1
|
Dong B, Hu J. Residue levels and risk assessment of acetamiprid-pyridaben mixtures in cabbage under various open field conditions. Biomed Chromatogr 2023; 37:e5728. [PMID: 37700621 DOI: 10.1002/bmc.5728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 09/14/2023]
Abstract
Acetamiprid and pyridaben are highly efficient insecticides widely used to protect leafy vegetables against various pests, such as Phyllotreta striolata, but analyses of their residual behaviors applied in mixtures in cabbage fields are primarily lacking. Herein, field trials were performed by spraying 50% acetamiprid-pyridaben wettable powder (50% WP) once at a dose of 150 g of active ingredient per hectare in 12 representative provinces of China under Good Agricultural Practices. The residues of acetamiprid and pyridaben were detected using modified Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) and liquid chromatography-tandem mass spectrometry, together with an assessment of their dietary risks. The average recoveries of the two insecticides were 84.6-104%, and the relative standard deviations were 0.898-10.1%. The residual concentrations of acetamiprid and pyridaben at the preharvest interval of 7 days were <0.364 and 0.972 mg/kg, respectively, and less than their maximum residue limits in cabbage (0.5 mg/kg for acetamiprid and 2 mg/kg for pyridaben) in China. The chronic and acute risk values of acetamiprid and pyridaben were 0.0787-33.3%, implying acceptable health hazards to Chinese consumers. In conclusion, applying 50% WP in cabbage fields under Good Agricultural Practices is acceptable. These results provide essential data for using mixtures of acetamiprid and pyridaben in cabbage fields.
Collapse
Affiliation(s)
- Bizhang Dong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Jiye Hu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
2
|
Wang X, Diao Z, Liu Z, Qi P, Wang Z, Cang T, Chu Y, Zhao H, Zhang C, Xu H, Di S. Development of S-penthiopyrad for bioactivity improvement and risk reduction from the systemic evaluation at the enantiomeric level. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122012. [PMID: 37307862 DOI: 10.1016/j.envpol.2023.122012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
For the purpose of screening high-efficiency and low-risk green pesticides, a systematic study on fungicide penthiopyrad was conducted at the enantiomeric level. The bioactivity of S-(+)-penthiopyrad (median effective concentration (EC50), 0.035 mg/L) against Rhizoctonia solani was 988 times higher than R-(-)-penthiopyrad (EC50, 34.6 mg/L), which would reduce 75% usage of rac-penthiopyrad under the same efficacy. Furthermore, their antagonistic interaction (toxic unit (TUrac), 2.07) indicated the existence of R-(-)-penthiopyrad would reduce the fungicidal activity of S-(+)-penthiopyrad. AlphaFold2 modeling and molecular docking illustrated that S-(+)-penthiopyrad had the higher binding ability with the target protein than R-(-)-penthiopyrad, showing higher bioactivity. For model organism Danio rerio, S-(+)-penthiopyrad (median lethal concentrations (LC50), 3.02 mg/L) and R-(-)-penthiopyrad (LC50, 4.89 mg/L) were both less toxic than rac-penthiopyrad (LC50, 2.73 mg/L), and the existence of R-(-)-penthiopyrad could synergistically enhance the toxicity of S-(+)-penthiopyrad (TUrac, 0.73), using S-(+)-penthiopyrad would reduce at least 23% toxicity to fish. The enantioselective dissipation and residues of rac-penthiopyrad were tested in three kinds of fruits, and their dissipation half-lives ranged from 1.91 to 23.7 d. S-(+)-penthiopyrad was dissipated preferentially in grapes, which was R-(-)-penthiopyrad in pears. On the 60th d, the residue concentrations of rac-penthiopyrad in grapes were still higher than its maximum residue limit (MRL), but the initial concentrations were lower than their MRL values in watermelons and pears. Thus, more tests in different cultivars of grapes and planting environments should be encouraged. Based on the acute and chronic dietary intake risk assessments, the risks in the three fruits were all acceptable. In conclusion, S-(+)-penthiopyrad is a high-efficiency and low-risk alternative to rac-penthiopyrad.
