1
|
Nagarajan T, Binti Mohd Fekeri NH, Raju G, Shanmugan S, Jeppu G, Walvekar R, Rustagi S, Khalid M. Adsorption parameters optimization of spent coffee ground biochar for methylene blue removal using response surface methodology. CHEMOSPHERE 2024; 364:143242. [PMID: 39233300 DOI: 10.1016/j.chemosphere.2024.143242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/11/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
This study investigates the potential of spent coffee ground biochar (SCGB) as a sustainable and cost-effective adsorbent for the removal of methylene blue (MB), a hazardous dye commonly used in the textile and printing industries. A response surface methodology (RSM) approach with central composite design (CCD) was employed to systematically investigate the effects of key process parameters, including adsorbent dosage, solution pH, contact time and temperature, on MB removal efficiency. The analysis revealed that adsorbent dosage and temperature as critical factors influencing MB removal, with a linear model providing a strong correlation. Optimal conditions for MB removal were determined to be 0.99 g of SCGB, 30 min of contact time, 30 °C temperature, and a solution pH of 7. Under these conditions, MB removal reached 99.99%, with a desirability of 1.000. The experimental results closely matched the predicted values, differing by only 0.02%, thus validating the accuracy of the model. Kinetic studies indicated a rapid adsorption process, well-described by both pseudo-first and pseudo-second order models. Isotherm analysis confirmed the applicability of the Freundlich model, suggesting favorable adsorption with increasing MB concentration. The high adsorption capacity of SCGB is attributed to its carbonaceous and porous structure, highlighting its potential as an effective adsorbent for dye removal in wastewater treatment applications.
Collapse
Affiliation(s)
- Thachnatharen Nagarajan
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | | | - Gunasunderi Raju
- School of Distance Education, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| | - Subramani Shanmugan
- Nano Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia (USM), 11800, Gelugor, Pulau, Pinang, Malaysia
| | - Gautham Jeppu
- Department of Chemical Engineering, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
| | - Rashmi Walvekar
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, 174103, India; KKR and KSR Institute of Technology and Sciences, Guntur, Andhra Pradesh, 522017, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, 248007, Uttarakhand, India
| | - Mohammad Khalid
- Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK; Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, 47500, Darul Ehsan, Selangor, Malaysia; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, 140401, India.
| |
Collapse
|
2
|
Goswami M, Devi B, Das E, Rabha S, Sarma HP, Devi A. A promising approach for the removal of hexavalent and trivalent chromium from aqueous solution using low-cost biomaterial. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:461. [PMID: 38642157 DOI: 10.1007/s10661-024-12617-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
Heavy metal pollution is an enduring environmental challenge that calls for sustainable and eco-friendly solutions. One promising approach is to harness discarded plant biomass as a highly efficient environmental friendly adsorbents. In this context, a noteworthy study has spotlighted the employment of Euryale ferox Salisbury seed coat (E.feroxSC) for the exclusion of trivalent and hexavalent chromium ions. This study aims to transform discarded plant residue into a novel, environmentally friendly, and cost-effective alternative adsorbent, offering a compelling alternative to more expensive adsorption methods. By repurposing natural materials, we can contribute to mitigating heavy-metal pollution while promoting sustainable and economically viable solutions in environmental remediation. The effect of different parameters, i.e., chromium ions' initial concentration (5-25 mg L-1), solution pH (2-7), adsorbent dosage (0.2-2.4 g L-1), contact time (20-240 min), and temperature (298-313 K), were investigated. E.feroxSC proved highly effective, achieving 96.5% removal of Cr(III) ions at pH 6 and 97.7% removal of Cr(VI) ions at pH 2, with a maximum biosorption capacity of 18.33 mg/g for Cr(III) and 13.64 mg/g for Cr(VI), making it a promising, eco-friendly adsorbent for tackling heavy-metal pollution. The adsorption process followed the pseudo-second-order kinetic model, aligning well with the Langmuir isotherm, exhibited favorable thermodynamics, and was characterized as feasible, spontaneous, and endothermic with physisorption mechanisms. The investigation revealed that E.feroxSC effectively adsorbed Cr(VI) which could be rejuvenated in a basic solution with minimal depletion in its adsorption capacity. Conversely, E.feroxSC's adsorption of Cr(III) demanded rejuvenation in an acidic milieu, exhibiting comparatively less efficient restoration.
