1
|
Wang Y, Munir T, Wu X, Huang Y, Li B. Phosphorus recovery and reuse: Innovating with biochar in the circular economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 973:179143. [PMID: 40112550 DOI: 10.1016/j.scitotenv.2025.179143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 12/29/2024] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Global challenges of phosphorus pollution and scarcity underscore an urgent need for the efficient recycling of this critical resource. Biochar, a sustainable and economical material, has demonstrated significant potential as an adsorbent for phosphorus, offering a viable solution for its recovery from wastewater. Various techniques have been explored to improve the ability of biochar to adsorb inorganic phosphate. While numerous studies have reviewed methods of biochar modification, the underlying adsorption mechanisms, and the thermodynamics and kinetics involved, a thorough examination that addresses the practical challenges of real-world wastewater treatment is currently lacking. This review aims to fill this gap by quantitatively analyzing the impact of coexisting species in wastewater on the adsorption of phosphate and by exploring the potential for simultaneous removal of other contaminants, such as nutrients, heavy metals, and dissolved organic matter. The review also discusses factors that affect the desorption of phosphate from biochar and presents practical applications for biochars post-adsorption. These applications include their use as slow-release phosphorus fertilizers, additives in concrete, and as novel adsorbents for the removal of heavy metals. This comprehensive analysis serves to synthesize current research on phosphate recovery by biochars and to propose practical uses for the adsorbed phosphorus, thereby guiding the development of biochar adsorption technology towards more effective and practical phosphorus management strategies.
Collapse
Affiliation(s)
- Yuxin Wang
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China
| | - Tajammal Munir
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Xiaofeng Wu
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China
| | - Yuefei Huang
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Bing Li
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China.
| |
Collapse
|
2
|
Chen J, Xue J, Liu J, Samaei SHA, Robbins LJ. Near-Complete Phosphorus Recovery from Challenging Water Matrices Using Multiuse Ceramsite Made from Water Treatment Residual (WTR). WATER RESEARCH X 2024; 25:100267. [PMID: 39524567 PMCID: PMC11549993 DOI: 10.1016/j.wroa.2024.100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Water treatment residual (WTR) is a burden for many water treatment plants due to the large volumes and associated management costs. In this study, we transform aluminum-salt WTR (Al-WTR) into ceramsite (ASC) to recover phosphate from challenging waters. ASC showed remarkably higher specific surface area (SSA, 70.53 m2/g) and phosphate adsorption capacity (calculated 47.2 mg P/g) compared to previously reported ceramsite materials (< 40 m2/g SSA and < 20 mg P/g). ASC recovered over 94.9% of phosphate across a wide pH range (3 - 11) and generally sustained > 90% of its phosphate recovery at high concentrations of competing anions (i.e., Cl-, F-, SO4 2-, or HCO3 -) or humic acid (HA). We challenged the material with real municipal wastewater at 10°C and achieved simultaneous phosphate (>97.1%) and COD removal (71.2%). Once saturated with phosphate, ASC can be repurposed for landscaping or soil amendment. The economic analysis indicates that ASC can be a competitive alternative to natural clay-based ceramsite, biochar, or other useful materials. Therefore, ASC is an eco-friendly, cost-effective adsorbent for phosphate recovery from complex waters, shedding light upon a circular economy in the water sector.
