1
|
Vaidya H, Solanki VH, Kansara RV, Desai C, Singh S, Patel J, Vyas TK, Patel H. Development of a novel method for multiple phytohormone analysis by UHPLC-MS/MS from bio-enriched organic fertilizer prepared using banana pseudostem sap waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:71482-71490. [PMID: 36376649 DOI: 10.1007/s11356-022-23941-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/28/2022] [Indexed: 06/14/2023]
Abstract
Banana harvesting generates a large amount of banana pseudostem waste, which is generally burnt or thrown away, despite containing many nutrients. Bio-enriched organic fertilizer (BOF) was prepared from banana pseudostem sap (BPS), and it has been patented (Patent No. WO 2013/001478 Al). Several reports revealed that its application increases plant growth promotion of various horticulture crops. Apart from macro- and micronutrients, it also contained phytohormones. Hence, the present study aims to detect and quantify phytohormone in it. A novel method was developed to extract four phytohormones, viz., indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), gibberellic acid (GA3), and salicylic acid (SA) using single solvent from BPS and BOF. Extracted hormones were analyzed by ultrahigh-performance liquid chromatography coupled with heated electrospray ionization tandem mass spectrometry (UHPLC-HESI-MS/MS). BOF showed a higher concentration of IAA, IBA, GA3, and SA than BPS. Thus, this is the first time a method has been reported to extract and detect phytohormones from banana pseudostem sap.
Collapse
Affiliation(s)
- Harihar Vaidya
- Soil and Water Management Research Unit, Navsari Agricultural University, Near Eru Junction, Navsari, 396450, Gujarat, India.
| | - Vanrajsinh H Solanki
- Food Quality Testing Laboratory, Navsari Agricultural University, Navsari, 396450, Gujarat, India
| | - Rohan V Kansara
- Food Quality Testing Laboratory, Navsari Agricultural University, Navsari, 396450, Gujarat, India
| | - Chirag Desai
- Soil and Water Management Research Unit, Navsari Agricultural University, Near Eru Junction, Navsari, 396450, Gujarat, India
| | - Susheel Singh
- Food Quality Testing Laboratory, Navsari Agricultural University, Navsari, 396450, Gujarat, India
| | - Jayesh Patel
- Soil and Water Management Research Unit, Navsari Agricultural University, Near Eru Junction, Navsari, 396450, Gujarat, India
| | - Trupti K Vyas
- Food Quality Testing Laboratory, Navsari Agricultural University, Navsari, 396450, Gujarat, India
| | - Hiren Patel
- School of Sciences, P.P. Savani University, Surat, 394135, Gujarat, India
| |
Collapse
|
2
|
Bajpai S, Nemade PR. An integrated biorefinery approach for the valorization of water hyacinth towards circular bioeconomy: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39494-39536. [PMID: 36787076 DOI: 10.1007/s11356-023-25830-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Water hyacinth (WH) has become a considerable concern for people across the globe due to its environmental and socio-economic hazards. Researchers are still trying to control this aquatic weed effectively without other environmental or economic losses. Research on WH focuses on converting this omnipresent excessive biomass into value-added products. The potential use of WH for phytoremediation and utilizing waste biomass in various industries, including agriculture, pharmaceuticals, and bioenergy, has piqued interest. The use of waste WH biomass as a feedstock for producing bioenergy and value-added chemicals has emerged as an eco-friendly step towards the circular economy concept. Here, we have discussed the extraction of bio-actives and cellulose as primary bioproducts, followed by a detailed discussion on different biomass conversion routes to obtain secondary bioproducts. The suggested multi-objective approach will lead to cost-effective and efficient utilization of waste WH biomass. Additionally, the present review includes a discussion of the SWOT analysis for WH biomass and the scope for future studies. An integrated biorefinery scheme is proposed for the holistic utilization of this feedstock in a cascading manner to promote the sustainable and zero-waste circular bio-economy concept.
Collapse
Affiliation(s)
- Shruti Bajpai
- Institute of Chemical Technology, Marathwada Campus, Jalna, 431 203, India
| | - Parag R Nemade
- Institute of Chemical Technology, Marathwada Campus, Jalna, 431 203, India.
