1
|
Huang S, Chen M, Lu H, Eitssayeam S, Min Y, Shi P. Effect of pyrolysis temperature on the binding characteristics of DOM derived from livestock manure biochar with Cu(II). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24250-24262. [PMID: 38436847 DOI: 10.1007/s11356-024-32646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Biochar-derived dissolved organic matter (BDOM) has the potential to influence the environmental application of biochar and the behavior of heavy metals. In this study, the binding properties of BDOM derived from livestock manure biochar at different pyrolysis temperatures with Cu(II) were investigated based on a multi-analytical approach. The results showed that the DOC concentration, aromatics, and humification degree of BDOM were higher in the process of low pyrolysis of biochar. The pyrolysis temperature changed the composition of BDOM functional groups, which affected the binding mechanism of BDOM-Cu(II). Briefly, humic-like and protein-like substances dominated BDOM-Cu(II) binding at low and high pyrolysis temperatures, respectively. The higher binding capacity for Cu(II) was exhibited by BDOM derived from the lower pyrolysis temperature, due to the carboxyl as the main binding site in humic acid had high content and binding ability at low-temperature. The amide in proteins only participated in the BDOM-Cu(II) binding at high pyrolysis temperature, and polysaccharides also played an important role in the binding process. Moreover, the biochar underwent the secondary reaction at certain high temperatures, which led to condensation reaction of the aromatic structure and the conversion of large molecules into small molecules, affecting the BDOM-Cu(II) binding sites.
Collapse
Affiliation(s)
- Shujun Huang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, People's Republic of China
| | - Muxin Chen
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, People's Republic of China
| | - Hongxiu Lu
- Department of Biomedicine and Health, Shanghai Vocational College of Agriculture and Forestry, Shanghai, 201699, People's Republic of China
| | - Sukum Eitssayeam
- Physics and Materials Science Department, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Muang District, Chiang Mai, 50200, Thailand
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200090, People's Republic of China
| | - Penghui Shi
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200090, People's Republic of China.
| |
Collapse
|
2
|
Huang H, Liu H, Zhang R, Chen Y, Lei L, Qiu C, Xu H. Effect of slow-released biomass alkaline amendments oyster shell on microecology in acidic heavy metal contaminated paddy soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115683. [PMID: 35853307 DOI: 10.1016/j.jenvman.2022.115683] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/27/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Soil ecosystem functions and microbial community structure were severely impaired with long-term cadmium (Cd) contamination and acidification. To investigate the effect of amendments on soil physiochemical parameters and soil micro-ecology in acidic Cd contaminated soil, this study was conducted in a pot experiment with the application of calcium amendments, oyster shell powders (OS) and limestone (LM). Each amendment applied at ratios of 1.0%, 3.0%, and 5.0% (w/w), respectively. The results showed that the application of amendments increased the soil pH by 2.10-2.88, the bioavailable Cd decreased by 12.49%-19.48%, and un-bioavailable Cd increased by 96.57%-200.7%. The OS increased the richness index (Chao and Ace increased by 13.23%-16.20% and 7.13%-47.63%), and LM increased the microbial diversity index (Shannon increased by 1.14%-8.72% and Simpson indexes decreased by 28.00%-63.61%). In LM groups, soil microbial communities were significantly altered with increasing application concentrations, the relative abundance of phylum Proteobacteria, Bacteroidota and Gemmatimonadota increased, while Firmicute, Actinobacteria, Chloroflexi decreased. In OS treatments, the soil microbial community structure was basically unchanged. The correlation analysis showed that pH, TN, TP, CEC, OM were the dominant factors affecting the microbial community. This study has shown that application of amendments could effectively reduce the Cd bioavailability in soil, but LM altered the soil microbial community structure, while OS maintained the soil microbiological structure.
