1
|
Khamkure S, Gamero-Melo P, Reyes-Rosas A, Zermeño-González A, Álvarez-Cruz JL, Albiter Escobar E, Moeller-Chávez GE, Bustos-Terrones V. Engineered Magnetic-Functionalized Carbon Xerogels for Sustainable Arsenic Removal: Bridging Adsorption Efficiency with Regenerability. Gels 2025; 11:323. [PMID: 40422343 DOI: 10.3390/gels11050323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/21/2025] [Accepted: 04/24/2025] [Indexed: 05/28/2025] Open
Abstract
This study developed iron-oxide-functionalized carbon xerogels for enhanced arsenic adsorption to mitigate global water contamination. The composites were synthesized by integrating magnetite nanoparticles (15-20 nm) into a resorcinol-formaldehyde matrix via sol-gel polycondensation, followed by controlled pyrolysis. Key parameters-magnetite/resorcinol ratios (0.03-0.07), carbonization conditions (temperature, heating rate, duration), and H2O2-induced surface modification-were optimized to maximize adsorption performance. Characterization (SEM/EDX, XRD, FTIR, BET, TEM) confirmed uniform magnetite dispersion (~5 wt%) and revealed that pyrolysis at 850 °C enhanced porosity (378.8 m2/g surface area) and refined surface chemistry. Adsorption kinetics followed Elovich (R2 = 0.9396) and Power Function (R2 = 0.9443) models, indicating chemisorption dominance. Response Surface Methodology optimized desorption parameters using a Central Composite Design with three factors and two center points with repetition. A kinetic study of As(V) desorption from carbon xerogels was conducted, yielding optimal conditions: 1.0 M KOH, 160 rpm agitation, and 90 min contact time. The adsorbent retained >88% regeneration efficiency over four cycles, demonstrating robust reusability. Synergistic effects of magnetite incorporation, tailored pyrolysis, and H2O2 modification significantly improved arsenic selectivity and capacity in complex matrices, while enabling magnetic recovery.
Collapse
Affiliation(s)
- Sasirot Khamkure
- Departmento de Irrigación y Drenaje, Secihti- Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico
| | - Prócoro Gamero-Melo
- Sustainability of Natural Resources and Energy, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Saltillo, Ramos Arizpe 25900, Mexico
| | - Audberto Reyes-Rosas
- Departmento de Biosciencia y Agrotecnología, Centro de Investigación en Química Aplicada, Saltillo 25294, Mexico
| | - Alejandro Zermeño-González
- Departmento de Irrigación y Drenaje, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro, Saltillo 25315, Mexico
| | - José Luis Álvarez-Cruz
- Laboratorio de Catálisis y Materiales, Escuela Superior de Ingeniería Química e Industrias Extractivas -Instituto Politécnico Nacional, Zacatenco, Mexico City 07738, Mexico
| | - Elim Albiter Escobar
- Laboratorio de Catálisis y Materiales, Escuela Superior de Ingeniería Química e Industrias Extractivas -Instituto Politécnico Nacional, Zacatenco, Mexico City 07738, Mexico
| | - Gabriela Eleonora Moeller-Chávez
- Laboratorio de Investigación en Ingeniería Ambiental y Sustentabilidad, Universidad Politécnica del Estado de Morelos, Jiutepec 62574, Mexico
| | - Victoria Bustos-Terrones
- Laboratorio de Investigación en Ingeniería Ambiental y Sustentabilidad, Universidad Politécnica del Estado de Morelos, Jiutepec 62574, Mexico
| |
Collapse
|
2
|
Shastri A, Gore PM, Kandasubramanian B. Engineering superhydrophobicity: a survey of coating techniques for silicone-based oil-water separation membranes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41854-41872. [PMID: 38869805 DOI: 10.1007/s11356-024-33686-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/11/2024] [Indexed: 06/14/2024]
Abstract
Oil spills in the ocean and the release of contaminated wastewater from industries cause significant harm to the ecosystem and water sources. To tackle this environmental problem, oil-water mixture separation has been the subject of extensive research over the past few decades. Improving oil absorbents is crucial in removing organic contaminants from wastewater produced by industrial activities. To this end, there is an increasing need for materials that can efficiently and flexibly recover oils from contaminated ocean waters, industrial wastewater, and other sources. Silicones are often used for this purpose because of their exceptional mechanical and thermal durability, as well as their low toxicity. The materials produced from silicones, such as foam, sponge, or substrate, exhibit excellent oil-absorbing properties (maximum oil absorption range, 23.2-77 g/g) and outstanding compression cycles. This article review highlights the advancements in the manufacturing of silicone-based products that have been extensively researched for oil-water separation. Understanding the interdependencies that determine the structure, performance, and manufacturing strategy is essential to producing selective oil absorbents with more commercial potential in the future. Recycling of silicones has also become increasingly important as a goal for the circular economy.