Collapse
Affiliation(s)
- Jianfei Chen
- Cold-Region Water Resource Recovery Laboratory (CRWRRL), Environmental Systems Engineering, Faculty of Engineering & Applied Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Jinkai Xue
- Cold-Region Water Resource Recovery Laboratory (CRWRRL), Environmental Systems Engineering, Faculty of Engineering & Applied Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Jinyong Liu
- Department of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Seyed Hesam-Aldin Samaei
- Cold-Region Water Resource Recovery Laboratory (CRWRRL), Environmental Systems Engineering, Faculty of Engineering & Applied Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Leslie J. Robbins
- Department of Geology, University of Regina, Regina, SK S4S 0A2, Canada
| |
Collapse
|
3
|
Manawi Y, Al-Gaashani R, Simson S, Tong Y, Lawler J, Kochkodan V. Adsorptive removal of phosphate from water with biochar from acacia tree modified with iron and magnesium oxides. Sci Rep 2024; 14:17414. [PMID: 39075047 PMCID: PMC11286779 DOI: 10.1038/s41598-024-66965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 07/05/2024] [Indexed: 07/31/2024] Open
Abstract
A novel biochar (BC) from Acacia tortilis trees pruning waste was synthesized and tested for the removal of phosphate from aqueous solutions. The BC was prepared by calcination at 600 °C and doped with Fe3O4 and MgO by hydrothermal process. The presence of iron and magnesium ions in the modified BC was confirmed by EDS analysis and X-ray diffraction (XRD) methods. Both unmodified and doped BCs were tested for phosphate removal from synthetic 1-500 ppm aqueous solutions. While the unmodified BC did not show any significant removal of phosphate from aqueous solutions, the modified BC almost completely removed phosphate from water. The enhancement in removal efficiency is due to an increase in the overall surface charge and surface area of BC as a result of doping with Fe3O4 and MgO salts. The average porosity and BET surface area corresponding to the plain BC increased by more than 20% from 322 to 394 m2/g after modification by impregnation with iron oxide and magnesium oxide. The modificaiton of BC with Fe3O4 and MgO nanoparticles was observed to increase the point of zero electric charge (PZC) from pH 3.4 (corresponding to plain BC) to pH 5.3 (corresponding to modified BC). The adsorption process was very fast and a phosphate removal value of 82.5% was reached only after 30 min of adsorption, while the removal efficiency after 4 h of adsorption was 97.5%. The rapid removal efficiency in short contact time is attributed to the high surface area of BC and strong bonding between the modified BC surface and PO43- ions. The highest adsorption capacity was observed to correspond to 98.5 mg/g which was achieved at PO43- concentration of 500 ppm and pH 8.5. Moreover, after fitting the adsorption data onto four of the most widely used adsorption isotherm models, the adsorption of PO43- onto BC can be better described by the Langmuir isotherm model.
Collapse
Affiliation(s)
- Yehia Manawi
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 34110, Doha, Qatar.
| | - Rashad Al-Gaashani
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Simjo Simson
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Yongfeng Tong
- HBKU Core Labs, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Jenny Lawler
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Viktor Kochkodan
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 34110, Doha, Qatar.
| |
Collapse
|
4
|
Che N, Qu J, Wang J, Liu N, Li C, Liu Y. Adsorption of phosphate onto agricultural waste biochars with ferrite/manganese modified-ball-milled treatment and its reuse in saline soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169841. [PMID: 38215841 DOI: 10.1016/j.scitotenv.2023.169841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 01/14/2024]
Abstract
Agricultural waste biochar was widely used to absorb phosphorus (P) from eutrophicated water and soil remediation. However, the research on the reuse of the sorbed P on biochar in infertile saline soil is insufficient. Biochars derived from four kinds of agricultural wastes (cotton straws from two origins, maize stalk, and rice husk) were modified and applied to adsorb phosphate in waste water and then be reused in saline soil in this study. The co-modified method combining ball milling and metal coated treatment obtained the higher specific surface area (SSA) of ferrite/manganese modified-ball-milled biochars (Fe/Mn-BMBCs) (226.5-331.5 m2 g-1) than that of pristine biochars (14.02-30.35 m2 g-1) and ferrite/manganese modified biochar (Fe/Mn-BC) (223.7 m2 g-1), which could improve the pore structure of metal modified biochar. The phosphate adsorption capacity (qmax) of Fe/Mn-BMBCs with rich functional groups and high SSA were 44.0-53.8 mg g-1, which was 4.47-5.82 times higher than that of pristine biochars. Fe/Mn-BMBCs showed efficiently adsorption performance at low pH and high temperature. The application of BC to saline soil could promote the availability of P in saline soil. P-loaded biochars could afford P as a nutrient to promote the growth of lettuce (Lactuca sativa L.) in saline soil. The lettuce fresh weight in Fe/Mn-BMBC-P2 treated soil was 8.21 times higher than that grew in control check (CK) treatment. As a P element provider, P-loaded biochars not only improve saline soil fertility and crop productivity, but also convert the agricultural wastes and P in eutrophicated waters to the sustainable resource.