Collapse
Affiliation(s)
- Manisha Goswami
- Environmental Chemistry Laboratory, Resource Management and Environment Section, Life Science Division, Institute of Advanced Study in Science and Technology, Guwahati, 781035, Assam, India
- Department of Environmental Science, Gauhati University, Gauhati, Assam, India
| | - Bhaswati Devi
- Environmental Chemistry Laboratory, Resource Management and Environment Section, Life Science Division, Institute of Advanced Study in Science and Technology, Guwahati, 781035, Assam, India
| | - Emee Das
- Environmental Chemistry Laboratory, Resource Management and Environment Section, Life Science Division, Institute of Advanced Study in Science and Technology, Guwahati, 781035, Assam, India
| | - Suprakash Rabha
- Environmental Chemistry Laboratory, Resource Management and Environment Section, Life Science Division, Institute of Advanced Study in Science and Technology, Guwahati, 781035, Assam, India
| | - Hari Prasad Sarma
- Department of Environmental Science, Gauhati University, Gauhati, Assam, India
| | - Arundhuti Devi
- Environmental Chemistry Laboratory, Resource Management and Environment Section, Life Science Division, Institute of Advanced Study in Science and Technology, Guwahati, 781035, Assam, India.
| |
Collapse
|
3
|
A. Bajaber M, H. Ragab A, Sakr AK, Atia BM, Fathy WM, Gado MA. Application of a new derivatives of traizole Schiff base on chromium recovery from its wastewater. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2147440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Majed A. Bajaber
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed H. Ragab
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed K. Sakr
- Department of Geology Isotopes, Nuclear Materials Authority,Cairo, Egypt
| | - Bahig M. Atia
- Department of Geology Isotopes, Nuclear Materials Authority,Cairo, Egypt
| | - Wael M. Fathy
- Faculty of Engineering, Mining and Petroleum Dept, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed A. Gado
- Department of Geology Isotopes, Nuclear Materials Authority,Cairo, Egypt
| |
Collapse
|
4
|
Alluhaybi AA, Alharbi A, Hameed AM, Gouda AA, Hassen FS, El-Gendy HS, Atia BM, Salem AR, Gado MA, Ene A, Awad HA, Zakaly HMH. A Novel Triazole Schiff Base Derivatives for Remediation of Chromium Contamination from Tannery Waste Water. Molecules 2022; 27:molecules27165087. [PMID: 36014341 PMCID: PMC9415994 DOI: 10.3390/molecules27165087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/29/2022] [Accepted: 08/06/2022] [Indexed: 12/17/2022] Open
Abstract
Tannery industries are one of the extensive industrial activities which are the major source of chromium contamination in the environment. Chromium contamination has been an increasing threat to the environment and human health. Therefore, the removal of chromium ions is necessary to save human society. This study is oriented toward the preparation of a new triazole Schiff base derivatives for the remediation of chromium ions. 4,4′-((1E)-1,2-bis ((1H-1,2,4-triazol-3-yl) imino)ethane-1,2-diyl) diphenol was prepared by the interaction between 3-Amino-1H-1,2,4-triazole and 4,4′-Dihydroxybenzil. Then, the produced Schiff base underwent a phosphorylation reaction to produce the adsorbent (TIHP), which confirmed its structure via the different tools FTIR, TGA, 1HNMR, 13CNMR, GC-MS, and Phosphorus-31 nuclear magnetic resonance (31P-NMR). The newly synthesized adsorbent (TIHP) was used to remove chromium oxyanions (Cr(VI)) from an aqueous solution. The batch technique was used to test many controlling factors, including the pH of the working aqueous solution, the amount of adsorbent dose, the initial concentration of Cr(VI), the interaction time, and the temperature. The desorption behaviour of Cr(VI) changes when it is exposed to the suggested foreign ions. The maximum adsorption capacity for Cr(VI) adsorption on the new adsorbent was 307.07 mg/g at room temperature. Freundlich’s isotherm model fits the adsorption isotherms perfectly. The kinetic results were well-constrained by the pseudo-second-order equation. The thermodynamic studies establish that the adsorption type was exothermic and naturally spontaneous.
