1
|
Wei T, Li H, Wang Y, Chi M, Guo J, Jia H, Zhang C. Alleviation of cadmium toxicity and minimizing its accumulation in rice plants by methyl jasmonate: Performance and mechanisms. J Biotechnol 2025; 398:133-145. [PMID: 39724943 DOI: 10.1016/j.jbiotec.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Heavy metal pollution is a worldwide problem that threaten agricultural production and human health. Methyl jasmonate (MeJA) is a phytohormone that could enhance plant resistance against various stresses. However, the mechanism of MeJA in cadmium (Cd) uptake, distribution, and translocation in rice plants remains elusive. In this study, we found that the Cd induced-growth inhibition was ameliorated by MeJA. Upon MeJA application, Cd content in root and shoot was decreased by 10.15 % and 36.39 %, which paralleled with less Cd2 + influx of rice roots and depressed expression of the cation transporters (OsNramp1 and OsNramp5). The subcellular distribution revealed that MeJA enriched Cd distribution in cell wall, which was accompanied by increased cell wall thickness and altered cell wall polysaccharide (pectin, cellulose, hemicellulose) content, meanwhile, the Cd content in pectin, cellulose, hemicellulose was increased, the FTIR analysis implied that functional groups (especially -OH and COO-) on cell wall were involved in Cd fixation. The root to shoot translocation of Cd was hindered by exogenous MeJA, this was validated by the decreased expression of OsHMA2 in root and declined Cd level in xylem sap. Overall, our results revealed that MeJA could act as a foliar resistance control substance to reduce Cd accumulation in rice plants. The detailed molecular mechanisms of MeJA in Cd detoxification in plants still need further investigation.
Collapse
Affiliation(s)
- Ting Wei
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Hong Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yuyao Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Ming Chi
- College of Horticulture and Landscapes, Tianjin Agricultural University, Tianjin 300192, PR China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Honglei Jia
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Chao Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| |
Collapse
|
2
|
Wang N, Chen H, Tian Y. Effects of nickel, lead, and copper stress on the growth and biochemical responses of Aegilops tauschii seedlings. Sci Rep 2024; 14:24832. [PMID: 39438605 PMCID: PMC11496656 DOI: 10.1038/s41598-024-77143-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024] Open
Abstract
Heavy metal pollution causes severe abiotic stress in cereal crops around the world. This study investigated the effects of different concentrations (0, 100, 200, and 300 mg·kg-1) of nickel, lead, and copper stress on the growth and biochemical responses of Aegilops tauschii seedlings, to provide a reference for research on the mechanism of invasion and screening potential sources of wheat tolerance genes. The results showed that nickel, lead, and copper stress caused a significant decrease in the contents of chlorophyll a, chlorophyll b, and chlorophyll (a + b) in A. tauschii, thereby inhibiting photosynthesis to different degrees and hindering seedling growth, which was reflected in significant reductions in plant height and root length, with the most notable effect observed under stress by 300 mg·kg-1 lead. As the concentration of heavy metals increased, the activities of antioxidant enzymes (SOD, POD, and APX), non-enzymatic antioxidants (GSH and AsA), and the contents of osmotic regulatory substances (proline and soluble proteins) in A. tauschii significantly increased. Additionally, heavy metal stress increased H2O2 and TBARS levels. However, when the nickel, lead, and copper concentrations reached 300 mg·kg-1, no significant differences were found in H2O2 or TBARS levels compared to those in the CK group. To summarize, A. tauschii can mitigate the accumulation of ROS and membrane lipid peroxidation caused by heavy metal stress through self-regulation, thus exhibiting a certain degree of tolerance to stress caused by different concentrations of nickel, lead, and copper. Finally, the evaluation using the membership function method revealed that among the three heavy metals, A. tauschii exhibited the strongest adaptation to Cu, followed by Ni and Pb.