Collapse
Affiliation(s)
- Naiju Che
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Tai'an 271018, China; College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Jie Qu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Tai'an 271018, China; College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Jiaqi Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Tai'an 271018, China; College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Na Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Tai'an 271018, China; College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Chengliang Li
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Tai'an 271018, China; College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Yanli Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Tai'an 271018, China; College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
5
|
Niedzbała N, Lorenc-Grabowska E, Rutkowski P, Chęcmanowski J, Szymczycha-Madeja A, Wełna M, Michalak I. Potential use of Ulva intestinalis-derived biochar adsorbing phosphate ions in the cultivation of winter wheat Tristicum aestivum. BIORESOUR BIOPROCESS 2024; 11:27. [PMID: 38647581 PMCID: PMC10992812 DOI: 10.1186/s40643-024-00741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/04/2024] [Indexed: 04/25/2024] Open
Abstract
In this work, the properties of biochar produced from green macroalga Ulva intestinalis by pyrolysis were studied at temperatures of 300, 500, and 700 °C. This biochar was characterized in terms of multielemental composition, BET surface area, total pore volume, and biosorption properties toward phosphate ions. Biochar produced at 700 °C-25 m2/g had the highest surface area. The kinetics and isotherms of sorption processes of phosphate ions as sorbate by these sorbents were investigated. Modified biochar was able to remove 84.3% of phosphate ions from wastewater, whereas non-modified biochar-only 40.6%. Hence, biochar enriched with phosphate ions can serve as a valuable soil amendment. Pot experiments performed on winter wheat (Triticum aestivum) with a 3% addition of dry Ulva intestinalis, pristine biochar, and Mg-modified biochar enriched with phosphate ions showed that these amendments stimulated plant growth (length and fresh weight of plants) as well as enlarging the chlorophyll content in leaves. Our results indicate that the production of biochar (pristine and Mg-impregnated) is a sustainable option to valorize the biomass of seaweeds, and to recycle phosphorus from wastewater.
Collapse
Affiliation(s)
- Natalia Niedzbała
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland.
| | - Ewa Lorenc-Grabowska
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Piotr Rutkowski
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Jacek Chęcmanowski
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Anna Szymczycha-Madeja
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Maja Wełna
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
6
|
Wang J, Tan Y, Yang H, Zhan L, Sun G, Luo L. On the adsorption characteristics and mechanism of methylene blue by ball mill modified biochar. Sci Rep 2023; 13:21174. [PMID: 38040771 PMCID: PMC10692330 DOI: 10.1038/s41598-023-48373-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023] Open
Abstract
In this study, modified biochar (BRB) was prepared from rice straw by ball milling technique and used for the adsorption of methylene blue (MB) in wastewater. The BRB was characterized by SEM, FTIR and XPS, and the adsorption model and Box-Behnken design were used to optimize the five influencing factors. The results showed that the ball milling technique could increase the content of functional groups (-OH, C=C and C-O, etc.) and aromatic structures on the surface of biochar, thus facilitating the removal of MB. The isotherm model was consistent with the Langmuir adsorption model (R2 = 0.947) and the maximum adsorption capacity was 50.27 mg/g. The adsorption kinetics was consistent with the pseudo-second-order kinetic model (R2 = 1) and the adsorption rate was mainly controlled by chemisorption. The thermodynamic model confirmed that the adsorption process was a spontaneous heat absorption reaction. The maximum adsorption efficiency was 99.78% under the optimal conditions (40℃, pH 8, reaction time = 90 min, dosing amount = 0.1 mg), and the adsorption efficiency could be improved by increasing the pH and BRB dosing amount. The surface functional groups and crystal structure properties of BRB were the main determinants of adsorption, and it was clarified that physical adsorption, electrostatic attraction and π-π interaction were the main mechanisms for the adsorption of MB by BRB. The main mechanisms were clarified. Therefore, BRB is an economic, efficient and green adsorption material with good potential for the removal of dye pollutants in the aqueous environment.