Collapse
Affiliation(s)
- Ahmad A. Alluhaybi
- Department of Chemistry, College of Science and Arts, King Abdulaziz University, Rabigh 22254, Saudi Arabia
| | - Ahmed Alharbi
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed M. Hameed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ayman A. Gouda
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Fatma S. Hassen
- Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo 11936, Egypt
| | | | - Bahig M. Atia
- Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo 11936, Egypt
| | - Amany R. Salem
- Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo 11936, Egypt
| | - Mohamed A. Gado
- Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo 11936, Egypt
| | - Antoaneta Ene
- INPOLDE Research Center, Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, Dunarea de Jos University of Galati, 47 Domneasca Street, 800008 Galati, Romania
- Correspondence: (A.E.); (H.M.H.Z.)
| | - Hamdy A. Awad
- Geology Department, Faculty of Science, Al-Azhar University, Assiut Branch 71524, Egypt
| | - Hesham M. H. Zakaly
- Institute of Physics and Technology, Ural Federal University, Yekaterinburg 620002, Russia
- Physics Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
- Correspondence: (A.E.); (H.M.H.Z.)
| |
Collapse
|
5
|
Chemical Modification of Teff Straw Biomass for Adsorptive Removal of Cr (VI) from Aqueous Solution: Characterization, Optimization, Kinetics, and Thermodynamic Aspects. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/5820207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Teff straw, a by-product of Teff, mainly available in Ethiopia, has not been studied much for biosorbent production. The present study has investigated the effects of modification and optimization of process parameters (viz., concentration of modifying agent (H3PO4 and KOH), modifying temperature, and modifying time) on the Cr (VI) removal efficiency of using chemically activated Teff straw biosorbent by RSM followed by BBD. The maximum Cr (VI) removal was obtained using an H3PO4-modified Teff straw biosorbent of 92.5% with 2 M concentration of the modifying agent, 110°C, and 4 h. Similarly, maximum Cr (VI) removal using KOH-modified Teff straw biosorbent of 95.2% was obtained with 1.5 M activating agent concentration, 105°C activation temperature, and 3.5 h activation time. In addition, the effects of adsorption parameters (viz., biosorbent dosage, temperature, initial concentration of Cr (VI), and contact time) were investigated. The maximum removal efficiency was attained at 2 g of biosorbent dosage, 4 h contact, 75 mg/L of initial Cr (VI) concentration, and 25°C sorption temperature. In addition, isotherm, kinetic, and thermodynamic studies for Cr (VI) biosorption were studied. The experimental adsorption data were well fitted with the Langmuir isotherm and pseudo-second-order kinetic model with higher correlation coefficient in both untreated and chemically modified Teff straw biosorbent. The investigated thermodynamic parameters (
,
, and
) confirmed that Cr (VI) metal ions’ adsorption process onto Teff straw biosorbent was spontaneous and endothermic.