Collapse
Affiliation(s)
- Ning Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan, China.
| | - Hao Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Yaowu Tian
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| |
Collapse
|
3
|
Tőzsér D, Horváth R, Simon E, Magura T. Heavy metal uptake by plant parts of Populus species: a meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:69416-69430. [PMID: 37131011 DOI: 10.1007/s11356-023-27244-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/22/2023] [Indexed: 05/04/2023]
Abstract
Populus species are well documented for being potentially suitable for phytoremediation purposes regarding their accumulation characteristics. However, published results are contradictory. Based on the data gathered during an extensive literature search, we aimed to assess and revise the metal accumulation potential in the root, stem, and leaf of Populus species growing in contaminated soils, with meta-analysis. We evaluated the influences of pollution level, soil pH, and exposure time on the metal uptake patterns. We found accumulations of Cd, Cr, Cu, Pb, and Zn to be significant in each plant part, while that was only moderate for Ni, and limited for Mn. By calculating the soil pollution index (PI), we observed significantly intensive, PI-independent accumulation for Cd, Cr, Cu, Ni, Pb, and Zn. A decrease in soil pH significantly increased the uptake of Mn and significantly decreased the accumulation of Pb in the stem. Metal uptake was significantly influenced by exposure time as well; Cd concentration was significantly decreased in the stem, while concentrations of Cr in the stem and leaf, and Mn in the stem were significantly increased with time. These aforementioned findings support a well-founded metal-and-growth condition-specific application of poplars in phytoremediation processes, also triggering further in-depth assessments to enhance the efficiency of relevant poplar-based technologies.
Collapse
Affiliation(s)
- Dávid Tőzsér
- Department of Ecology, University of Debrecen, Egyetem sq. 1, Debrecen, H-4032, Hungary
- Circular Economy Analysis Center, Hungarian University of Agriculture and Life Sciences, Páter Károly str. 1, Gödöllő, H-2100, Hungary
| | - Roland Horváth
- Department of Ecology, University of Debrecen, Egyetem sq. 1, Debrecen, H-4032, Hungary.
- ELKH-DE Anthropocene Ecology Research Group, University of Debrecen, Egyetem sq. 1, Debrecen, H-4032, Hungary.
| | - Edina Simon
- Department of Ecology, University of Debrecen, Egyetem sq. 1, Debrecen, H-4032, Hungary
- ELKH-DE Anthropocene Ecology Research Group, University of Debrecen, Egyetem sq. 1, Debrecen, H-4032, Hungary
| | - Tibor Magura
- Department of Ecology, University of Debrecen, Egyetem sq. 1, Debrecen, H-4032, Hungary
- ELKH-DE Anthropocene Ecology Research Group, University of Debrecen, Egyetem sq. 1, Debrecen, H-4032, Hungary
| |
Collapse
|
4
|
Tissue Culture—A Sustainable Approach to Explore Plant Stresses. Life (Basel) 2023; 13:life13030780. [PMID: 36983935 PMCID: PMC10057563 DOI: 10.3390/life13030780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Plants are constantly faced with biotic or abiotic stress, which affects their growth and development. Yield reduction due to biotic and abiotic stresses on economically important crop species causes substantial economic loss at a global level. Breeding for stress tolerance to create elite and superior genotypes has been a common practice for many decades, and plant tissue culture can be an efficient and cost-effective method. Tissue culture is a valuable tool to develop stress tolerance, screen stress tolerance, and elucidate physiological and biochemical changes during stress. In vitro selection carried out under controlled environment conditions in confined spaces is highly effective and cheaper to maintain. This review emphasizes the relevance of plant tissue culture for screening major abiotic stresses, drought, and salinity, and the development of disease resistance. Further emphasis is given to screening metal hyperaccumulators and transgenic technological applications for stress tolerance.