Collapse
Affiliation(s)
- Abhilasha Shastri
- Department of Chemical Engineering, Institute of Chemical Technology (ICT), Mumbai, Marathwada Campus, Jalna, 431203, Maharashtra, India
| | - Prakash M Gore
- Walchandnagar Industries Ltd., Walchandnagar, Pune, 413114, Maharashtra, India
| | - Balasubramanian Kandasubramanian
- Department of Metallurgical and Material Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, 411025, Maharashtra, India.
| |
Collapse
|
3
|
Kumar A, Nighojkar A, Varma P, Prakash NJ, Kandasubramanian B, Zimmermann K, Dixit F. Algal mediated intervention for the retrieval of emerging pollutants from aqueous media. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131568. [PMID: 37187121 DOI: 10.1016/j.jhazmat.2023.131568] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
Water is a crucial elemental contributor for all sectors; however, the agricultural sector alone accounts for 70% of the world's total water withdrawal. The anthropogenic activity from various industries including agriculture, textiles, plastics, leather, and defence has resulted in the release of contaminants into water systems, resulting harm to the ecosystem and biotic community. Algae-based organic pollutant removal uses several methods, such as biosorption, bioaccumulation, biotransformation, and biodegradation. The adsorption of methylene blue by algal species Chlamydomonas sp. showed a maximum adsorption capacity of 2744.5 mg/g with 96.13% removal efficiency; on the other hand, Isochrysis galbana demonstrated a maximum of 707 µg/g nonylphenol accumulation in the cell with 77% removal efficiency indicating the potential of algal systems as efficient retrieval system for organic contaminants. This paper is a compilation of detailed information about biosorption, bioaccumulation, biotransformation, biodegradation, and their mechanism, along with the genetic alteration of algal biomass. Where the genetic engineering and mutations on algae can be advantageously utilized for the enhancement of removal efficiency without any secondary toxicity.
Collapse
Affiliation(s)
- Alok Kumar
- Sustainable and Green Technology Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
| | - Amrita Nighojkar
- Sustainable and Green Technology Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
| | - Payal Varma
- Microbiology Department, Sinhgad College of Science, Pune 411041, Maharashtra, India
| | - Niranjana Jaya Prakash
- Sustainable and Green Technology Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India
| | - Balasubramanian Kandasubramanian
- Sustainable and Green Technology Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, Maharashtra, India.