Collapse
Affiliation(s)
- Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Ziyang Diao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China; College of Food Science & Engineering, Hainan University, No. 158 Renmin Avenue, Haikou, 570100, PR China
| | - Zhenzhen Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Tang Cang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Yanyan Chu
- School of Medicine and Pharmacy, Ocean University of China/ Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266200, China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Chenghui Zhang
- College of Food Science & Engineering, Hainan University, No. 158 Renmin Avenue, Haikou, 570100, PR China
| | - Hao Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China.
| |
Collapse
|
3
|
Xu F, Xu D, Hu M, Chen L, Xu C, Zha X. Dissipation behaviour, residue analysis, and dietary safety evaluation of chlorfenapyr on various vegetables in China. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:724-739. [PMID: 35104200 DOI: 10.1080/19440049.2021.2025269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Chlorfenapyr has been widely used in recent years to control a variety of pests on fruit and vegetables. Cabbage, leek, asparagus, and chive are four of the most common green foods consumed word wide; their pesticide residue issues have also received more attention. Therefore, studies on the residue analysis, degradation evaluation and dietary risk assessment based on the complete residue definition of chlorfenapyr on these four vegetables were essential and urgently needed. A reliable analytical method was developed and applied to simultaneously determine the content of chlorfenapyr and its metabolite tralopyril residues on the four vegetables. Recoveries were satisfactory (84%-110% for chlorfenapyr; 83%-106% for tralopyril) at a spiked level of 0.01-1 mg/kg, with intraday precision (n = 5) and interday precision (n = 15) ranging from 1.6% to 8.9% and from 2.4% to 9.1%, respectively. The limits of quantification (LOQs) were all 0.01 mg/kg. On the basis of supervised field trials, the degradation half-lives of chlorfenapyr were 1.2-9.8 days. Chlorfenapyr rapidly degraded on asparagus, but persisted much longer on chive. The terminal concentration of chlorfenapyr residues varied from <0.01 to 0.84 mg/kg. Additionally, the risk quotients (RQs) ranged from 4.7% to 13.8%, suggesting that chlorfenapyr had a negligible risk for chronic dietary intake of these crops. This study was thus significant in evaluating the degradation rate and quality safety of chlorfenapyr on various vegetables and promoted the development of maximum residue limits.
Collapse
Affiliation(s)
- Feng Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China.,Analysis Center, Residue Laboratory, Jiangsu Pesticide Research Institute, Nanjing, People's Republic of China
| | - Duo Xu
- Analysis Center, Residue Laboratory, Jiangsu Pesticide Research Institute, Nanjing, People's Republic of China
| | - Mengqing Hu
- Analysis Center, Residue Laboratory, Jiangsu Pesticide Research Institute, Nanjing, People's Republic of China
| | - Liuyang Chen
- Analysis Center, Residue Laboratory, Jiangsu Pesticide Research Institute, Nanjing, People's Republic of China
| | - Chenlong Xu
- Analysis Center, Residue Laboratory, Jiangsu Pesticide Research Institute, Nanjing, People's Republic of China
| | - Xinxin Zha
- Analysis Center, Residue Laboratory, Jiangsu Pesticide Research Institute, Nanjing, People's Republic of China
| |
Collapse
|
4
|
Jain U, Saxena K, Hooda V, Balayan S, Singh AP, Tikadar M, Chauhan N. Emerging vistas on pesticides detection based on electrochemical biosensors - An update. Food Chem 2022; 371:131126. [PMID: 34583176 DOI: 10.1016/j.foodchem.2021.131126] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/19/2021] [Accepted: 09/09/2021] [Indexed: 12/18/2022]
Abstract
Organophosphates and carbamates pesticides are widely used to increase crop production globally causing a threat to human health and the environment. A variety of pesticides are applied during different stages of vegetable production. Therefore, monitoring the presence of pesticide residues in food and soil has great relevance to sensitive pesticide detection through distinct determination methods that are urgently required. Conventional techniques for the detection of pesticides have several limitations that can be overcome by the development of highly sensitive, fast, reliable and easy-to-use electrochemical biosensors. Herein, we describe the types of biosensors with the main focus on electrochemical biosensors fabricated for the detection of OPPs and carbamates pesticides. An overview of conventional techniques employed for pesticide detection is also discussed. This review aims to provide a glance of recently developed biosensors for some common pesticides like chlorpyrifos, malathion, parathion, paraoxon, and carbaryl which are present in food and environment samples.