Collapse
Affiliation(s)
- Huayan Huang
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Huakang Liu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Renfeng Zhang
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Yahui Chen
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Ling Lei
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Chengshu Qiu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, PR China.
| | - Heng Xu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
3
|
Meng F, Huang Q, Cai Y, Li F, Yuan G. Effects of biowaste-derived biochar on the dynamic behavior of cadmium fractions in soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59043-59051. [PMID: 35381922 DOI: 10.1007/s11356-022-18802-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
As a commonly used amendment to soil contaminated by heavy metals, biochar has attracted great attention and has been applied for decades due to the benefits to the soil. However, the effects of biochar on the dynamic behavior of soil properties and metal fractions are still unclear. Here, we used two biochars, derived from biowastes (reed and bamboo willow), to treat two cadmium (Cd)-contaminated soils, S1 (loamy sand) and S2 (sandy loam), and determined the dynamic effects. The incubation experiments were designed to investigate the effects of biochar on the dynamic behavior of soil pH, dissolved organic matter (DOM), bioavailable Cd, and the transformation of Cd fractions for 270 days. The results showed that the soil pH, DOM, and bioavailable Cd initially increased and then decreased with incubation time, and the soil pH and DOM were higher, but bioavailable Cd content was lower than the original value. The transformation of the metal fractions changed dynamically, and the exchangeable fraction of Cd decreased with incubation time. Furthermore, the correlation results showed that the DOM can directly control the redistribution of Cd fractions, while soil pH can control it indirectly by regulating the DOM. This study highlighted that biochar can affect soil pH and DOM, redistribute Cd fractions, decrease bioavailable Cd content, and lower the potential risk of heavy metals. This study suggests ways to immobilize heavy metals in contaminated soils using biochar.
Collapse
Affiliation(s)
- Fande Meng
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou, 233100, Anhui, China.
| | - Qiuxiang Huang
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Chuzhou, 233100, Anhui, China
| | - Yongbing Cai
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou, 233100, Anhui, China
| | - Feiyue Li
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou, 233100, Anhui, China
| | - Guodong Yuan
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, Guangdong, China.
| |
Collapse
|
4
|
Ultrasound-Assisted Extraction of Humic Substances from Peat: Assessment of Process Efficiency and Products' Quality. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113413. [PMID: 35684351 PMCID: PMC9182150 DOI: 10.3390/molecules27113413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
Results of efficiency of obtaining humic substances (HSs) from peat in traditional alkaline extraction (TAE) and ultrasound-assisted alkaline extraction (UAAE) are presented. The influence of the duration of the process and ultrasound intensity on the efficiency of extraction of humic acids (HAs) and fulvic acids (FAs) extraction was determined. The composition of the fulvic acid fraction was examined depending on the type of eluent used. Fulvic acids were divided into fractions using columns packed with DAX-8 resin. For this process, 0.1 M NaOH and 0.5 M NH3∙H2O were used as eluents. For the quality assessment of specific fulvic acids fractions, spectroscopic methods (UV-Vis and FTIR) were used. Ultrasound had a positive effect on HS extraction efficiency, especially in increasing the amount of a desired hydrophobic fraction of fulvic acids (HPO). However, a negative effect of the excessive prolongation and ultrasound intensity (approximately 400 mW∙cm-2) on the extraction efficiency of HPO eluted with 0.1 M NaOH solution was observed. Using peat as a raw carbon material for the HS extraction process can be used as an alternative industrial application of peat. UAAE may be considered as an alternative method to TAE, which provides a higher efficiency in HS isolation from peat.
Collapse
|
5
|
Hu X, Qu C, Han Y, Chen W, Huang Q. Elevated temperature altered the binding sequence of Cd with DOM in arable soils. CHEMOSPHERE 2022; 288:132572. [PMID: 34655641 DOI: 10.1016/j.chemosphere.2021.132572] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Dissolved organic matter (DOM) is one of the most active soil components, which plays pivotal roles in the migration and fate of heavy metals in soils. The interactions of heavy metals with DOM are controlled by the structure and properties of DOM. The changes of temperature have a significant effect on the content and composition of DOM and thus may affect the binding nature of heavy metals with DOM. In the current study, we conducted a 180-d incubation experiment with an arable soil at temperatures of 15, 30 and 45 °C. Fluorescence spectroscopy was used to examine the composition of DOM and two-dimensional correlation spectroscopy was applied to determine the binding intensity and sequence between cadmium (Cd) with DOM. Two humic-like substances (C1, C3) and a protein-like substance (C2) were identified from soil DOM. Elevated temperature changed the characteristic and structure of DOM. The humification degree and aromaticity of DOM increased from 15 °C to 30 °C but decreased at high temperature (45 °C). The alterations in temperature exert no impact on the type of organic functional groups in DOM binding with Cd. However, elevated temperature changed the binding sequence of Cd with DOM fractions. Polysaccharide, phenolic, and aromatic groups exhibited the fastest response to Cd at 15, 30, and 45 °C, respectively. These observations would provide a better understanding on the environmental behavior of Cd in arable soils under the context of global warming.