Collapse
|
6
|
Yunus Pamukoğlu M, Dede B, Karabuğa MÇ. Kinetic Study on Removal of Cr(III) Heavy Metal by Using Amino Oxime Molecule. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422030293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Campagnolo MA, Celso Gonçalves A, Schwantes D, Dragunski DC, Demetrio T, Deminski LH. Cr(total) Removal Using Chicken Feathers Derived Materials: A Laboratory Study with Adsorption-precipitation in Electroplating Effluents. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2021.2008439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Marcelo Angelo Campagnolo
- Faculdade Educacional de Medianeira (UDC - Medianeira), Curso de Agronomia, Medianeira, Rua Rio Branco, nº 1820, Centro, State of Paraná, Brazil
| | - Affonso Celso Gonçalves
- Universidade Estadual do Oeste do Paraná (Unioeste). Centro de Ciências Médicas e Farmacêuticas. Rua Universitaria, nº 1619, Universitário, Cascavel, State of Paraná, Brazil
| | - Daniel Schwantes
- Pontificia Universidad Católica de Chile (PUC-Chile), Facultad de Agronomía e Ingeniería Forestal. Vicuña Mackenna nº 4860, Macul, Región Metropolitana, Chile
| | - Douglas Cardoso Dragunski
- Universidade Estadual do Oeste do Paraná (Unioeste), Centro de Engenharias e Ciências Exatas. Rua da Faculdade, nº 645, Jardim La Salle, Toledo, State of Paraná, Brazil
| | - Tanicler Demetrio
- Universidade Estadual do Oeste do Paraná (Unioeste). Programa de Pós-graduação em Engenharia de Energia na Agricultura. Rua Universitária, nº 1619, Universitário, Cascavel, State of Paraná, Brazil
| | - Leonardo Henrique Deminski
- Universidade Estadual do Oeste do Paraná (Unioeste). Programa de Pós-graduação em Engenharia de Energia na Agricultura. Rua Universitária, nº 1619, Universitário, Cascavel, State of Paraná, Brazil
| |
Collapse
|
8
|
Celso Gonçalves A, Zimmermann J, Schwantes D, Tarley CRT, Conradi Junior E, Henrique Dias de Oliveira V, Campagnolo MA, Ziemer GL. Renewable Eco-Friendly Activated Biochar from Tobacco: Kinetic, Equilibrium and Thermodynamics Studies for Chlorpyrifos Removal. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1890776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Affonso Celso Gonçalves
- Center of Agrarian Sciences, Universidade Estadual Do Oeste Do Paraná (UNIOESTE), Paraná, Brazil
| | - Juliano Zimmermann
- Center of Agrarian Sciences, Universidade Estadual Do Oeste Do Paraná (UNIOESTE), Paraná, Brazil
| | - Daniel Schwantes
- Departamento De Ciencias Vegetales, Pontificia Universidad Católica De Chile, Santiago, Chile
| | | | - Elio Conradi Junior
- Center of Agrarian Sciences, Universidade Estadual Do Oeste Do Paraná (UNIOESTE), Paraná, Brazil
| | | | - Marcelo Angelo Campagnolo
- Department of Agronomy, Educational College of Medianeira (UDC Medianeira), Medianeira, Paraná, Brazil
| | - Guilherme Lindner Ziemer
- Center of Agrarian Sciences, Universidade Estadual Do Oeste Do Paraná (UNIOESTE), Paraná, Brazil
| |
Collapse
|
9
|
Schwantes D, Gonçalves Jr. AC, Schiller ADP, Manfrin J, Bianco LAV, Rosenberger AG. Eco-friendly, renewable Crambe abyssinica Hochst-based adsorbents remove high quantities of Zn 2+ in water. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:809-823. [PMID: 33312604 PMCID: PMC7721775 DOI: 10.1007/s40201-020-00505-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/22/2020] [Indexed: 06/12/2023]
Abstract
Although not considered poisonous and with natural occurrence, Zn contamination is mainly related to anthropic actions. This research aim was to develop, from crambe wastes, adsorbents with high adsorption capacity of Zn2+. The crambe biomass was modified with H2O2, H2SO4 and NaOH 0.1 mol L-1, resulting in four crambe-based adsorbents: C. in natura (unmodified), C. H2O2, C. H2SO4 and C. NaOH. These were studied by determination of their chemical components, SEM, FTIR, pHPZC, thermal stability (by TG/DTG curves), SSA, pore volume and pore diameter (by BET and BJH). Adsorption studies were also carried out to evaluate its Zn removal capacity. Evaluations were taken on adsorbent dose and the influence of the pH, as well as studies on adsorption kinetics and equilibrium. These results were evaluated by pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion, Langmuir, Freundlich, Dubinin-Radushkevich and Sips (linear and nonlinear models). Results show that the crambe-based adsorbents may have functional groups such as hydroxyls, amides, carbonyls and carboxylates, which may be responsible for the Zn2+adsorption. The materials have heterogeneous structure, allowing the occurrence of mono and multilayer adsorption of Zn. The finest results point out the occurrence of mono and multilayer of Zn2+ (evidenced by Sips-nonlinear model), with an increase in Qsat of 72% (C. H2O2), 22% (C. H2SO4) and 80% (C. NaOH). The developed crambe adsorbents have low cost of production (since the raw material is until now a solid waste) and have high removal ratio of Zn2+ from waters, being a promising technology.