Collapse
Affiliation(s)
- Utkarsh Jain
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, India
| | - Kirti Saxena
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, India
| | - Vinita Hooda
- Department of Botany, M. D. University, Rohtak 124001, Haryana, India
| | - Sapna Balayan
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, India
| | - Amar Pal Singh
- Amity Institute of Forensic Sciences (AIFS), Amity University Uttar Pradesh (AUUP), Noida 201313, India; Forensic Science Laboratory, Govt. of NCT of Delhi, Sector-14, Rohini, Delhi, India
| | - Mayukh Tikadar
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, India
| | - Nidhi Chauhan
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, India.
| |
Collapse
|
5
|
Comparison the dissipation behaviors and exposure risk of carbendazim and procymidone in greenhouse strawberries under different application method: Individual and joint applications. Food Chem 2021; 354:129502. [PMID: 33752118 DOI: 10.1016/j.foodchem.2021.129502] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/03/2021] [Accepted: 02/26/2021] [Indexed: 11/22/2022]
Abstract
The dissipation behaviors and exposure risks of individual and joint application of procymidone and carbendazim in greenhouse strawberries were studied. The initial concentrations were similar after individual or joint applications, while the dissipation half-lives and finial concentrations were significantly different. After joint application, the dissipation half-lives of procymidone and carbendazim were 12.9 and 16.0 days, respectively, which were about 1.8 times higher than those after individual application. Furthermore, the final residues under joint application condition were 1.8-3.5 times higher than those under individual application condition. The joint application decreased the dissipation rates of procymidone or carbendazim in strawberries, and increased the final residue concentrations. The dietary intake risks of procymidone and carbendazim (whether applied individually or jointly) were no higher than 0.12, which were acceptable for human health. This work would shed a light for the guidance of the joint application and risk assessment of the typical fungicides in strawberry.
Collapse
|
6
|
Di S, Wang X, Qi P, Guo M, Wang Z, Zhao H, Xu H, Wang X. Study on the stereoselective behaviors of fosthiazate stereoisomers in legume vegetables by supercritical fluid chromatography-tandem mass spectrometry (SFC-MS/MS). Food Chem 2021; 338:128074. [PMID: 32950011 DOI: 10.1016/j.foodchem.2020.128074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 11/20/2022]
Abstract
A separation and analysis method of fosthiazate stereoisomers was established utilizing supercritical fluid chromatography-tandem mass spectrometry (SFC-MS/MS) with a CHIRALPAK AD-3 column. The determination of the four fosthiazate stereoisomers could be completed within 6 min. The environmental behaviors of fosthiazate stereoisomers were studied in legume vegetables. After applying fosthiazate granules to soil, the concentrations of fosthiazate stereoisomers in the legume vegetables increased with time, reached maximum values in 7-10 days, and then decreased gradually in all legumes except for in Glycine max. No obvious dissipation behaviors were observed in Glycine max. Interestingly, the stereoselective behaviors were species-specific. A-(-), B-(-) and B-(±)-fosthiazate were preferentially enriched in Phaseolus vulgaris Linn and Vigna unguiculata, while A-(+) and A-(±)-fosthiazate preferentially accumulated in Vicia faba Linn, Pisum sativum Linn and G. max. The opposite stereoselectivity of B-(±)-fosthiazate was observed in different growth stage of G. max. No stereoselective dissipation occurred in soil.