Collapse
Affiliation(s)
- Xiping Hu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agriculture University, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chenchen Qu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agriculture University, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yafeng Han
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agriculture University, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agriculture University, Wuhan, 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agriculture University, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan, 430070, China.
| |
Collapse
|
6
|
Liu H, Zhang T, Tong Y, Zhu Q, Huang D, Zeng X. Effect of humic and calcareous substance amendments on the availability of cadmium in paddy soil and its accumulation in rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113186. [PMID: 35030525 DOI: 10.1016/j.ecoenv.2022.113186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/13/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Humic substances (HS) are widely known as important components in soil and significantly affect the mobility of metals due to their large surface area and abundant organic functional groups. Calcareous substances (CSs) are also commonly used as robust and cost-effective amendments for increasing the pH of acidic soils and decreasing the mobility of metals in soils. In this study, we developed a new remediation scheme for cadmium (Cd)-contaminated soil remediation by coupling HS and CS. The results showed that regardless of the addition of fulvic acid (FA), all the CS-containing treatments significantly increased the soil pH by 0.32-0.60, and the concentration of bioavailable Cd decreased in the moderately (field experiment soil, maximum 62%) and highly (pot experiment soil, maximum 57%) Cd-contaminated soils. The Cd content in rice (Oryza sativa L.) tissues significantly decreased after all the treatments. The bioaccumulation factors (BAFs) decreased by over 50% in the roots, stems, leaves and husks in all treatments, while the translocation factors (TFs) only significantly decreased in the highly contaminated soil. Among all treatments, the two HS+CS treatments (FA+CaCO3 and FA+CaO) had the greatest effect on decreasing the concentration of bioavailable Cd in soil and Cd in brown rice grains. The suggested mechanism for the effectiveness of coupled HS and CS was that CS first mitigated the pH and precipitated Cd, followed by a complexation effect between HS and Cd. Although the Cd in rice grains in both cases was higher than the standard limit, HS+CS remediation can be advocated as a robust, simple and cost-effective scheme for Cd remediation if the additive dose is slightly increased, as this approach can simultaneously improve the pH of acidic soil and adsorb Cd in soil.
Collapse
Affiliation(s)
- Hao Liu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; Institute Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China
| | - Tuo Zhang
- Institute Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China; College of Environmental Science & Engineering, China West Normal University, Nanchong, Sichuan 637009, China
| | - Yan'an Tong
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Qihong Zhu
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Daoyou Huang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xibai Zeng
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; Institute Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
7
|
Effects of Leonardite Amendments on Vineyard Calcareous Soil Fertility, Vine Nutrition and Grape Quality. PLANTS 2022; 11:plants11030356. [PMID: 35161337 PMCID: PMC8840417 DOI: 10.3390/plants11030356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/31/2021] [Accepted: 01/26/2022] [Indexed: 11/26/2022]
Abstract
Vineyard calcareous soils are usually low in organic matter, which makes them prone to physical, chemical, and biological degradation. Besides, these soils are also usually poor in various nutrients in plant-available form, e.g., iron. To make up for this lack of soil fertility, on the one hand, manures, and on the other, iron chelates are usually used. However, the soil application of these materials is not free from problems, and other amendments based on leonardites could be advantageously used as an alternative. Therefore, two organic amendments, one leonardite alone (1 Mg/ha), and the other leonardite (1 Mg/ha) plus ferrous sulphate heptahydrate (0.5 Mg/ha), were tested for three years in a commercial vineyard calcareous plot under Mediterranean climate. The effects of these amendments on soil fertility, plant nutrient contents, and berry quality were studied against a control of bare soil by means of a fully randomized trial with three repetitions per treatment. Soil organic matter (SOM) increased as a consequence of both leonardite treatments, but much more than expected on the basis of a simple mass transfer from the amendments. With the ferrous-sulphate-heptahydrate-supplemented leonardite, the increase in SOM was noticeably higher. This is explained on the basis of nutrient quantity and intensity-pH-related effects, which increased soil nutrient plant-availability and presumably enhanced vine root growth. In response to the higher plant availability of nutrients, the petiole nutrient concentrations were observed to increase under the leonardite treatments. However, only a trend to increase potassium in petioles and in grape must, linked to a decrease of grape must pH, was observed in harvest quality under the leonardite treatments. Leonardite and adequately supplemented leonardite seem to have potential for increasing SOM contents and nutrient plant-availability, thus improving the soil fertility of vineyard calcareous soils.