Collapse
Affiliation(s)
- Daniel Schwantes
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ing. Forestal, Pontificia Universidad Católica de Chile, Researcher ID: O-4051-2015, Santiago, Chile. Avenida Vicuña Mackenna 4860, Santiago, 7820436 Macul, Región Metropolitana Chile
| | - Affonso Celso Gonçalves Jr.
- Professor Associado da Universidade Estadual do Oeste do Paraná (UNIOESTE), Bolsista Produtividade em Pesquisa 1C do CNPq. Pernambuco Street, 1777 - Centro, Marechal Cândido Rondon, State of Paraná 85960-000 Brazil
| | - Andreia da Paz Schiller
- Universidade Estadual do Oeste do Paraná (UNIOESTE), Pernambuco Street, 1777 - Centro, Marechal Cândido Rondon, State of Paraná 85960-000 Brazil
| | - Jéssica Manfrin
- Universidade Estadual do Oeste do Paraná (UNIOESTE), Pernambuco Street, 1777 - Centro, Marechal Cândido Rondon, State of Paraná 85960-000 Brazil
| | - Luiz Alberto Verderio Bianco
- Pontifícia Universidade Católica do Paraná (PUCPR), Avenida União, 500 - Jardim Coopagro, Toledo, State of Paraná 85902-532 Brazil
| | - Andressa Giombelli Rosenberger
- Universidade Estadual do Oeste do Paraná (UNIOESTE), Faculdade Street, 645 - Jardim La Salle, Toledo, State of Paraná 85903-000 Brazil
| |
Collapse
|
10
|
Biosorption Studies of Cd 2+ and Cr 6+ from Aqueous Solution Using Cola-Nut Leaves as Low-Cost Biosorbent. J CHEM-NY 2020. [DOI: 10.1155/2020/6042398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cola-nut leaf is an agricultural waste which was used in this research as biosorbent for the adsorption of Cd2+and Cr6+ from aqueous solutions. The leaves of cola nut were modified using 0.1 M HCl. Modified cola nut leaves biosorbent showed slightly higher percentage sorption than the unmodified leaves, for both heavy metals with increasing contact time, having greater affinity for Cd2+. The equilibrium sorption data was attained using the batch technique with increased pH (9) and increased adsorbent dose (1 g/25 cm3 of adsorbate) and initial metal concentration. The functional group of cola nut leaves before and after adsorption was determined using Fourier Transform Infrared Spectroscopy (FTIR). Kinetics data were best fitted to a pseudo-second-order model. Equilibrium data were better described by the Temkin isotherm model with a multilayer adsorption capacity. The study showed that leaves of cola nut are a promising biosorbent for Cd2+ and Cr6+ which could be utilized for industrial wastewater remediation.