Collapse
Affiliation(s)
- Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Xiangyun Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Mingcheng Guo
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing 100125, PR China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Hao Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China.
| |
Collapse
|
7
|
Fu D, Zhang S, Wang M, Liang X, Xie Y, Zhang Y, Zhang C. Dissipation behavior, residue distribution and dietary risk assessment of cyromazine, acetamiprid and their mixture in cowpea and cowpea field soil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4540-4548. [PMID: 32400002 DOI: 10.1002/jsfa.10495] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 05/02/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Cyromazine and acetamiprid are widely applied as pesticides in agriculture, causing increasing concerns about their residues in crops. In this study, cyromazine, acetamiprid and their mixture were applied to cowpea to investigate their degradation dynamics and perform a dietary risk assessment. RESULTS The dissipation behavior of cyromazine and acetamiprid in the single- and mixed-pesticide groups followed first-order kinetics, with a linear correlation coefficient of 0.910 to 0.987. The half-lives of cyromazine and acetamiprid were 1.56-11.18 days in the four different matrices. The half-life of cyromazine in the mixed-pesticide group was similar to or even shorter than that in the single-pesticide group. The highest levels of cyromazine and acetamiprid in cowpea occurred with a preharvest interval of 7 days and after two or three applications. These levels are below the maximum residue limits recommended by the Chinese Ministry of Agriculture for cyromazine and acetamiprid in cowpea. The risk quotient of cyromazine and acetamiprid ranged from 0.0018 to 0.0418, and the national estimated short-term intake values of the cyromazine and acetamiprid were far below the acute reference dose as recommended by the European Food Safety Authority. CONCLUSION These results suggest that the use of cyromazine and acetamiprid and a cyromazine-acetamiprid mixture in cowpea is safe under the Good Agricultural Practices for Chinese fields, and the use of a cyromazine-acetamiprid mixture affords even better results than the application of cyromazine alone. Moreover, the residue dynamics information will support the label claims for the application of cyromazine, acetamiprid and a cyromazine-acetamiprid mixture to cowpea fruit. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Duhan Fu
- College of Food Science and Engineering, Hainan University, No.38, Renming Road, Meilan District, Haikou, China
| | - Shanying Zhang
- College of Food Science and Engineering, Hainan University, No.38, Renming Road, Meilan District, Haikou, China
| | - Meng Wang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Haikou), Ministry of Agriculture, Haikou, China
| | - Xiaoyu Liang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Haikou), Ministry of Agriculture, Haikou, China
| | - Yanli Xie
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Haikou), Ministry of Agriculture, Haikou, China
| | - Yu Zhang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Haikou), Ministry of Agriculture, Haikou, China
| | - Chenghui Zhang
- College of Food Science and Engineering, Hainan University, No.38, Renming Road, Meilan District, Haikou, China
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Haikou), Ministry of Agriculture, Haikou, China
| |
Collapse
|
8
|
Qi P, Di S, Cang T, Yang X, Wang X, Wang Z, Xu H, Zhao H, Wang X. Enantioselective behaviors of cis-epoxiconazole in vegetables-soil-earthworms system by liquid chromatography-quadrupole-time-of-flight mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:136039. [PMID: 31846872 DOI: 10.1016/j.scitotenv.2019.136039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/07/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Cis-epoxiconazole is a widely used triazole fungicide for control and prevention of a series of fungal diseases in fruits, vegetables, teas and grains. The present work aimed at exploring enantioselective behavior of cis-epoxiconazole in the vegetable-soil-earthworm system. Firstly, the absolute configuration of cis-epoxiconazole enantiomers was ascertained. Secondly, enantioselective degradation of cis-epoxiconazole in cabbage, pakchoi and pepper were performed under field trials, which has not been previously reported. Enantioselective degradation occurred in cabbage and pepper samples. 2R, 3S-(+)-cis-epoxiconazole was degraded faster than 2S, 3R-(-)-cis-epoxiconazole in cabbage, while the reversed results were obtained in pepper. No enantioselective degradation was observed in pakchoi. Finally, soil is the principal reservoir of environmental pesticides, so the enantioselective behaviors of cis-epoxiconazole in soil and soil organism (earthworm, Eisenia fetida) were evaluated. Similar bioaccumulation curves in earthworms and degradation curves in soil were observed under the exposure levels of 1 and 10 mg/kg. Accumulation factors (AFs) indicated earthworms had weak bioaccumulation potential to cis-epoxiconazole in the contaminated soil, and no obvious enantioselectivity was observed. The different enantioselectivities in different vegetables illuminated that preferentially enriched enantiomer might impose higher risk on human health than the other one, and the high risk enantiomer required further assessment. These results may reduce the uncertainty of cis-epoxiconazole to the environmental risk assessment.