Collapse
|
8
|
Yang B, Cheng X, Zhang Y, Li W, Wang J, Guo H. Probing the roles of pH and ionic strength on electrostatic binding of tetracycline by dissolved organic matters: Reevaluation of modified fitting model. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2021; 8:100133. [PMID: 36156988 PMCID: PMC9488040 DOI: 10.1016/j.ese.2021.100133] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 05/06/2023]
Abstract
The binding performance of dissolved organic matters (DOM) plays a critical role in the migration, diffusion and removal of various residual pollutants in the natural water environment. In the current study, four typical DOMs (including bovine serum proteins BSA (proteins), sodium alginate SAA (polysaccharides), humic acid HA and fulvic acid FA (humus)) are selected to investigate the binding roles in zwitterionic tetracycline (TET) antibiotic under various ionic strength (IS = 0.001-0.1 M) and pH (5.0-9.0). The dialysis equilibration technique was employed to determine the binding concentrations of TET, and the influence of IS and pH on binding performance was evaluated via UV-vis spectroscopy, total organic carbon (TOC), and Excitation-Emission-Matrix spectra (EEM), zeta potentials and molecule size distribution analysis. Our results suggested that carboxyl and phenolic hydroxyl were identified as the main contributors to TET binding based on the fourier transform infrared spectroscopy (FTIR) analysis, and the binding capability of four DOMs followed as HA > FA » BSA > SAA. The biggest binding concentrations of TET by 10 mg C/L HA, FA, BSA and SAA were 0.863 μM, 0.487 μM, 0.084 μM and 0.086 μM, respectively. The higher binding capability of HA and FA is mainly attributed to their richer functional groups, lower zeta potential (HA/FA = -15.92/-13.54 mV) and the bigger molecular size (HA/FA = 24668/27750 nm). IS significantly inhibits the binding interaction by compressing the molecular structure and the surface electric double layer, while pH had a weak effect. By combining the Donnan model and the multiple linear regression analysis, a modified Karickhoff model was established to effectively predict the binding performance of DOM under different IS (0.001-0.1 M) and pH (5.0-9.0) conditions, and the R2 of linear fitting between experiment-measured logKDOC and model-calculated logKOC were 0.94 for HA and 0.91 for FA. This finding provides a theoretical basis for characterizing and predicting the binding performance of various DOMs to residual micropollutants in the natural water environment.