Collapse
|
11
|
Synthesized bioadsorbent from fish scale for chromium (III) removal. Micron 2020; 130:102817. [PMID: 31924593 DOI: 10.1016/j.micron.2019.102817] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 01/10/2023]
Abstract
Presence of heavy metal in industrial wastewater is hazardous to the surrounding environment. Biosorption of heavy metal is an effective technology for the treatment of industrial wastewater. This research work has been carried out on removal of chromium (III) metal ions by employing waste fish scales as bioadsorbent. A batch adsorption process was carried out with different adsorbent dosage, solution pH and contact time. The results show the highest 99.7518 % chromium (III) metal ions at bioadsorbent dosage 0.8 g, pH of the solution 5 and contact time 90 min, initial concentration 150 mg/l chromium ion. The adsorption isotherms data fitted well with the Langmuir isotherm model with R2 = 0.9998, qmax = 18.3486 mg/g, and RL = 0.00007325. As well as pseudo-first and second kinetics model was also analyzed for the description of adsorption and found to be well fitted (R2 = 1) for adsorption kinetics. The surface properties activated fish scales and chromium loaded fish scale were investigated by scanning electron microscopy, X-ray spectroscopy, Fourier-transform infrared spectroscopy, and thermal analysis and agree with outcomes.
Collapse
|
12
|
Godinho D, Nogueira M, Bernardo M, Dias D, Lapa N, Fonseca I, Pinto F. Recovery of Cr(III) by using chars from the co-gasification of agriculture and forestry wastes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:22723-22735. [PMID: 31168718 DOI: 10.1007/s11356-019-05609-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
The aim of the present work was to assess the efficiency of biochars obtained from the co-gasification of blends of rice husk + corn cob (biochar 50CC) and rice husk + eucalyptus stumps (biochar 50ES), as potential renewable low-cost adsorbents for Cr(III) recovery from wastewaters. The two gasification biochars presented a weak porous structure (ABET = 63-144 m2 g-1), but a strong alkaline character, promoted by a high content of mineral matter (59.8% w/w of ashes for 50CC biochar and 81.9% w/w for 50ES biochar). The biochars were used for Cr(III) recovery from synthetic solutions by varying the initial pH value (3, 4, and 5), liquid/solid (L/S) ratio (100-500 mL g-1), contact time (1-120 h), and initial Cr(III) concentration (10-150 mg L-1). High Cr(III) removal percentages (around 100%) were obtained for both biochars, due to Cr precipitation, at low L/S ratios (100 and 200 mL g-1), for the initial pH 5 and initial Cr concentration of 50 mg L-1. Under the experimental conditions in which other removal mechanisms rather than precipitation occurred, a higher removal percentage (49.9%) and the highest uptake capacity (6.87 mg g-1) were registered for 50CC biochar. In the equilibrium, 50ES biochar presented a Cr(III) removal percentage of 27% with a maximum uptake capacity of 2.58 mg g-1. The better performance on Cr(III) recovery for the biochar 50CC was attributed to its better textural properties, as well as its higher cation exchange capacity.
Collapse
Affiliation(s)
- Delfina Godinho
- REQUIMTE-LAQV, Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Ed. Departamental, 2829-516, Caparica, Portugal
| | - Miguel Nogueira
- REQUIMTE-LAQV, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Ed. Departamental, 2829-516, Caparica, Portugal
| | - Maria Bernardo
- REQUIMTE-LAQV, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Ed. Departamental, 2829-516, Caparica, Portugal
| | - Diogo Dias
- REQUIMTE-LAQV, Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Ed. Departamental, 2829-516, Caparica, Portugal
| | - Nuno Lapa
- REQUIMTE-LAQV, Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Ed. Departamental, 2829-516, Caparica, Portugal.
| | - Isabel Fonseca
- REQUIMTE-LAQV, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Ed. Departamental, 2829-516, Caparica, Portugal
| | - Filomena Pinto
- Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar, Ed. J, 1649-038, Lisbon, Portugal
| |
Collapse
|