Collapse
|
5
|
Differences in Physiological Metabolism and Antioxidant System of Different Ecotypes of Miscanthus floridulus under Cu Stress. Processes (Basel) 2022. [DOI: 10.3390/pr10122712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
To reveal the similarities and differences in the resistance mechanisms of different ecotypes to Cu stress, a pot experiment was used to systematically compare the physiological responses of non-mining ecotype Miscanthus floridulus (collected from Boluo County, Huizhou City) and mining ecotype Miscanthus floridulus (collected from Dabaoshan mining area) under different Cu concentrations. The results showed that chlorophyll a, chlorophyll b and total chlorophyll in the leaves of the two ecotypes of M. floridulus were negatively correlated with Cu stress concentration (p < 0.01), but the extent of decrease for the ecotypes in the mining area was lower than that for the ecotypes in the non-mining area. The values of chlorophyll a/b for both ecotypes increased with increasing Cu treatment concentration, indicating that Cu is more harmful to chlorophyll b than to chlorophyll a for M. floridulus. Cu stress can lead to the accumulation of malondialdehyde (MDA) in the leaves of M. floridulus with the amount of MDA accumulation observed being greater in the non-mining ecotype than in the mining ecotype (p < 0.05). The content of antioxidant substances (ascorbic acid and reduced glutathione) in the mining ecotype M. floridulus was significantly higher than that in the non-mining ecotype. The activity of SOD in the leaves of non-mining ecotypes was inhibited by Cu stress and the activity of POD was increased by Cu stress. However, the increase in POD in the mining ecotypes was greater than that in the non-mining ecotypes and the activities of the two enzymes in the mining ecotypes were significantly higher than those in the non-mining ecotypes at the highest concentration of Cu. Cu had different effects on PPO activity in the leaves of the two ecotypes of M. floridulus. The plant leaves of the non-mining ecotype at 400 and 800 mg·kg−1 were significantly fewer than those of the control group (p < 0.05), which were 87.1% and 65.2% of the control group, respectively. The PPO activity in the plant leaves of the mining ecotype was higher than that in the leaves of the non-mining ecotype and was significantly higher at 400 and 800 mg·kg−1 than that of the control group (p < 0.05), at 226.5% and 268.1% of the control group, respectively. These results indicate that the mining ecotype M. floridulus is more resistant to copper stress, that resistant ecotypes have been formed, and that small-molecule antioxidant substances play an important role in increasing resistance levels.
Collapse
|
6
|
Khanna K, Kohli SK, Ohri P, Bhardwaj R, Ahmad P. Agroecotoxicological Aspect of Cd in Soil–Plant System: Uptake, Translocation and Amelioration Strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30908-30934. [PMID: 0 DOI: 10.1007/s11356-021-18232-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/16/2021] [Indexed: 05/27/2023]
|
7
|
Tibbett M, Green I, Rate A, De Oliveira VH, Whitaker J. The transfer of trace metals in the soil-plant-arthropod system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146260. [PMID: 33744587 DOI: 10.1016/j.scitotenv.2021.146260] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Essential and non-essential trace metals are capable of causing toxicity to organisms above a threshold concentration. Extensive research has assessed the behaviour of trace metals in biological and ecological systems, but has typically focused on single organisms within a trophic level and not on multi-trophic transfer through terrestrial food chains. This reinforces the notion of metal toxicity as a closed system, failing to consider one trophic level as a pollution source to another; therefore, obscuring the full extent of ecosystem effects. Given the relatively few studies on trophic transfer of metals, this review has taken a compartment-based approach, where transfer of metals through trophic pathways is considered as a series of linked compartments (soil-plant-arthropod herbivore-arthropod predator). In particular, we consider the mechanisms by which trace metals are taken up by organisms, the forms and transformations that can occur within the organism and the consequences for trace metal availability to the next trophic level. The review focuses on four of the most prevalent metal cations in soil which are labile in terrestrial food chains: Cd, Cu, Zn and Ni. Current knowledge of the processes and mechanisms by which these metals are transformed and moved within and between trophic levels in the soil-plant-arthropod system are evaluated. We demonstrate that the key factors controlling the transfer of trace metals through the soil-plant-arthropod system are the form and location in which the metal occurs in the lower trophic level and the physiological mechanisms of each organism in regulating uptake, transformation, detoxification and transfer. The magnitude of transfer varies considerably depending on the trace metal concerned, as does its toxicity, and we conclude that biomagnification is not a general property of plant-arthropod and arthropod-arthropod systems. To deliver a more holistic assessment of ecosystem toxicity, integrated studies across ecosystem compartments are needed to identify critical pathways that can result in secondary toxicity across terrestrial food-chains.