Collapse
Affiliation(s)
- Bo Yang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Xin Cheng
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yongli Zhang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Wei Li
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Jingquan Wang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Hongguang Guo
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
9
|
Lu J, Wu J, Wu J, Zhang C, Luo Y. Adsorption and Desorption of Steroid Hormones by Microplastics in Seawater. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:730-735. [PMID: 31912186 DOI: 10.1007/s00128-020-02784-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/03/2020] [Indexed: 05/25/2023]
Abstract
This study evaluated the adsorption and desorption of 17β-estradiol (E2) and 17α-ethynylestradiol (EE2) on microplastics in seawater. The effects of microplastic materials and particle sizes on adsorption of E2 and EE2 were explored. Moreover, effects of salinity, pH, humic acid (HA) concentrations, and initial E2/EE2 concentrations on adsorption were also discussed. Increase in salinity, HA concentration, and initial E2/EE2 concentration would enhance adsorption of E2/EE2 on microplastics. Adsorption capacity of E2/EE2 firstly increased to reach the highest at pH of 8.0 and then decreased when pH further increased. Pseudo-second-order kinetics better fitted adsorption data of E2 while pseudo-first-order model yielded better fitting results for EE2. Freundlich isotherm was better to fit the adsorption data of E2 while Langmuir isotherm yielded better fitting results for EE2. Desorption capacity of E2/EE2 on microplastics was over 40% of its adsorption capacity. This study provides new insights on microplastics and endocrine disrupting chemicals.
Collapse
Affiliation(s)
- Jian Lu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, Shandong, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jie Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, Shandong, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Wu
- School of Resources and Environmental Engineering, Ludong University, Yantai, 264025, Shandong, China
| | - Cui Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, Shandong, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongming Luo
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, Shandong, China
| |
Collapse
|
10
|
Ratié G, Chrastný V, Guinoiseau D, Marsac R, Vaňková Z, Komárek M. Cadmium Isotope Fractionation during Complexation with Humic Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7430-7444. [PMID: 33970606 DOI: 10.1021/acs.est.1c00646] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) isotopes are known to fractionate during complexation with various environmentally relevant surfaces and ligands. Our results, which were obtained using (i) batch experiments at different Cd concentrations, ionic strengths, and pH values, (ii) modeling, and (iii) infrared and X-ray absorption spectroscopies, highlight the preferential enrichment of light Cd isotopes bound to humic acid (HA), leaving the heavier Cd pool preferentially in solution (Δ114/110CdHA-Cd(aq) of -0.15 ± 0.01‰). At high ionic strengths, Cd isotope fractionation mainly depends on its complexation with carboxylic sites. Outer-sphere complexation occurs at equilibrium together with inner-sphere complexation as well as with the change of the first Cd coordination and its hydration complexes in solution. At low ionic strengths, nonspecific Cd binding induced by electrostatic attractions plays a dominant role and promotes Cd isotope fractionation during complexation. This significant outcome elucidates the mechanisms involved in HA-Cd interactions. The results can be used during (i) fingerprinting the available Cd in soil solution after its complexation with solid or soluble natural organic matter and (ii) evaluating the contribution of Cd complexation with organic ligands and phytoplankton-derived debris versus Cd assimilation by phytoplankton in seawater.
Collapse
Affiliation(s)
- Gildas Ratié
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague-Suchdol, Czech Republic
| | - Vladislav Chrastný
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague-Suchdol, Czech Republic
| | - Damien Guinoiseau
- Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
- Aix Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE, F-13545 Aix-en-Provence, France
| | - Rémi Marsac
- Univ Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000 Rennes, France
| | - Zuzana Vaňková
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague-Suchdol, Czech Republic
| | - Michael Komárek
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague-Suchdol, Czech Republic
| |
Collapse
|
11
|
Tregubova P, Koptsik G, Stepanov A, Koptsik S, Spiers G. Organic amendments potentially stabilize metals in smelter contaminated Arctic soils: An incubation study. Heliyon 2021; 7:e06022. [PMID: 33537481 PMCID: PMC7841320 DOI: 10.1016/j.heliyon.2021.e06022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/23/2020] [Accepted: 01/14/2021] [Indexed: 11/23/2022] Open
Abstract
The long-term emission impacts of the nickel processing industry in the Kola Peninsula, the largest source of sulfur dioxide and heavy metals emissions in Northern Europe, have created vast technogenic barrens near the mineral industry complexes. The pace of rehabilitation using the improved remediation technologies to enhance sustainable environmental management and regional economic development is of crucial social and economic importance. In a 120-day incubation experiment, we evaluated the prospects for the restoration of two soils at different degradation stages via carbon pool regulation comparing to mineral ameliorants - NPK fertilizer, and liming agent. Organic additives used included a humic preparation based on an alkaline brown coal extract, wood-derived biochar, and peat-derived gel, supplied by mycorrhizae fungi. The results demonstrate that the selected organic amendments are suitable for restoration of acidic metal contaminated soils. Specifically, the treatments provided a measurable increase in soil carbon content, a marked decrease in acidity, a decrease in extractable metal contents, together with an enhanced nutrient uptake and vegetative growth. A stabilization effect increased from biochar to peat-gel, liming agent and humic preparation, with an accompanying increase in soil pH. Although biochar showed a reduced ability to metal stabilization, the associated treatments were the most productive. The most effective amendments in multi-metallic contaminated soils need to be able to stabilize bioavailability of metals, adjust pH to the optimum for plant growth, and regulate nutrient consumption.