| | - Karl Zimmermann
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | - Fuhar Dixit
- Department of Civil and Environmental Engineering, University of California, Berkeley, USA
| |
Collapse
|
4
|
Chu KH, Bashiri H, Hashim MA, Abd Shukor MY, Bollinger JC. The Halsey isotherm for water contaminant adsorption is fake. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Polyacrylonitrile support impregnated with amine-functionalized graphitic carbon nitride/magnetite composite nanofibers towards enhanced arsenic remediation: A mechanistic approach. J Colloid Interface Sci 2023; 640:890-907. [PMID: 36907149 DOI: 10.1016/j.jcis.2023.02.104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
Recently, novel composite materials are rapidly being explored for water treatment applications. However, their physicochemical behavior and mechanistic investigations are still a mystery. Therefore, our key prospect is to develop a highly stable mixed-matrix adsorbent system using polyacrylonitrile (PAN) support impregnated with amine-functionalized graphitic carbon nitride/magnetite (gCN-NH2/Fe3O4) composite nanofibers (PAN/gCN-NH2/Fe3O4: PCNFe) by simple electrospinning techniques. Various instrumental techniques were used to explore the structural, physicochemical, and mechanical behavior of the synthesized nanofiber. The developed PCNFe with a specific surface area of 39.0 m2/g was found to be non-aggregated and to have outstanding water dispersibility, abundant surface functionality, greater hydrophilicity, superior magnetic property, and higher thermal & mechanical characteristics making it favorable for rapid As removal. Based on the experimental findings from the batch study, 97.0 and 99.0 % of arsenite (As(III)) and arsenate (As(V)), respectively, could be adsorbed by utilizing0.02 g of adsorbent dosage within 60 min of contact time at pH 7 and 4, with an initial concentration of 10 mg/L. Adsorption of As(III) and As(V) followed the pseudo-second-order kinetic and Langmuir isotherm models with an sorption capacities of 32.26 and 33.22 mg/g, respectively, at ambient temperature. The adsorption was endothermic and spontaneous, in accordance with the thermodynamic study. Furthermore, the addition of co-anions in a competitive environment did not affect As adsorption except for PO43-. Moreover, PCNFe preserves its adsorption efficiency above 80 % after five regeneration cycles. The combined results of FTIR and XPS after adsorption further support the adsorption mechanism. Also, the composite nanostructures retain their morphological and structural integrity after the adsorption process. The facile synthesis protocol, high As adsorption capacity, and enhanced mechanical integrity of PCNFe foreshadow its huge prospects for real wastewater treatment.
Collapse
|
6
|
Polyamide (PA)- and Polyimide (PI)-based membranes for desalination application. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04559-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Nighojkar A, Sangal VK, Dixit F, Kandasubramanian B. Sustainable conversion of saturated adsorbents (SAs) from wastewater into value-added products: future prospects and challenges with toxic per- and poly-fluoroalkyl substances (PFAS). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78207-78227. [PMID: 36184702 DOI: 10.1007/s11356-022-23166-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Following circular economy principles, the reuse or recycling of saturated adsorbents (SAs or adsorbate-laden adsorbents) into a low-cost engineered product is a valuable alternative to eliminate secondary pollution after adsorption. This review evaluates the application of SAs for the generation of products that can serve as (i) antimicrobial agents or disinfectants, (ii) materials for civil construction, (iii) catalysts, (iv) fertilizers, and (v) secondary adsorbents. The importance of SAs configuration in terms of functional groups, surface area and pore morphology played a crucial role in their reutilization. The SAs-laden silver ions (Ag+) strongly inhibit (~ 99%) the growth of Escherichia coli and Staphylococcus aureus microbes found in drinking and wastewaters. The intra-solidification of SAs containing toxic metal pollutants (As3+ and F-) with cementitious materials can effectively reduce their leaching below permissible limits of USEPA standards for their utility as additives in construction work. The existence of transition metal ions (Cu2+, Cr3+/6+, Ni2+) on the surface of SAs boosted activity and selectivity towards the desired product during catalytic oxidation, degradation, and conversion processes. The thermally recycled SAs can assist in the secondary adsorption of pollutants from another waste solution due to a larger surface area (> 1000 m2g-1). However, there are chances that the SAs discussed above will contain traces of PFAS. The article summarizes the challenges, performance efficacy, and future prospects at the end of each value-added product. We also highlight critical challenges for managing PFAS-laden SAs and stimulate new perspectives to minimize PFAS in air, water, and soils.