Collapse
Affiliation(s)
- Jinxia Wang
- College of Resources and Safety, Chongqing Vocational Institute of Engineering, Chongqing, 402260, China.
| | - Yunfeng Tan
- College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Hongjun Yang
- College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715, China.
| | - Lingling Zhan
- College of Resources and Safety, Chongqing Vocational Institute of Engineering, Chongqing, 402260, China
| | - Guowen Sun
- College of Resources and Safety, Chongqing Vocational Institute of Engineering, Chongqing, 402260, China
| | - Le Luo
- College of Resources and Safety, Chongqing Vocational Institute of Engineering, Chongqing, 402260, China
| |
Collapse
|
7
|
Fan X, Wu Y, He Y, Liu H, Guo J, Li B, Peng H. Efficient removal of phosphorus by adsorption. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2157828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiaoyi Fan
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, P. R. China
| | - Yuting Wu
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, P. R. China
| | - Yao He
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, P. R. China
| | - Huaping Liu
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, P. R. China
| | - Jing Guo
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, P. R. China
| | - Bing Li
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, P. R. China
| | - Hao Peng
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, P. R. China
- Chongqing Jiulongyuan High-tech Industry Group Co., Ltd, Chongqing, P. R. China
| |
Collapse
|
8
|
Chen Y, Wang L, Liu X, Wang F, An Y, Zhao W, Tian J, Kong D, Zhang W, Xu Y, Ba Y, Zhou H. The Genus Broussonetia: An Updated Review of Phytochemistry, Pharmacology and Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165344. [PMID: 36014582 PMCID: PMC9414938 DOI: 10.3390/molecules27165344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 02/05/2023]
Abstract
The Broussonetia genus (Moraceae), recognized for its value in many Chinese traditional herbs, mainly includes Broussonetia papyrifera (L.) L’Hér. ex Vent. (BP), Broussonetia kazinoki Siebold (BK), and Broussonetia luzonica (Blanco) Bureau (BL). Hitherto, researchers have found 338 compounds isolated from BP, BK, and BL, which included flavonoids, polyphenols, phenylpropanoids, alkaloids, terpenoids, steroids, and others. Moreover, its active compounds and extracts have exhibited a variety of pharmacological effects such as antitumor, antioxidant, anti-inflammatory, antidiabetic, anti-obesity, antibacterial, and antiviral properties, and its use against skin wrinkles. In this review, the phytochemistry and pharmacology of Broussonetia are updated systematically, after its applications are first summarized. In addition, this review also discusses the limitations of investigations and the potential direction of Broussonetia. This review can help to further understand the phytochemistry, pharmacology, and other applications of Broussonetia, which paves the way for future research.
Collapse
|
9
|
Yin Q, Nie Y, Han Y, Wang R, Zhao Z. Properties and the Application of Sludge-Based Biochar in the Removal of Phosphate and Methylene Blue from Water: Effects of Acid Treating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1833-1844. [PMID: 35094510 DOI: 10.1021/acs.langmuir.1c02946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sludge-based biochar could be used to remove phosphate and methylene blue (MB) from water. It is a highly efficient way to treat the sludge and contaminated water synergistically. The high ash content in sludge greatly influenced the adsorption property of the resultant biochar. In this work, the influence of carbonization-activation and acid treating on the adsorption performance of the sludge-based biochar was evaluated. The composition, structure, and surface properties of biochar were improved after acid treating. The biochar was obtained in a sequence of carbonization-activation first and then acid treating, providing the optimal adsorption property. Zn550-H and Zn750-H showed excellent adsorption capacity to phosphate and MB, respectively. The adsorption process was well described by the pseudo-first-order and pseudo-second-order kinetic models. Isothermal studies implied that it was controlled by multiple processes. What is more, sludge-based biochar performed well in the adsorption of phosphate and MB from weakly acidic to alkaline conditions, which was beneficial to utilize the sludge-based biochar in water remediation practically.