Collapse
Affiliation(s)
- Polina Tregubova
- Faculty of Soil Science, Lomonosov Moscow State University, Moscow, Russian Federation
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | - Galina Koptsik
- Faculty of Soil Science, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Andrey Stepanov
- Faculty of Soil Science, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Sergey Koptsik
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Graeme Spiers
- Faculty of Soil Science, Lomonosov Moscow State University, Moscow, Russian Federation
- Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada
| |
Collapse
|
12
|
Bi D, Yuan G, Wei J, Xiao L, Feng L. Conversion of Oyster Shell Waste to Amendment for Immobilising Cadmium and Arsenic in Agricultural Soil. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:277-282. [PMID: 32556688 DOI: 10.1007/s00128-020-02906-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
A bulky waste, oyster shell (OS), was calcinated at 400-800°C to produce Ca-rich products (OS400-OS800) to reduce the human health risk of soil cadmium (Cd) and arsenic (As). Thermogravimetric analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), and BET method were used to characterize OS and its calcined products. OS and OS400-OS700 removed little Cd and As from water, whereas OS800 removed 1508 mg Cd or 514 mg As per kg of OS800 from solutions of 1032 mg Cd/L or 257 mg As/L via adsorption and precipitation. Adding OS800 at a 2% dose to a Cd- and As-contaminated soil lowered its exchangeable Cd from 60% to 27%, and reduced Cd content in the edible part of vegetable Bok Choy from 2.80 to 0.048 mg/kg and As from 1.73 to 0.47 mg/kg. Converting OS to soil amendment has the dual benefits to soil remediation and sustainable oyster aquaculture.
Collapse
Affiliation(s)
- Dongxue Bi
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guodong Yuan
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, Guangdong, China.
| | - Jing Wei
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
| | - Liang Xiao
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
| | - Lirong Feng
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
| |
Collapse
|
13
|
Wei J, Tu C, Yuan G, Zhou Y, Wang H, Lu J. Limited Cu(II) binding to biochar DOM: Evidence from C K-edge NEXAFS and EEM-PARAFAC combined with two-dimensional correlation analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134919. [PMID: 31726408 DOI: 10.1016/j.scitotenv.2019.134919] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Multiple spectroscopic technologies and chemometric analyses were combined to explore the compositional characteristics and Cu binding performance of biochar-derived dissolved organic matter (DOM). The DOM samples were extracted from biochars produced from lignocellulose-rich rapeseed cake (RSC) by pyrolysis at 300, 500, and 700 °C (i.e., RSC300, RSC500, RSC700). Fourier transform infrared spectroscopy (FTIR) and carbon K-edge near-edge X-ray absorption fine structure spectroscopy (NEXAFS) analyses were combined to elucidate the molecular-level C species in the DOM. With the increasing pyrolysis temperature, DOM aromaticity increased, whereas the proportion of metal complexing sites (e.g., carboxyl and phenolic groups) decreased. Fluorescence excitation-emission matrix (EEM) spectroscopy with parallel factor analysis (PARAFAC) indicated that biochar DOM, irrespective of pyrolysis temperature, was mostly composed of three types of humic-like components (C1-C3), and a small amount of a protein-like component (C4). As charring temperature increased, DOM concentrations decreased substantially, but the humic-like C3 with abundant aromatic structures became predominant. Fluorescence quenching experiment and two-dimensional correlation spectroscopy (2D-COS) analysis suggested that the preferential Cu(II) binding fractions of the DOM were the humic-like substances. Moreover, the quenching curve fitting results for individual components indicated that despite the Cu(II) binding affinity was slightly enhanced as the pyrolysis temperature increased, the binding capacities of the four components decreased. In general, the DOM components from RSC biochar exhibited limited Cu(II) binding capacities (2.18-17.7 μmol L-1). Results from this study improved understanding of the mechanisms by which biochar DOM interacts with Cu, and provided tools for fast screening of biochars to reduce their environmental risks.