Collapse
Affiliation(s)
- Amrita Nighojkar
- Nano Surface Texturing Lab, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (D.U.), Pune, India
| | - Vikas Kumar Sangal
- Department of Chemical Engineering, Malaviya National Institute of Technology (MNIT), Jaipur, India
| | - Fuhar Dixit
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | - Balasubramanian Kandasubramanian
- Nano Surface Texturing Lab, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (D.U.), Pune, India.
| |
Collapse
|
8
|
A mini-review on the recent advancement of electrospun MOF-derived nanofibers for energy storage. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
9
|
Chaudhary K, Kandasubramanian B. Self-Healing Nanofibers for Engineering Applications. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kritika Chaudhary
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Deemed University (DU), Pune, 411025, India
| | - Balasubramanian Kandasubramanian
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Deemed University (DU), Pune, 411025, India
| |
Collapse
|
10
|
Gore PM, Naebe M, Wang X, Kandasubramanian B. Nano-fluoro dispersion functionalized superhydrophobic degummed & waste silk fabric for sustained recovery of petroleum oils & organic solvents from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127822. [PMID: 34823952 DOI: 10.1016/j.jhazmat.2021.127822] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Superwettable and chemically stable waste silk fabric and degummed silk were used in this study for treatment of oily wastewater and oil/solvent recovery. Silk functionalized with a nano-fluoro dispersion showed a superhydrophobic and oleophilic nature. The functionalized silk demonstrated superoleophilicity towards petroleum oils and organic solvents, and exhibited filtration efficiencies of more than 95%, and up to 70% till 25 re-usable cycles. Furthermore, the functionalized silk materials demonstrated high permeation flux of 584 L.m-2.h-1 (for Diesel) for continuous oil-water separation operation. The pH based study in highly acidic and alkaline mediums (pH from 1 to 13) showed excellent stability of nano-fluoro coated silk. Thermogravimetric analysis showed thermal stability up to 250 °C, and 400 °C, for functionalized waste silk, and degummed silk, respectively. FE-SEM analysis revealed randomly oriented spindle shaped nano particles anchored on the silk surface exhibiting hierarchical patterns, as required for the superhydrophobic Cassie-Baxter state. The rate absorption study showed close curve fitting for pseudo second order kinetics (R2 = 0.999), which indicated physical absorption process. BET analysis confirmed the porous nature, while the elemental XPS and EDX analysis confirmed strong bonding and uniform coating of fluoro nanoparticles on silk surface. The results demonstrated that nano-fluoro dispersion functionalized silk can be successfully employed for effective oil/solvent-water filtration, oil/solvent-spill cleanups, and treatment of oily wastewater for protection of water resources.
Collapse
Affiliation(s)
- Prakash M Gore
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong 3220, Victoria, Australia; Nano Surface Texturing Lab, Department of Metallurgical & Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, India
| | - Minoo Naebe
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong 3220, Victoria, Australia
| | - Xungai Wang
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong 3220, Victoria, Australia
| | - Balasubramanian Kandasubramanian
- Nano Surface Texturing Lab, Department of Metallurgical & Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, India.
| |
Collapse
|
11
|
Ajith MP, Aswathi M, Priyadarshini E, Rajamani P. Recent innovations of nanotechnology in water treatment: A comprehensive review. BIORESOURCE TECHNOLOGY 2021; 342:126000. [PMID: 34587582 DOI: 10.1016/j.biortech.2021.126000] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Environmental pollution from organic and inorganic pollutants poses a threat to the ecosystem. Pollutant's prevalence and persistence have increased significantly in recent years. In order to enhance the quality of naturally accessible water to a level suitable for human consumption, a number of techniques have been employed. In this context, the use of cutting-edge nanotechnology to classical process engineering paves the way for technical encroachments in advanced water and wastewater technology. Nanotechnology has the potential to ameliorate the quality, availability, and viability of water supplies in the long run by facilitating reuse, recycling and remediation of water. The promising role of nanotechnology in wastewater remediation is highlighted in this paper, which also covers current advancements in nanotechnology-mediated remediation systems. Moreover, nano-based materials such as nano-adsorbents, photocatalysts, nano-metals and nanomembranes are discussed in this review of recent breakthroughs in nanotechnologies for water contaminant remediation.