Collapse
Affiliation(s)
- Qianqian Yin
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei 071003, China
- Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, Hebei 071003, China
| | - Yunpeng Nie
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei 071003, China
- Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, Hebei 071003, China
| | - Yansong Han
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei 071003, China
- Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, Hebei 071003, China
| | - Ruikun Wang
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei 071003, China
- Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, Hebei 071003, China
| | - Zhenghui Zhao
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei 071003, China
- Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, Hebei 071003, China
| |
Collapse
|
10
|
Zheng C, Zhang X, Gan L, He Z, Zhu J, Zhang W, Gao Y, Yang L. Effects of biochar on the growth of Vallisneria natans in surface flow constructed wetland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:66158-66170. [PMID: 34331223 DOI: 10.1007/s11356-021-15399-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
To improve the nitrogen and phosphorus removal efficiency of surface flow constructed wetlands (SFCWs), biochar was added to an SFCW matrix. The effects of adding different amounts of biochar on water purification, the growth of Vallisneria natans (V. natans), and microbial mechanisms were explored through SFCW simulation experiments. The results showed that through the joint action of biochar and V. natans, the concentrations of total nitrogen, total phosphorus, and ammonia nitrogen in the effluent significantly decreased. The total biomass, relative growth rate, and chlorophyll content of V. natans were significantly reduced by adding biochar (≥20%, v/v), as the root activity and the root to leaf biomass ratio slightly increased at first and then decreased. The carbon and nitrogen contents of V. natans slightly increased with the addition of biochar (≥10%, v/v), but the phosphorus content slightly decreased. Moreover, the nitrogen content of the matrices decreased significantly over time (P<0.05), and the phosphorus content in the matrix showed an increasing trend in the same period. In addition, the microbial 16S rDNA sequencing results indicated that the diversity and abundance of the microbial community in the matrix of the biochar-added SFCW tended to decrease. Nevertheless, the abundance of functional bacteria related to nitrogen and phosphorus removal (i.e., Pseudomonas and Dechloromonas) slightly increased, which would benefit denitrification and dephosphorization in the SFCW. Hence, the addition of biochar to the SFCW matrix facilitated the improvement of effluent water quality, while excessive biochar addition (≥10%, v/v) restrained the growth of V. natans but did not cause death. This conclusion provides valid data support regarding the ability of biochar-added SFCW to purify lightly contaminated water.
Collapse
Affiliation(s)
- Chaoqun Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xuanwen Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Lin Gan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Zhaofang He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Jinling Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Wen Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yan Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
11
|
Abstract
The sustainable production of food faces formidable challenges. Foremost is the availability of arable soils, which have been ravaged by the overuse of fertilizers and detrimental soil management techniques. The maintenance of soil quality and reclamation of marginal soils are urgent priorities. The use of biochar, a carbon-rich, porous material thought to improve various soil properties, is gaining interest. Biochar (BC) is produced through the thermochemical decomposition of organic matter in a process known as pyrolysis. Importantly, the source of organic material, or ‘feedstock’, used in this process and different parameters of pyrolysis determine the chemical and physical properties of biochar. The incorporation of BC impacts soil–water relations and soil health, and it has been shown to have an overall positive impact on crop yield; however, pre-existing physical, chemical, and biological soil properties influence the outcome. The effects of long-term field application of BC and how it influences the soil microcosm also need to be understood. This literature review, including a focused meta-analysis, summarizes the key outcomes of BC studies and identifies critical research areas for future investigations. This knowledge will facilitate the predictable enhancement of crop productivity and meaningful carbon sequestration.