Collapse
Affiliation(s)
- Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Tao Cang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Xuewei Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Xiangyun Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Hao Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China.
| |
Collapse
|
9
|
Li R, Pan X, Wang Q, Tao Y, Chen Z, Jiang D, Wu C, Dong F, Xu J, Liu X, Wu X, Zheng Y. Development of S-Fluxametamide for Bioactivity Improvement and Risk Reduction: Systemic Evaluation of the Novel Insecticide Fluxametamide at the Enantiomeric Level. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13657-13665. [PMID: 31684725 DOI: 10.1021/acs.est.9b03697] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Increasing numbers of novel pesticides have been applied in agriculture. However, traditional evaluation of pesticides does not distinguish between their enantiomers, which may lead to inaccurate results. In this study, systematic research on the chiral insecticide fluxametamide was conducted at the enantiomeric level. The methods for enantioseparation and semipreparative separation of fluxametamide enantiomers were developed. The optical rotation and absolute configuration of two enantiomers were determined, and their stability was verified in solvents and soils. Enantioselective bioactivities against four target pests (Plutella xylostella, Spodoptera exigua, Aphis gossypii, and Tetranychus cinnabarinus) were tested. Acute toxicities of fluxametamide enantiomers toward honeybees were also evaluated. S-(+)-Isomer exhibited 52.1-304.4 times and 2.5-3.7 times higher bioactivity than R-(-)-isomer and rac-fluxametamide, respectively. Meanwhile, rac-fluxametamide was more toxic than S/R-isomer, and S-(+)-isomer showed >30-fold higher acute toxicity than R-(-)-isomer. Molecular docking studies were performed with γ-aminobutyric acid receptor (GABAR) to monitor the mechanism of stereoselective bioactivity. The better Grid score of S-(+)-fluxametamide (-60.12 kcal/mol) than R-(-)-enantiomer (-56.59 kcal/mol) indicated higher bioactivity of S-(+)-isomer than of R-(-)-isomer. The dissipation of fluxametamide in cabbage, Chinese cabbage, and soil was nonenantioselective under field conditions. Development of S-(+)-fluxametamide could maintain the high-efficacy and low-risk properties, which should attract attention of producers, applicators, and managers of pesticides.
Collapse
Affiliation(s)
- Runan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| | - Qinqin Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| | - Yan Tao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| | - Zenglong Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , P. R. China
| | - Duoduo Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| | - Chi Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , P. R. China
| |
Collapse
|
10
|
Wang Y, Shen L, Gong Z, Pan J, Zheng X, Xue J. Analytical methods to analyze pesticides and herbicides. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1009-1024. [PMID: 31233653 DOI: 10.1002/wer.1167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/12/2019] [Accepted: 06/16/2019] [Indexed: 06/09/2023]
Abstract
Presented in this paper is an annual review of literatures published in 2018 on topics relating to analytical methods for pesticides and herbicides. According to the different techniques, this review is divided into six sections, including extraction methods; chromatographic or mass spectrometric techniques; electrochemical techniques; spectrophotometric techniques; chemiluminescence and fluorescence methods; and biochemical assays. PRACTITIONER POINTS: Totally 134 relevant research articles are summarized. The review is divided into six parts according to the techniques. Chromatographic and mass spectrometric methods are the most widely used.