Collapse
Affiliation(s)
- M P Ajith
- School of Environmental Science, Jawaharlal Nehru University, New Delhi 110067, India
| | - M Aswathi
- Department of Biomedical Engineering, Indian Institute of Technology -Hyderabad, Hyderabad 502285, India
| | - Eepsita Priyadarshini
- School of Environmental Science, Jawaharlal Nehru University, New Delhi 110067, India
| | - Paulraj Rajamani
- School of Environmental Science, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
12
|
Issac MN, Kandasubramanian B. Effect of microplastics in water and aquatic systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19544-19562. [PMID: 33655475 PMCID: PMC7924819 DOI: 10.1007/s11356-021-13184-2] [Citation(s) in RCA: 245] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 02/22/2021] [Indexed: 05/21/2023]
Abstract
Surging dismissal of plastics into water resources results in the splintered debris generating microscopic particles called microplastics. The reduced size of microplastic makes it easier for intake by aquatic organisms resulting in amassing of noxious wastes, thereby disturbing their physiological functions. Microplastics are abundantly available and exhibit high propensity for interrelating with the ecosystem thereby disrupting the biogenic flora and fauna. About 71% of the earth surface is occupied by oceans, which holds 97% of the earth's water. The remaining 3% is present as water in ponds, streams, glaciers, ice caps, and as water vapor in the atmosphere. Microplastics can accumulate harmful pollutants from the surroundings thereby acting as transport vectors; and simultaneously can leach out chemicals (additives). Plastics in marine undergo splintering and shriveling to form micro/nanoparticles owing to the mechanical and photochemical processes accelerated by waves and sunlight, respectively. Microplastics differ in color and density, considering the type of polymers, and are generally classified according to their origins, i.e., primary and secondary. About 54.5% of microplastics floating in the ocean are polyethylene, and 16.5% are polypropylene, and the rest includes polyvinyl chloride, polystyrene, polyester, and polyamides. Polyethylene and polypropylene due to its lower density in comparison with marine water floats and affect the oceanic surfaces while materials having higher density sink affecting seafloor. The effects of plastic debris in the water and aquatic systems from various literature and on how COVID-19 has become a reason for microplastic pollution are reviewed in this paper.
Collapse
Affiliation(s)
- Merlin N Issac
- CIPET: Institute of Plastics Technology (IPT), HIL Colony, Edayar Road, Pathalam, Eloor, Udyogamandal P.O., Kochi, Kerala, 683501, India
| | - Balasubramanian Kandasubramanian
- Nano-Surface Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, Maharashtra, 411025, India.
| |
Collapse
|
13
|
Udayakumar KV, Gore PM, Kandasubramanian B. Foamed materials for oil-water separation. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2020.100076] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
14
|
Synthesis and Characterization of Magnetic Xerogel Monolith as an Adsorbent for As(V) Removal from Groundwater. Processes (Basel) 2021. [DOI: 10.3390/pr9020386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Arsenic contamination of groundwater is still a global problem due to the toxicity at low dose on human health confirmed by epidemiological studies. Magnetic xerogel monoliths (MXs) were synthesized by the sol-gel polymerization using resorcinol, formaldehyde, alkaline catalyst and magnetite. The varying molar ratios of magnetite and resorcinol (M/R) in the gel were evaluated for As(V) removal from groundwater. The surface chemistry, structure and morphology of MXs related to arsenic adsorption were characterized by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and point of zero charge. Batch adsorption experiments were carried out to investigate the effects of Fe contents, initial pH and adsorbent dose on As(V) removal performance. The MXs with molar ratio of M/R at 0.15 gave the maximum As(V) adsorption capacity and removal with values of 62.8 µg/g and 86.7%, respectively. The adsorption data were well described by the Elovich equation of the kinetic model and the Freundlich isotherm. The thermodynamic studies demonstrated that the adsorption process was endothermic and spontaneous in nature. MXs showed to be a good alternative for As(V) removal from groundwater and achieving the efficient desorption, and thus fulfilled the Mexican standard for drinking water.