Collapse
Affiliation(s)
- Jing Wei
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Chen Tu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Guodong Yuan
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China.
| | - Yongqiang Zhou
- Stated Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Zhejiang Province Key Laboratory of Soil Contamination and Bioremediation, Zhejiang A&F University, Hangzhou 311300, China
| | - Jian Lu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
14
|
Wei J, Tu C, Yuan G, Bi D, Wang H, Zhang L, Theng BKG. Pyrolysis Temperature-Dependent Changes in the Characteristics of Biochar-Borne Dissolved Organic Matter and Its Copper Binding Properties. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 103:169-174. [PMID: 29982867 DOI: 10.1007/s00128-018-2392-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/28/2018] [Indexed: 06/08/2023]
Abstract
The dissolved organic matter (DOM) samples from biochars produced from Jerusalem artichoke stalks by pyrolysis at 300, 500, and 700 °C were characterized using a combination of spectroscopic techniques. Additionally, the binding affinities (long KM) and the complexation capacities (CL) of the DOM samples with Cu(II) were calculated to assess their Cu binding properties. The biochar-borne DOM contained mainly humic-like components (C1-C3) with a small amount of a protein-like component (C4). As the charring temperature increased, the concentrations of released DOM decreased. The low temperature biochar-borne DOM was found to have more carboxyl groups than its high temperature counterparts, and thus it had larger CL values. In contrast, the high temperature biochar-borne DOM had larger long KM values. Low temperature biochars, if applied in a large quantity, would alter copper mobility in the environment because of their high DOM contents and large copper binding capacities.
Collapse
Affiliation(s)
- Jing Wei
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003, China
- Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, China
| | - Chen Tu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003, China
- Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, China
| | - Guodong Yuan
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, China.
| | - Dongxue Bi
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003, China
- Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, China
| | - Hailong Wang
- School of Environment and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Lijuan Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Benny K G Theng
- Landcare Research, Private Bag 11052, Palmerston North, 4442, New Zealand
| |
Collapse
|
15
|
Kinetics and Thermodynamics of Uranium (VI) Adsorption onto Humic Acid Derived from Leonardite. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16091552. [PMID: 31052550 PMCID: PMC6539073 DOI: 10.3390/ijerph16091552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 11/17/2022]
Abstract
Humic acid (HA) is well known as an inexpensive and effective adsorbent for heavy metal ions. However, the thermodynamics of uranium (U) adsorption onto HA is not fully understood. This study aimed to understand the kinetics and isotherms of U(VI) adsorption onto HA under different temperatures from acidic water. A leonardite-derived HA was characterized for its ash content, elemental compositions, and acidic functional groups, and used for the removal of U (VI) from acidic aqueous solutions via batch experiments at initial concentrations of 0-100 mg·L-1 at 298, 308 and 318 K. ICP-MS was used to determine the U(VI) concentrations in solutions before and after reacting with the HA. The rate and capacity of HA adsorbing U(VI) increased with the temperature. Adsorption kinetic data was best fitted to the pseudo second-order model. This, together with FTIR spectra, indicated a chemisorption of U(VI) by HA. Equilibrium adsorption data was best fitted to the Langmuir and Temkin models. Thermodynamic parameters such as equilibrium constant (K0), standard Gibbs free energy (ΔG0), standard enthalpy change (ΔH0), and standard entropy change (ΔS0), indicated that U(VI) adsorption onto HA was endothermic and spontaneous. The co-existence of cations (Cu2+, Co2+, Cd2+ and Pb2+) and anions (HPO42- and SO42-) reduced U(VI) adsorption. The high propensity and capacity of leonardite-derived HA adsorbing U(VI) suggests that it has the potential for cost-effective removal of U(VI) from acidic contaminated waters.