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, 400 019, India.
| |
Collapse
|
3
|
Bhatti SA, Hussain MH, Mohsin MZ, Mohsin A, Zaman WQ, Guo M, Iqbal MW, Siddiqui SA, Ibrahim SA, Ur-Rehman S, Korma SA. Evaluation of the antimicrobial effects of Capsicum, Nigella sativa, Musa paradisiaca L., and Citrus limetta: A review. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1043823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The extensive use of antibiotics and vaccines against microbial infections can result in long-term negative effects on humans and the environment. However, there are a number of plants that have antimicrobial effects against various disease-causing microbes such as bacteria, viruses, and fungi without negative side effects or harm to the environment. In this regard, four particular plants- Capsicum, Nigella sativa, Musa paradisiaca L., and Citrus limetta have been widely considered due to their excellent antimicrobial effect and ample availability. In this review, we discuss their antimicrobial effects due to the presence of thymoquinone, p-cymene, pinene, alkaloids, limonene, camphene, and melanin. These antimicrobial compounds disrupt the cell membrane of microbes, inhibit cellular division, and form biofilm in bacterial species, eventually reducing the number of microbes. Extraction of these compounds from the respective plants is carried out by different methods such as soxhlet, hydro-distillation, liquid-liquid extraction (LLE), pressurized liquid extraction (PLE), solid-phase extraction (SPE), supercritical fluid extraction (SFE), pulsed electric field (PEF), microwave-assisted extraction (MAE), enzyme-assisted extraction (EAE), ultrasound-assisted extraction (UAE), and high-voltage electrical discharge. Suitable selection of the extraction technique highly depends upon the associated advantages and disadvantages. In order to aid future study in this field, this review paper summarizes the advantages and disadvantages of each of these approaches. Additionally, the discussion covers how antimicrobial agents destroy harmful bacteria. Thus, this review offers in-depth knowledge to researchers on the antibacterial properties of Capsicum, Nigella sativa, Musa paradisiaca L. peels, and Citrus limetta.
Collapse
|
4
|
Banana Waste-to-Energy Valorization by Microbial Fuel Cell Coupled with Anaerobic Digestion. Processes (Basel) 2022. [DOI: 10.3390/pr10081552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Banana is the most cultivated fruit plant in the world. It is produced in Latin America, Asia and Africa. India and China are the world’s largest banana producers, with almost 41% of the world’s production. This fruit reaches a total world production of 158.3 million tons per year. However, during their production cycle, the banana agroindustry produces large volumes of solid waste derived from overripe fruit. It contributes between 8–20 percent of the waste (around 100 kg of banana waste for every ton of banana produced). Therefore, the use of overripe banana waste represents a huge opportunity for bioenergy production. This work demonstrates that banana waste can be further used for power generation using a microbial fuel cell (MFC) coupled with anaerobic digestion (AD). First, the maximum methane production (MMP), methane production rate (MPR) and biochemical methane potential (BMP) were measured using an anaerobic batch bioreactor for 64 days of monitoring. Finally, the digestate generated from AD was used in the MFC to determine the polarization curve, maximum voltage, maximum power density (MPD), resistance and current. As a result, the AD generated an MMP of 320.3 mL, BMP of 373.3 mLCH4/gVS and MPR of 18.6 mLCH4/Lb⋅day. The MFC generated 286 mV (maximum voltage), 41.3 mW/m2 (MPD), 580.99 Ω (resistance) and 0.0002867 A (current). Both processes together produced a total bioenergy of 13.38 kJ/gVS. This coupled system showed a suitable and promising use of banana waste for ecofriendly bioenergy generation. Therefore, this feedstock could be taken advantage of for generating sustainable processes and developing a circular economy in the banana agroindustry.