Collapse
Affiliation(s)
- Mark Tibbett
- Department of Sustainable Land Management & Soil Research Centre, School of Agriculture Policy and Development, University of Reading, Whiteknights, RG6 6AR, UK.
| | - Iain Green
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset BH12 5BB, UK
| | - Andrew Rate
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Vinícius H De Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Sao Paulo 13083-970, Brazil
| | - Jeanette Whitaker
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Lancaster LA1 4AP, UK
| |
Collapse
|
8
|
Iqbal A, Mushtaq MU, Khan AHA, Nawaz I, Yousaf S, Iqbal M. Influence of Pseudomonas japonica and organic amendments on the growth and metal tolerance of Celosia argentea L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24671-24685. [PMID: 31428967 DOI: 10.1007/s11356-019-06181-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
In this study, a pot experiment was piloted in a greenhouse to evaluate the potential of Celosia argentea var. cristata L. for tolerating/accumulating heavy metals in synthetic wastewater in the presence of Pseudomonas japonica and organic amendment, i.e., moss and compost. Two-week-old seedlings were transferred to pots, and after 4 weeks, the bacterial strain was inoculated, then watered with synthetic wastewater for 5 weeks and harvested after 9 weeks. After harvesting, physiological and biochemical parameters, as well as metal contents of plants, were quantified. The results indicated highest growth and biomass production in moss- and compost-associated plants while highest metal uptake has been found in the presence of P. japonica and synthetic wastewater-irrigated plants. Synthetic wastewater-irrigated plants have shown highest Pb uptake of 2899 mg kg-1 DW, while with P. japonica in soil those plants have shown highest Cd, Cu, Ni, and Cr uptake of 962, 1479, 1042, and 956 mg kg-1 DW, respectively. The production of antioxidant enzymes, i.e., catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and glutathione-s-transferase (GST), was high in P. japonica-amended plants because of increased uptake of metals. It is concluded that moss and compost have improved growth while P. japonica improved metal accumulation and translocation to aerial parts with little involvement in plant growth.
Collapse
Affiliation(s)
- Ameena Iqbal
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Umair Mushtaq
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Aqib Hassan Ali Khan
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ismat Nawaz
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Sohail Yousaf
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Mazhar Iqbal
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
9
|
Saleh SR, Kandeel MM, Ghareeb D, Ghoneim TM, Talha NI, Alaoui-Sossé B, Aleya L, Abdel-Daim MM. Wheat biological responses to stress caused by cadmium, nickel and lead. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:136013. [PMID: 31865000 DOI: 10.1016/j.scitotenv.2019.136013] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Several stressors like different types of heavy metals are found in the soil and can affect the growth and genomic integrity of wheat grains (Triticum aestivum L.). The aim of this study was to compare the effect of exogenous Cd (30, 60, 120 mg kg-1), Ni (50, 100 and 150 mg kg-1) or Pb (100, 200 and 300 mg kg-1) on wheat agronomic characteristics through the assessment of oxidative stress indices at protein and gene expression levels, photosynthetic pigments and genetic aberrations using RAPD analysis that were studied during two winter seasons (2015/2016 and 2016/2017). The results showed that all stressors significantly decreased the vegetative growth parameters, altered the activities of antioxidants enzymes in seedlings (after 30 days) and grains (after 5 months) and differently affected their expression levels in seedlings leaves and roots. Pb treated plants showed the poorest agronomic characteristics as it exhibited the worst affected wheat height, number of tillers, fresh and dry weight, flag leaf area as well as yield. Pb treatment caused poorest plant performance, it showed the highest proline content, least protein and chlorophyll contents, thus affects the overall plants growth followed by Cd and Ni, respectively. Furthermore, high Pb and Cd doses revealed highest degree of polymorphism and lowest degree of genome stability. Altogether, heavy metals accumulated mainly in wheat straw and induced genotoxic effect which consequently altered normal plant metabolism and pigment content which resulted in a significant reduction in wheat yield and quality. Moreover, Pb induced more genotoxic and phytotoxic effects than Cd and Ni.
Collapse
Affiliation(s)
- Samar R Saleh
- Biological screening and preclinical trial laboratory, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt; Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt; Pharmaceutical and Fermentation Industries Development Centre, City for Scientific Research and Technology Applications, Alexandria, Egypt
| | - Marwa Masoud Kandeel
- Soil, Water and Environment Research Institute, Agricultural research center, Giza, Egypt
| | - Doaa Ghareeb
- Biological screening and preclinical trial laboratory, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt; Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt; Pharmaceutical and Fermentation Industries Development Centre, City for Scientific Research and Technology Applications, Alexandria, Egypt
| | - Tayssir M Ghoneim
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nasser I Talha
- Soil, Water and Environment Research Institute, Agricultural research center, Giza, Egypt
| | - Badr Alaoui-Sossé
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France.
