE 2021; 280:130688. [PMID: 33962297 DOI: 10.1016/j.chemosphere.2021.130688] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 05/14/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are medications used individually or as mixtures with other pharmaceuticals for the treatment of various illnesses. Their easy accessibility and high human consumption have resulted to their detection at high concentrations in South African water resources. In the present work, an extensive review of the occurrence and ecotoxicological risk assessment of NSAIDs in South African aquatic environment is provided. Reviewed literature suggested ibuprofen, naproxen, diclofenac, ketoprofen and fenoprofen as the most prominent NSAIDs in the South African aquatic environment. Among these NSAIDs, higher concentrations of ibuprofen are common in South African waters. As a result, this drug was found to pose high ecotoxicological risks towards the aquatic organisms with the highest risk quotients of 14.9 and 11.9 found for algae in surface water and wastewater, respectively. Like in other parts of the world, NSAIDs are not completely removed in wastewater treatment plants. Removal efficiencies below 0% due to higher concentrations of NSAIDs in wastewater effluents rather than influents were observed in certain instances. The detection of NSAIDs in sediments and aquatic plants could serve as the important starting step to investigate other means of NSAIDs removal from water. In conclusion, recommendations regarding future studies that could paint a clearer picture regarding the occurrence and ecotoxicological risks posed by NSAIDs in South African aquatic environment are provided.
Collapse
Affiliation(s)
- Lawrence Mzukisi Madikizela
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1710, South Africa.
| | - Somandla Ncube
- Department of Chemistry, Sefako Makgatho Health Sciences University, P.O Box 60, Medunsa, 0204, South Africa
| |
Collapse
|
8
|
Huang L, Shen R, Liu R, Xu S, Shuai Q. Facile fabrication of magnetic covalent organic frameworks for magnetic solid-phase extraction of diclofenac sodium in milk. Food Chem 2021; 347:129002. [PMID: 33482486 DOI: 10.1016/j.foodchem.2021.129002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/07/2020] [Accepted: 12/31/2020] [Indexed: 01/05/2023]
Abstract
A robust magnetic solid-phase extraction (MSPE) method based on magnetic covalent organic framework (MCOF) coupled with high-performance liquid chromatography (HPLC)-ultraviolet (UV)/mass spectrometry (MS) was proposed for the determination of trace diclofenac sodium (DS) in milk. The prepared MCOF exhibited high extraction efficiency, which can be attributed to its high specific surface area as well as strong π-π and hydrophobic interactions between MCOF and DS. In addition, the potential influencing factors, including sample volume, adsorbent dosage, extraction time, and elution parameters, were fully estimated. The experimental results demonstrated that the established method was sensitive for the quantification of DS with high accuracy. Remarkably, the detection limit of DS was found to be 10 ng/kg under the optimal conditions. More impressively, the developed method was successfully applied to monitor trace DS in milk, demonstrating its outstanding durability and practical potential as an appealing method to regular monitor trace pharmaceutical contaminants in real food samples.
Collapse
Affiliation(s)
- Lijin Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, PR China.
| | - Rujia Shen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, PR China
| | - Ruiqi Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, PR China
| | - Shengrui Xu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Xinlian College, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Qin Shuai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, PR China.
| |
Collapse
|
9
|
Omotola EO, Olatunji OS. Quantification of selected pharmaceutical compounds in water using liquid chromatography-electrospray ionisation mass spectrometry (LC-ESI-MS). Heliyon 2020; 6:e05787. [PMID: 33426324 PMCID: PMC7779709 DOI: 10.1016/j.heliyon.2020.e05787] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/16/2020] [Accepted: 12/16/2020] [Indexed: 01/19/2023] Open
Abstract
The detection and quantitation of pharmaceutical compounds (PCs) in different environmental matrices is still a challenge, due to their extremely low (ng-μg) concentrations and the lack of rapid and sensitive analytical techniques. A number of techniques, such as enzyme-linked immunosorbent assay (ELISA), chromatography, electrophoresis, and electrochemical methods have been explored. These methods are limited by their poor sensitivity. In this study, a hyphenated liquid chromatography-mass spectrometric (LC-MS) method was developed, validated, and tested for the detection and quantification of seven active pharmaceutical compounds, with solid-phase extraction for analytes recovery and separation of interference from the aqueous matrix. The sensitivity achieved for the method allowed for LODs (μg/L) of 0.0439, 0.0684, 0.1219, 0.0710, 0.1129, 0.0447, 0.0837 and LOQs (μg/L) of 0.1462, 0.2281, 0.4065, 0.2367, 0.3763, 0.1492, 0.2792, for lamivudine, acetaminophen, vancomycin, ciprofloxacin, sulfamethoxazole, diclofenac, and ivermectin, respectively, within a linear range of 0.01-0.1 μg/mL. Other ICH validation parameters are also discussed. The different PCs were positive in 61 % of the tested surface waters, with diclofenac present only in two of the sampling points. The concentrations at which they occurred were variable and ranged between ND and 398.98 μg/L.