Collapse
|
12
|
Jin Q, Xie G, Cai X, Hu X, Wang H, Qiu G, Wang W, Zhou D, Huo H, Tan X, Zhao Y. Three-dimensional microspheric g-C 3N 4 coupled by Broussonetia papyrifera biochar: facile sodium alginate immobilization and excellent photocatalytic Cr(iv) reduction. RSC Adv 2020; 10:6121-6128. [PMID: 35495994 PMCID: PMC9049492 DOI: 10.1039/c9ra09981f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/14/2020] [Indexed: 11/21/2022] Open
Abstract
Photocatalysts comprising Broussonetia papyrifera biochar and g-C3N4 loaded on sodium alginate were prepared and characterized in terms of reusability and photocatalytic Cr(vi) reduction performance. The observed photocurrent responses as well as photoluminescence and UV-visible diffuse reflectance spectra showed that the best-performing catalyst featured the benefits of efficient photogenerated charge separation, superior electron conductance/transfer, and excellent light adsorption ability, which resulted in a higher photocatalytic Cr(vi) reduction performance compared to that of pure g-C3N4 powder. The prepared composite was shown to be reusable and well separable from the reaction mixture, thus being a promising material for the practical photocatalytic removal of Cr(vi) from wastewater. The trapping experiment and XPS spectra of catalysts after reactions confirm that the decontamination of Cr(vi) lies in the photocatalytic reduction of this species into low-toxicity Cr(iii) by photoinduced electrons generated from g-C3N4, followed by the adsorption of Cr(iii) on biochar or alginate with large specific areas.
Collapse
Affiliation(s)
- Qi Jin
- Faculty of Life Science and Technology, Central South University of Forestry and Technology Changsha 410004 P.R. China +8613548945666
| | - Guangyu Xie
- College of Environmental Science and Engineering, Central South University of Forestry and Technology Changsha 410004 P.R. China +8615243694564
| | - Xiaoxi Cai
- College of Art and Design, Hunan First Normal University Changsha 410205 P.R. China
| | - Xinjiang Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology Changsha 410004 P.R. China +8615243694564
| | - Hui Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology Changsha 410004 P.R. China +8615243694564
| | - Guoqiang Qiu
- Faculty of Life Science and Technology, Central South University of Forestry and Technology Changsha 410004 P.R. China +8613548945666
| | - Weixuan Wang
- College of Geography and Environmental Science, Northwest Normal University Lanzhou 730070 P.R. China
| | - Daixi Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology Changsha 410004 P.R. China +8615243694564
| | - Huiwen Huo
- College of Environmental Science and Engineering, Central South University of Forestry and Technology Changsha 410004 P.R. China +8615243694564
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University Changsha 410082 P.R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education Changsha 410082 P.R. China
| | - Yunlin Zhao
- Faculty of Life Science and Technology, Central South University of Forestry and Technology Changsha 410004 P.R. China +8613548945666
- College of Environmental Science and Engineering, Central South University of Forestry and Technology Changsha 410004 P.R. China +8615243694564
| |
Collapse
|
13
|
Li T, Huang P, Liao T, Guo J, Yu X, Han B, Peng L, Zhu Y, Zhang Y. Magnetic polymer-supported adsorbent with two functional adsorption sites for phosphate removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:33269-33280. [PMID: 31520383 DOI: 10.1007/s11356-019-06351-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
In this paper, a new magnetic polymer-supported phosphate adsorbent MPVC-EDA-Ce was prepared by loading cerium (hydr)oxides onto ethylenediamine-functionalized polyvinyl chloride for the first time. MPVC-EDA-Ce showed excellent adsorption performances towards phosphate and easy recovery. The adsorption isotherm and kinetics of MPVC-EDA-Ce followed Langmuir monolayer model and the pseudo-second-order model, respectively. The pH results demonstrated that the MPVC-EDA-Ce could effectively remove phosphate in a wide range of pH with insignificant cerium leaching. Furthermore, analyses on adsorption mechanism and effect of competing anions demonstrated the formation of strong inner-sphere complexation between cerium (hydr)oxides and phosphate, which was a selective adsorption process, while positively charged quaternary ammonium groups adsorbed phosphate via relatively weak electrostatic attraction which was a non-selective adsorption process. The study provided a good reference to design novel phosphate adsorbents with two even more functional adsorption sites and a deep insight to investigate the adsorption mechanism towards phosphate.
Collapse
Affiliation(s)
- Ting Li
- Department of Chemistry, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Pengwei Huang
- Department of Chemistry, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Taiwan Liao
- Department of Chemistry, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Jia Guo
- Department of Ecology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Xiang Yu
- Analytical & Testing Center, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Boping Han
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Liang Peng
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Yi Zhu
- Department of Chemistry, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Yuanming Zhang
- Department of Chemistry, Jinan University, Guangzhou, 510632, People's Republic of China
| |
Collapse
|