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
10
|
Coppa E, Astolfi S, Beni C, Carnevale M, Colarossi D, Gallucci F, Santangelo E. Evaluating the potential use of Cu-contaminated soils for giant reed (Arundo donax, L.) cultivation as a biomass crop. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:8662-8672. [PMID: 31907812 DOI: 10.1007/s11356-019-07503-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Over the past decades, the important topic of environmental sustainability, impact, and security of the fossil fuel supply has stimulated interest in using lignocellulosic feedstocks as biofuel to partially cover energy demands. Among energy no-food crops, giant reed (Arundo donax, L.), a perennial rhizomatous grass has been identified as a leading candidate crop for lignocellulosic feedstock, due to its positive energy balance, and low ecological/agro-management demands. The aim of the present study was to characterize the physiological response of Arundo donax (L.) to artificial soil contamination with three different Cu levels (200, 400, and 800 ppm), and to assess the relationship between plant Cu tolerance and S assimilation rate. The present study not only confirms the ability of Arundo donax L. to cope with Cu stress and therefore to grow in marginal, degraded lands abandoned by mainstream agricultural, but also shows that plant performance might be likely ascribed to a modulation of sulfate metabolism resulting in increased thiols content.
Collapse
Affiliation(s)
- Eleonora Coppa
- Department of Agricultural and Forestry Sciences, DAFNE, University of Tuscia, via S.C. de Lellis, 01100, Viterbo, Italy
| | - Stefania Astolfi
- Department of Agricultural and Forestry Sciences, DAFNE, University of Tuscia, via S.C. de Lellis, 01100, Viterbo, Italy.
| | - Claudio Beni
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Unità di Ricerca per l'Ingegneria Agraria, Monterotondo (Roma), Via della Pascolare 16, 00015, Monterotondo, Italy
| | - Monica Carnevale
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Unità di Ricerca per l'Ingegneria Agraria, Monterotondo (Roma), Via della Pascolare 16, 00015, Monterotondo, Italy
| | - Davide Colarossi
- Department of Agricultural and Forestry Sciences, DAFNE, University of Tuscia, via S.C. de Lellis, 01100, Viterbo, Italy
| | - Francesco Gallucci
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Unità di Ricerca per l'Ingegneria Agraria, Monterotondo (Roma), Via della Pascolare 16, 00015, Monterotondo, Italy
| | - Enrico Santangelo
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Unità di Ricerca per l'Ingegneria Agraria, Monterotondo (Roma), Via della Pascolare 16, 00015, Monterotondo, Italy
| |
Collapse
|
11
|
Zakrzewska J, Lj Mitrović A, Mutavdžić D, Dučić T, Radotić K. Phosphorus homeostasis in Populus alba L. under excess phosphate conditions, assessed by 31P nuclear magnetic resonance spectroscopy and X-ray microfluorescence. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3320-3328. [PMID: 31838696 DOI: 10.1007/s11356-019-07200-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
The phosphates (Pi) are nowadays recognized as pollutants. We studied the effect of Pi (0.625-12.500 mM KH2PO4) in the culture medium on in vitro grown 2-month-old Populus alba trees. The levels of sugar phosphates and vacuolar and cytoplasmic Pi in cell compartments of roots and stems were determined using 31P NMR, while tissue-specific micro- and macroelements mapping on stem cross-sections were performed using synchrotron-based X-ray microfluorescence. Plants grown on 0.625 mM Pi (MS/2 medium) showed a survival rate of 70%. With the increase in Pi concentrations up to 6.250 mM, plant growth and survival increased, without changes in total P content per mass or in the levels of cytoplasmic and vacuolar phosphates, in both stems and roots, while the levels of Fe, Cu, Zn, Ca and Mn in stems increased. Further increase in Pi to 9.375 and 12.500 mM in the medium resulted in inhibited growth comparable with plants grown on MS/2, with the increase in total P content per mass up to 50%, in both stems and roots, but with no changes in cytoplasmic and vacuolar phosphates; 12.500 mM Pi affected even plant survival (70%) and thus might be considered as mildly toxic. 31P NMR results indicate that the high tolerance of P. alba to increased Pi could result from its ability to maintain an intracellular P homeostasis, despite P accumulation up to 50%, in both stems and roots, indicating P. alba as a promising wood species for dendroremediation.