Collapse
Affiliation(s)
- Elizabeth Oyinkansola Omotola
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
- Department of Chemistry, Tai Solarin University of Education, Ijebu Ode, Ogun State, Nigeria
| | | |
Collapse
|
10
|
Hlengwa NB, Mahlambi PN. Ultrasonic Followed by Solid Phase Extraction and Liquid Chromatography-Photodiode Array for Determination of Pharmaceutical Compounds in Sediment and Soil. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:464-470. [PMID: 32215685 DOI: 10.1007/s00128-020-02829-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
This work reports on the method optimization and application for quantitative analysis of non-steroidal anti-inflammatory drugs and anti-epileptic drug in soil and sediment samples. The analytes were extracted by ultrasonic extraction followed by solid phase extraction and quantified using liquid chromatographic coupled with photodiode array. The sensitivity of the method was determined based on the limit of detection and the limit of quantification which ranged between (0.010-0.027 µg/kg) and (0.025-0.049 µg/kg), respectively. The %recoveries of the method ranged between 74% and 112%. The concentrations obtained in real samples ranged from 0.055 to 0.426 µg/kg in sediment and 0.044-0.567 µg/kg in soil samples. The highest concentration was found for diclofenac in soil samples.
Collapse
Affiliation(s)
- N B Hlengwa
- Department of Chemistry, University of KwaZulu-Natal, King Edward Avenue, Scottsville, Private Bag X01, Pietermaritzburg, 3209, South Africa
| | - P N Mahlambi
- Department of Chemistry, University of KwaZulu-Natal, King Edward Avenue, Scottsville, Private Bag X01, Pietermaritzburg, 3209, South Africa.
| |
Collapse
|
11
|
Gumbi BP, Moodley B, Birungi G, Ndungu PG. Target, Suspect and Non-Target Screening of Silylated Derivatives of Polar Compounds Based on Single Ion Monitoring GC-MS. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16204022. [PMID: 31640145 PMCID: PMC6843951 DOI: 10.3390/ijerph16204022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/30/2019] [Accepted: 09/11/2019] [Indexed: 11/21/2022]
Abstract
There is growing interest in determining the unidentified peaks within a sample spectra besides the analytes of interest. Availability of reference standards and hyphenated instruments has been a key and limiting factor in the rapid determination of emerging pollutants in the environment. In this work, polar compounds were silylated and analyzed with gas chromatography mass spectrometry (GC-MS) to determine the abundant fragments within the single ion monitoring (SIM) mode and methodology. Detection limits and recoveries of the compounds were established in river water, wastewater, biosolid and sediment matrices. Then, specific types of polar compounds that are classified as emerging contaminants, pharmaceuticals and personal care products, in the environment were targeted in the Mgeni and Msunduzi Rivers. We also performed suspect and non-target analysis screening to identify several other polar compounds in these rivers. A total of 12 compounds were quantified out of approximately 50 detected emerging contaminants in the Mgeni and Msunduzi Rivers. This study is significant for Africa, where the studies of emerging contaminants are limited and not usually prioritized.
Collapse
Affiliation(s)
- Bhekumuzi Prince Gumbi
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Brenda Moodley
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Grace Birungi
- Department of Chemistry, Mbarara University of Science and Technology, Mbarara 1410, Uganda.
| | - Patrick Gathura Ndungu
- Department of Chemical Sciences, University of Johannesburg, Johannesburg 2028, South Africa.
| |
Collapse
|