Collapse
|
15
|
Gore PM, Gawali P, Naebe M, Wang X, Kandasubramanian B. Polycarbonate and activated charcoal-engineered electrospun nanofibers for selective recovery of oil/solvent from oily wastewater. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03609-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
16
|
Issac MN, Kandasubramanian B. Review of manufacturing three-dimensional-printed membranes for water treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:36091-36108. [PMID: 32627102 DOI: 10.1007/s11356-020-09452-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
With the exacerbation of industrialization, water treatment has become a necessary step for the eradication of dyes, heavy metals, oils, pharmaceuticals, and illicit drugs. These pollutants pose an impending threat to the health of humans by causing chronic or acute poisoning. Albeit they are noxious, the presence of some metals in lower concentrations is indispensable for human health. 3D printing (additive manufacturing) (3DP) can contrive nearly any complicated geometric form in a wide array of objects among various scales by a layer-wise method of manufacturing, which is more indubitably designed than any other conventional method. 3DP could remodel the existing patterns of membrane housing and possibly trim down the power demand and chemical use in saltwater desalinating and wastewater purification plants. Membranes that are 3D printed with correctly arranged apertures and shapes enhance material transport and flow athwart the surface of the membrane and at once lessen membrane soiling. This kind of technology forges membranes of polymers, biopolymers, alloys, metals, and ceramics via computer-aided design (CAD). A polylactic acid porous super-hydrophobic membrane with pore size in the range 40-600 μm showed 99.4% oil-water separating power and 60 kL h-1 m-2 flux when the pore size was tuned to 250 μm via CAD-aided 3D printing technology. This review focuses on the ability of 3D-printed membranes for the efficient removal of toxic pollutants from wastewater. Graphical abstract 3D-printed membranes for water treatment.
Collapse
Affiliation(s)
- Merlin N Issac
- CIPET: Institute of Plastics Technology (IPT), HIL Colony, Edayar Road, Pathalam, Eloor, Udyogamandal P.O, Kochi, Kerala, 683501, India
| | - Balasubramanian Kandasubramanian
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Girinagar, Pune, Maharashtra, 411025, India.
| |
Collapse
|
17
|
|
18
|
Electrospun nanofiber-based cancer sensors: A review. Int J Pharm 2020; 583:119364. [DOI: 10.1016/j.ijpharm.2020.119364] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/27/2022]
|
19
|
|
20
|
Gore PM, Naebe M, Wang X, Kandasubramanian B. Silk fibres exhibiting biodegradability & superhydrophobicity for recovery of petroleum oils from oily wastewater. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121823. [PMID: 31859169 DOI: 10.1016/j.jhazmat.2019.121823] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/21/2019] [Accepted: 12/03/2019] [Indexed: 05/06/2023]
Abstract
Present study reports superhydrophobic-oleophilic, environment-friendly, & biodegradable silk material derived from Bombyx mori silkworm, for practical oil-water separation and oil recovery applications. In this study, raw silk fibers were degummed using water and Na2CO3 (at 100 °C), for removal of outer gummy sericin protein layer, which was confirmed using FTIR & FE-SEM analysis. The water & Na2CO3 degummed silk fibers showed superhydrophobicity with water contact angles (WCA) of 153° & 158°, respectively, demonstrating Wenzel & Cassi-Baxter states. Degummed silk fibers showed superoleophilicity (OCA∼0°) towards petroleum oils like Petrol, Diesel, & Engine oil. The water & Na2CO3 degummed silk fibers showed oil-water separation efficiencies of 95 % & 87.5 %, respectively. Both degummed silk fibers showed more than 50 % efficiency till 10 separation cycles. Further, raw & degummed silk fibers showed an environmental biocompatibility, by their biodegradation under in-house developed biotic de-compost culture consisting of biodegrading micro-organisms. Their analysis showed that biotic de-compost culture rendered biodegradation weight loss of 11 % and 18 %, respectively, in 35 days. Successive results showed that, degummed silk fibers can be effectively utilized for practical oil-water separation, and further, they can be environmentally biodegraded, thereby mitigating their waste generation and disposal problem.