Collapse
|
16
|
Liu Q, Li X, Tang J, Zhou Y, Lin Q, Xiao R, Zhang M. Characterization of goethite-fulvic acid composites and their impact on the immobility of Pb/Cd in soil. CHEMOSPHERE 2019; 222:556-563. [PMID: 30721815 DOI: 10.1016/j.chemosphere.2019.01.171] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/21/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
The coprecipitation of organic matter (OM) and minerals is a relatively common phenomenon in soil, and it has a significant influence on the surface properties and reactivity of minerals. In turn, the fate of pollutants in soil is greatly affected by the organic-mineral composites. In this study, goethite-fulvic acid (Ge-FA) composites with varying FA mass ratios in the range of 0-15% were synthesized by coprecipitation. The sample properties were studied using XRD, FTIR, SEM-EDS and N2 gas adsorption techniques. The influence of Ge-FA on the mobility of Pb/Cd in soil was investigated. The crystal forms of Ge-FA changed from goethite (FA≤4%) to hematite (FA≥5%), and the FA affected the FeO bond vibrations. These results demonstrated that FA was successfully introduced into the iron oxide. Ge-FA changed from a filamental morphology to an aggregate as the FA ratio increased. The coprecipitation resulted in blockages of iron oxides, thereby decreasing the specific surface area and pore volume. The adsorption amount of Pb(II) on Ge-FA increased as the FA ratio increased, but no significant change was observed for Cd(II). With the application of Ge-FA, the exchangeable concentrations of Pb and Cd in contaminated soil decreased by 42.4%-93.6% and 15.8%-43.7%, respectively. The exchangeable and carbonate bound fractions of Pb and Cd decreased and were transformed into the FeMn bound and residual fractions.
Collapse
Affiliation(s)
- Qianjun Liu
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment, Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Xiang Li
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment, Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiepeng Tang
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment, Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yangmei Zhou
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment, Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qintie Lin
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment, Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Rongbo Xiao
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment, Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Min Zhang
- School of Materials Science and Energy Engineering, Foshan University, Foshan, 528000, China.
| |
Collapse
|
17
|
Wei J, Tu C, Yuan G, Bi D, Xiao L, Theng BKG, Wang H, Ok YS. Carbon-coated montmorillonite nanocomposite for the removal of chromium(VI) from aqueous solutions. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:541-549. [PMID: 30710783 DOI: 10.1016/j.jhazmat.2019.01.080] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/03/2018] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
A carbon-coated montmorillonite nanocomposite (CMt), obtained by hydrothermal carbonization of montmorillonite suspension in glucose, was used to remove Cr(VI) from aqueous solutions. The distribution and speciation of Cr immobilized by CMt were assessed by transmission electron microscopy with energy-dispersive X-ray analysis, X-ray absorption near edge structure (XANES), and scanning transmission soft X-ray microscopy (STXM). The variation in the functional groups and molecular structures of CMt was also investigated. The capacity of CMt for adsorbing Cr(VI) was markedly superior to that of the parent montmorillonite, showing maximum uptake of 100 and 12.4 mg g-1 at pH 2 and 8, respectively. The Cr K-edge XANES and STXM analyses indicated that Cr(VI) was reduced to Cr(III) under both acidic and alkaline conditions, while a Cr(OH)3 precipitate and Cr(III)-acetate complex were the predominant species present on the CMt surface. The Fourier transform infrared spectroscopy and C K-edge XANES further suggested that the phenolic groups in CMt could serve as electron donors, facilitating Cr(VI) reduction. The combined results indicate that electrostatic attraction, Cr(VI) reduction, complexation, and precipitation are involved in the removal of Cr(VI) by CMt.
Collapse
Affiliation(s)
- Jing Wei
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Chen Tu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Guodong Yuan
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, China.
| | - Dongxue Bi
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Liang Xiao
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Benny K G Theng
- Manaaki Whenua-Landcare Research, Private Bag 11052, Palmerston North 4442, New Zealand
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yong Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|