Collapse
Affiliation(s)
- Joanna Zakrzewska
- Institute of General and Physical Chemistry, Studentski trg 12/V, Belgrade, 11158, Serbia
| | - Aleksandra Lj Mitrović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, Belgrade, 11000, Serbia
| | - Dragosav Mutavdžić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, Belgrade, 11000, Serbia
| | - Tanja Dučić
- CELLS - ALBA, Carrer de la Llum 2-26, Cerdanyola del Valles, 08290, Barcelona, Spain
| | - Ksenija Radotić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, Belgrade, 11000, Serbia.
| |
Collapse
|
12
|
Zhang Y, Ji H. Physiological responses and accumulation characteristics of turfgrasses exposed to potentially toxic elements. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 246:796-807. [PMID: 31228693 DOI: 10.1016/j.jenvman.2019.06.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/12/2019] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
The tolerance and enrichment of potentially toxic elements (PTEs) in plants are the most important basis of phytoremediation technology for mining area soils. The aim of this research was to study PTEs tolerance, translocation and accumulation differences in three turfgrass species and the biochemical changes of plants and soils. Three turfgrass species were cultured on soils contaminated by single and compound PTEs. Pb, Zn, Cd and As concentrations and biochemical indicators in plant (root and shoot) and soil were determined. Moreover, the microbial communities in rhizosphere soil were analyzed. The studied plants showed strong tolerance and high enrichment ability to Pb, Zn, Cd and As in soil under different PTE concentration gradient stress. Festuca arundinacea had the strongest tolerance to PTEs, whereas Medicago sativa L. had the best tolerance to PTEs. Among all the measured growth or biochemical indicators, the relative growth rate and enzymatic activity of Orychophragmus violaceus were most sensitive to stress. The bioconcentration and translocation factors of Medicago sativa L. for Cd were 1.60 and 1.17, respectively, indicating that it was the most suitable plant for extracting Cd. Compared with other plants, Festuca arundinacea had the most significant effect on soil environment improvement, increasing the soil enzyme activities and microbial community after phytoremediation. This study indicates that Medicago sativa L. can be a potential phytoextraction plant to remove Cd, whereas Festuca arundinacea is more suitable as a cover plant to prevent the dispersion of contaminants in polluted soil.
Collapse
Affiliation(s)
- Yan Zhang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollution, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongbing Ji
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollution, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Municipal Key Laboratory of Resource Environment and GIS, College of Resource Environment and Tourism, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
13
|
Effect of Different Copper Levels on Growth and Morpho-Physiological Parameters in Giant Reed (Arundo donax L.) in Semi-Hydroponic Mesocosm Experiment. WATER 2019. [DOI: 10.3390/w11091837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In Mediterranean countries, the use of copper-based fungicides in agriculture is causing a concerning accumulation of copper in the upper layer (0–20 cm) of soils and water bodies. Phytoremediation by energy crops offers the chance to associate the recovering of polluted environments with the production of biomass for bioenergy purposes. The purpose of this work was to evaluate the morpho-physiological response of giant reed (Arundo donax L.), a well-known energy crop, when treated with increasing concentrations of Cu (0, 150, and 300 ppm) in a semi-hydroponic growing system (mesocosm) for one month. The plant morphology (height and base diameter of the stem, number of stems) was not affected by the treatments. The presence of Cu led to the disequilibrium of Fe and Zn foliar concentration and caused an impairment of photosynthetic parameters: at 150 and 300 ppm the chlorophyll content and the ETR were significantly lower than the control. The study demonstrated that, although the presence of Cu may initially affect the plant physiology, the Arundo plants can tolerate up to 300 ppm of Cu without any adverse effect on biomass production, even when grown in semi-hydroponic conditions.