Collapse
Affiliation(s)
- Prakash M Gore
- Institute for Frontier Materials, Deakin University, Warun Ponds Campus, Geelong 3220, Victoria, Australia; Nano Surface Texturing Lab, Department of Metallurgical & Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, India
| | - Minoo Naebe
- Institute for Frontier Materials, Deakin University, Warun Ponds Campus, Geelong 3220, Victoria, Australia
| | - Xungai Wang
- Institute for Frontier Materials, Deakin University, Warun Ponds Campus, Geelong 3220, Victoria, Australia
| | - Balasubramanian Kandasubramanian
- Nano Surface Texturing Lab, Department of Metallurgical & Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune 411025, India.
| |
Collapse
|
21
|
Rastogi S, Kandasubramanian B. Progressive trends in heavy metal ions and dyes adsorption using silk fibroin composites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:210-237. [PMID: 31836992 DOI: 10.1007/s11356-019-07280-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Thriving industrialization for human lifestyle headway has seeded the roots of water intoxication with harmful and hazardous toxic metal ions and dyes, which may ingress into food chains and become homicidal or mutation causing for creatures. The degummed functionalized silk fibroin composites with different biomaterials and synthetic materials are able to show adsorption efficiencies equivalent to 52.5%, 90%, 81.1%, 93.75%, 84.2%, and 98.9% for chromium, copper, cadmium, lead, thorium, and uranium ions, respectively, and adsorption capacity of 88.5 mg/g, 74.63 mg/g, 76.34 mg/g, and 72 mg/L for acid yellow 11, naphthol orange, direct orange S, and methylene blue, respectively, which make them desirable solution for water toxicants removal. This review is intended to describe the ability of silk fibroins to adsorb and abolish toxic heavy metal ions and dyes from water reservoirs, thus, providing a way to step toward water sanitation and wholesome living. Graphical abstract.
Collapse
Affiliation(s)
- Shivani Rastogi
- Nanomaterials Characterization Lab, Center for Converging Technologies, University of Rajasthan, JLN Marg, Jaipur, Rajasthan, 302017, India
| | - Balasubramanian Kandasubramanian
- Nano Surface Texturing Lab, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Girinagar, Pune, 411025, India.
| |
Collapse
|
22
|
|
23
|
Poly(1,6-heptadiyne)/ABS functionalized microfibers for hydrophobic applications. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1981-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Thakur K, Rajhans A, Kandasubramanian B. Starch/PVA hydrogels for oil/water separation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:32013-32028. [PMID: 31493081 DOI: 10.1007/s11356-019-06327-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/26/2019] [Indexed: 05/06/2023]
Abstract
PVA polymers have been well-known as water-absorbing materials but their brittle nature hinders their applicability. In this study, we enhanced the strength of hydrogel and its water-absorbing capabilities by glutaraldehyde-assisted crosslinking of starch with PVA and blending BMIM-BF4 to enhance the plasticity and generate porosity within the hydrogel multiplying the swelling capacity up to 300% and understand the kinetics and mechanism of water absorption based on the structure of the hydrogel. The ability of starch/PVA hydrogel to selectively adsorb water from oil-water emulsions was determined by establishing the underwater oleophobic nature (oil contact angle ~ 153.6°), subjecting the hydrogel to oil-water emulsion to determine the water absorbed. The hydrogels' biodegradable nature was tested by an efficient in-house biotic system and mechanisms for biodegradation have been discussed. The biodegradability (~ 90%) was determined for 50% starch in PVA sample in 28 days. These properties observed in the hydrogels will find applications in irrigating arid and semi-arid areas and also in developing superabsorbent hydrogels for hygiene-related product development etc. which can be biodegraded in an economic way. Graphical abstract.