Collapse
Affiliation(s)
- Yifan Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi Province, China
| | - Lin Shen
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Zhanyang Gong
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Jian Pan
- Environmental Technology Innovation Center of Jiande, Hangzhou, Zhejiang Province, China
- Hangzhou Bertzer Catalyst Co., Ltd., Hangzhou, Zhejiang Province, China
| | - Xing Zheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi Province, China
| | - Jinkai Xue
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
11
|
Przybyłek M, Studziński W, Gackowska A, Gaca J. The use of fast molecular descriptors and artificial neural networks approach in organochlorine compounds electron ionization mass spectra classification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28188-28201. [PMID: 31363975 PMCID: PMC6791912 DOI: 10.1007/s11356-019-05968-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Developing of theoretical tools can be very helpful for supporting new pollutant detection. Nowadays, a combination of mass spectrometry and chromatographic techniques are the most basic environmental monitoring methods. In this paper, two organochlorine compound mass spectra classification systems were proposed. The classification models were developed within the framework of artificial neural networks (ANNs) and fast 1D and 2D molecular descriptor calculations. Based on the intensities of two characteristic MS peaks, namely, [M] and [M-35], two classification criterions were proposed. According to criterion I, class 1 comprises [M] signals with the intensity higher than 800 NIST units, while class 2 consists of signals with the intensity lower or equal than 800. According to criterion II, class 1 consists of [M-35] signals with the intensity higher than 100, while signals with the intensity lower or equal than 100 belong to class 2. As a result of ANNs learning stage, five models for both classification criterions were generated. The external model validation showed that all ANNs are characterized by high predicting power; however, criterion I-based ANNs are much more accurate and therefore are more suitable for analytical purposes. In order to obtain another confirmation, selected ANNs were tested against additional dataset comprising popular sunscreen agents disinfection by-products reported in previous works.
Collapse
Affiliation(s)
- Maciej Przybyłek
- Chair and Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-950, Bydgoszcz, Poland.
| | - Waldemar Studziński
- Faculty of Chemical Technology and Engineering, University of Technology and Life Science, Seminaryjna 3, 85-326, Bydgoszcz, Poland
| | - Alicja Gackowska
- Faculty of Chemical Technology and Engineering, University of Technology and Life Science, Seminaryjna 3, 85-326, Bydgoszcz, Poland
| | - Jerzy Gaca
- Faculty of Chemical Technology and Engineering, University of Technology and Life Science, Seminaryjna 3, 85-326, Bydgoszcz, Poland
| |
Collapse
|
12
|
Fanali C, D'Orazio G, Gentili A, Fanali S. Analysis of Enantiomers in Products of Food Interest. Molecules 2019; 24:molecules24061119. [PMID: 30901832 PMCID: PMC6472275 DOI: 10.3390/molecules24061119] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 12/23/2022] Open
Abstract
The separation of enantiomers has been started in the past and continues to be a topic of great interest in various fields of research, mainly because these compounds could be involved in biological processes such as, for example, those related to human health. Great attention has been devoted to studies for the analysis of enantiomers present in food products in order to assess authenticity and safety. The separation of these compounds can be carried out utilizing analytical techniques such as gas chromatography, high-performance liquid chromatography, supercritical fluid chromatography, and other methods. The separation is performed mainly employing chromatographic columns containing particles modified with chiral selectors (CS). Among the CS used, modified polysaccharides, glycopeptide antibiotics, and cyclodextrins are currently applied.
Collapse
Affiliation(s)
- Chiara Fanali
- Department of Medicine, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy.
| | - Giovanni D'Orazio
- Istituto per I Sistemi Biologici, Consiglio Nazionale delle Ricerche, Via Salaria km 29, 300-00015 Monterotondo, Italy.
| | - Alessandra Gentili
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro 5, P.O. Box 34, Posta 62, 00185 Roma, Italy.
| | - Salvatore Fanali
- Teaching Committee of Ph.D. School in Natural Science and Engineering, University of Verona, 37134 Verona, Italy.
| |
Collapse
|
13
|
Li Y, Luo Q, Hu R, Chen Z, Qiu P. A sensitive and rapid UV–vis spectrophotometry for organophosphorus pesticides detection based on Ytterbium (Yb3+) functionalized gold nanoparticle. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|