Collapse
|
14
|
Wan H, Du J, He J, Lyu D, Li H. Copper accumulation, subcellular partitioning and physiological and molecular responses in relation to different copper tolerance in apple rootstocks. TREE PHYSIOLOGY 2019; 39:1215-1234. [PMID: 30977826 DOI: 10.1093/treephys/tpz042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/01/2019] [Indexed: 05/15/2023]
Abstract
To unravel the physiological and molecular regulation mechanisms underlying the variation in copper (Cu)accumulation, translocation and tolerance among five apple rootstocks, seedlings were exposed to either basal or excess Cu. Excess Cu suppressed plant biomass and root architecture, which was less pronounced in Malus prunifolia Borkh., indicating its relatively higher Cu tolerance. Among the five apple rootstocks, M. prunifolia exhibited the highest Cu concentration and bio-concentration factor in roots but the lowest translocation factor, indicating its greater ability to immobilize Cu and restrict translocation to the aerial parts. Higher Cu concentration in cell wall fraction but lower Cu proportion in membrane-containing and organelle-rich fractions were found in M. prunifolia. Compared with the other four apple rootstocks under excess Cu conditions, M. prunifolia had a lower increment of hydrogen peroxide in roots and leaves and malondialdehyde in roots, but higher concentrations of carbohydrates and enhanced antioxidants. Transcript levels of genes involved in Cu uptake, transport and detoxification revealed species-specific differences that are probably related to alterations in Cu tolerance. M. prunifolia had relatively higher gene transcript levels including copper transporters 2 (COPT2), COPT6 and zinc/iron-regulated transporter-related protein 2 (ZIP2), which probably took part in Cu uptake, and C-type ATP-binding cassette transporter 2 (ABCC2), copper chaperone for Cu/Zn superoxide dismutase (CCS), Cu/Zn superoxide dismutase 1 (CSD1) and metallothionein 2 (MT2) probably implicated in Cu detoxification, and relatively lower mRNA levels of yellow stripe-like transporter 3 (YSL3) and heavy metal ATPase 5 (HMA5) involved in transport of Cu to aerial parts. These results suggest that M. prunifolia is more tolerant to excess Cu than the other four apple rootstocks under the current experimental conditions, which is probably attributed to more Cu retention in roots, subcellular partitioning, well-coordinated antioxidant defense mechanisms and transcriptional expression of genes involved in Cu uptake, translocation and detoxification.
Collapse
Affiliation(s)
- Huixue Wan
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, People's Republic of China
| | - Jiayi Du
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, People's Republic of China
| | - Jiali He
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, People's Republic of China
| | - Deguo Lyu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, People's Republic of China
| | - Huifeng Li
- Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai'an, People's Republic of China
| |
Collapse
|
15
|
The Effects of Different Lead Pollution Levels on Soil Microbial Quantities and Metabolic Function with/without Salix integra Thunb. Planting. FORESTS 2019. [DOI: 10.3390/f10020077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background and Objectives: Salix integra Thunb., a fast-growing woody species, has been used in phytoremediation in recent years. It has the potential to accumulate high amounts of lead (Pb) in its growth, however, its effects on soil microbial community structure and function during its phytoextraction processes are not well understood, especially at different pollution levels. Materials and Methods: In our study, we set unplanted and planted Salix integra in areas with four levels of Pb treatments (0, 500, 1000, and 1500 mg/kg). After six months of planting, the rhizospheric soil, bulk soil, and unplanted soil were collected. Soil properties and microbes participating in nitrogen and phosphorus cycling were measured, following standard methods. Microbial metabolic functions were assessed using a Biolog-ECO microplate. Results: The bacteria (nitrogen-fixing bacteria, ammonifying bacteria, inorganic phosphorus-solubilizing bacteria, and nitrosobacteria) all increased in the 500 mg/kg treatment and decreased in the 1500 mg/kg treatment compared with the 0 mg/kg treatment, especially in rhizospheric soil. The microbial metabolisms decreased along with the increase of Pb levels, with the exception of the rhizospheric soil with a 500 mg/kg treatment. The metabolic patterns were relative to the pollution levels. The utilization of carbohydrates was decreased, and of amino acids or fatty acids was increased, in the 500 mg/kg treatment, while the opposite occurred in the 1500 mg/kg treatment. The values of soil properties, microbial quantities, and metabolic activities were higher in rhizospheric than bulk soil, while the differences between bulk and unplanted soil were different among the different Pb treatments. The soil properties had little effect on the microbial quantities and metabolic activities. Conclusions: S. integra planting and Pb levels had an interactive effect on the microbial community. In general, S. integra planting promoted microbial quantities and metabolic activity in rhizospheric soil. Lower Pb pollution increased microbial quantities and promoted the utilization of amino acids or fatty acids, while higher Pb concentrations decreased microbial quantities and metabolic activities, and promoted the utilization of carbohydrates.
Collapse
|