Collapse
Affiliation(s)
- Kirti Thakur
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Aditya Rajhans
- Department of Chemical Engineering, National Institute of Technology, Rourkela, India
| | - Balasubramanian Kandasubramanian
- Nano Surface Texturing Lab, Department of Metallurgical & Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune, India.
| |
Collapse
|
25
|
Prajapati DG, Kandasubramanian B. A Review on Polymeric-Based Phase Change Material for Thermo-Regulating Fabric Application. POLYM REV 2019. [DOI: 10.1080/15583724.2019.1677709] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Deepak G. Prajapati
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Nano Texturing Laboratory, Girinagar, Pune, India
| | - Balasubramanian Kandasubramanian
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Nano Texturing Laboratory, Girinagar, Pune, India
| |
Collapse
|
26
|
|
27
|
Bahmani P, Maleki A, Daraei H, Rezaee R, Khamforoush M, Dehestani Athar S, Gharibi F, Ziaee AH, McKay G. Application of modified electrospun nanofiber membranes with α-Fe 2O 3 nanoparticles in arsenate removal from aqueous media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:21993-22009. [PMID: 31144174 DOI: 10.1007/s11356-019-05228-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
In the present study, electrospun nanofiber membranes (ENMs) of polyacrylonitrile (PAN) were modified by dispersing α-Fe2O3 nanoparticles, synthesized using a thermal solvent process, in a PAN solution. The morphology and physiochemical properties of the prepared ENMs and the α-Fe2O3 were characterized using FESEM, EDX, BET, XRD, FTIR, porosity, and contact angle measurement. XPS was used to investigate the interaction of ENM with arsenate (As(V)) during the adsorption. Moreover, the effect of pH, the equilibrium isotherm, and the kinetics were investigated in batch experiments. The Langmuir isotherm best correlated the experimental results, indicating monolayer adsorption on ENMs, and the kinetics was best fitted, R2 > 0.99, by the pseudo-second-order model. In addition, the effects of certain conditions on the filtration performance were examined, such as feed concentration and transmembrane pressure (TMP). By passing sodium hydroxide (0.1 M) for 20 min, the membrane was regenerated. The increase in TMP, along with the presence of co-ions including chloride, nitrate, and sulfate, had negative impacts on the removal of As(V). The results show that the modified ENMs with α-Fe2O3 nanoparticles are applicable for As(V) ion removal and possibly for eliminating other heavy metals from aqueous media.
Collapse
Affiliation(s)
- Pegah Bahmani
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Afshin Maleki
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Hiua Daraei
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Reza Rezaee
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - Saeed Dehestani Athar
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fardin Gharibi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amir Hossein Ziaee
- Faculty of Veterinary Medicine, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Gordon McKay
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar.
| |
Collapse
|
28
|
Prajapati DG, Kandasubramanian B. Biodegradable Polymeric Solid Framework-Based Organic Phase-Change Materials for Thermal Energy Storage. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01693] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Deepak G. Prajapati
- Nano Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune-411025, India
| | - Balasubramanian Kandasubramanian
- Nano Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune-411025, India
| |
Collapse
|
29
|
Korde JM, Kandasubramanian B. Fundamentals and Effects of Biomimicking Stimuli-Responsive Polymers for Engineering Functions. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00683] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jay M. Korde
- Biocomposite Laboratory, Department of Metallurgical & Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune-411025, India
| | - Balasubramanian Kandasubramanian
- Biocomposite Laboratory, Department of Metallurgical & Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune-411025, India
| |
Collapse
|
30
|
Nanotechnology for Oil-Water Separation. ADVANCED RESEARCH IN NANOSCIENCES FOR WATER TECHNOLOGY 2019. [DOI: 10.1007/978-3-030-02381-2_14] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Gore PM, Kandasubramanian B. Functionalized Aramid Fibers and Composites for Protective Applications: A Review. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b04903] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Prakash M. Gore
- Structural Composite Fabrication Laboratory, Department of Metallurgical & Materials Engineering, Defence Institute of Advanced Technology (DU), Pune-411025, India
| | - Balasubramanian Kandasubramanian
- Structural Composite Fabrication Laboratory, Department of Metallurgical & Materials Engineering, Defence Institute of Advanced Technology (DU), Pune-411025, India
| |
Collapse
|