Collapse
|
5
|
Shah AV, Singh A, Sabyasachi Mohanty S, Kumar Srivastava V, Varjani S. Organic solid waste: Biorefinery approach as a sustainable strategy in circular bioeconomy. BIORESOURCE TECHNOLOGY 2022; 349:126835. [PMID: 35150857 DOI: 10.1016/j.biortech.2022.126835] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Waste generation is associated with numerous environmental consequences, making it a point of discussion in the environmental arena. Efforts have been made around the world to develop a systematic management approach coupled with a sustainable treatment technology to maximize resource utilization of organic solid waste. Biorefineries and bio-based products play a critical role in lowering total emissions and supporting energy systems. However, economic viability of biorefineries, on the other hand, is a stumbling hurdle to their commercialization. This communication provides a thorough study of the concept of biorefinery in waste management, as well as technological advancements in this field. In addition, the notion of techno-economic assessment, as well as challenges and future prospects have been covered. To find the most technologically and economically viable solution, further techno-economic study to the new context is required. Overall, this communication would assist decision-makers in identifying environmentally appropriate biorefinery solutions ahead of time.
Collapse
Affiliation(s)
- Anil V Shah
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India; Sankalchand Patel Vidyadham, Sankalchand Patel University, Visnagar 384 315, Gujarat, India
| | - Aditi Singh
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India; Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Swayansu Sabyasachi Mohanty
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India; Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Vijay Kumar Srivastava
- Sankalchand Patel Vidyadham, Sankalchand Patel University, Visnagar 384 315, Gujarat, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India; Sankalchand Patel Vidyadham, Sankalchand Patel University, Visnagar 384 315, Gujarat, India.
| |
Collapse
|
6
|
Igbokwe VC, Ezugworie FN, Onwosi CO, Aliyu GO, Obi CJ. Biochemical biorefinery: A low-cost and non-waste concept for promoting sustainable circular bioeconomy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114333. [PMID: 34952394 DOI: 10.1016/j.jenvman.2021.114333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The transition from a fossil-based linear economy to a circular bioeconomy is no longer an option but rather imperative, given worldwide concerns about the depletion of fossil resources and the demand for innovative products that are ecocompatible. As a critical component of sustainable development, this discourse has attracted wide attention at the regional and international levels. Biorefinery is an indispensable technology to implement the blueprint of the circular bioeconomy. As a low-cost, non-waste innovative concept, the biorefinery concept will spur a myriad of new economic opportunities across a wide range of sectors. Consequently, scaling up biorefinery processes is of the essence. Despite several decades of research and development channeled into upscaling biorefinery processes, the commercialization of biorefinery technology appears unrealizable. In this review, challenges limiting the commercialization of biorefinery technologies are discussed, with a particular focus on biofuels, biochemicals, and biomaterials. To counteract these challenges, various process intensification strategies such as consolidated bioprocessing, integrated biorefinery configurations, the use of highly efficient bioreactors, simultaneous saccharification and fermentation, have been explored. This study also includes an overview of biomass pretreatment-generated inhibitory compounds as platform chemicals to produce other essential biocommodities. There is a detailed examination of the technological, economic, and environmental considerations of a sustainable biorefinery. Finally, the prospects for establishing a viable circular bioeconomy in Nigeria are briefly discussed.
Collapse
Affiliation(s)
- Victor C Igbokwe
- Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria; Department of Materials Science and Engineering, Université de Pau et des Pays de l'Adour, 64012, Pau Cedex, France
| | - Flora N Ezugworie
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chukwudi O Onwosi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria.
| | - Godwin O Aliyu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinonye J Obi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
7
|
El Barnossi A, Moussaid F, Iraqi Housseini A. Tangerine, banana and pomegranate peels valorisation for sustainable environment: A review. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 29:e00574. [PMID: 33376681 PMCID: PMC7758358 DOI: 10.1016/j.btre.2020.e00574] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/01/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
Over the last decade the world has been generating a high quantity of tangerine peel waste (TPW), pomegranate peel waste (PPW) and banana peel waste (BPW). These peels have several economic benefits but there is mismanagement or inappropriate valorisation that could present risks to environment and public health. In the current review, we discussed the use of TPW, PPW and BPW directly for animal feed, soil fertilization, specific compost production and bio-adsorbent. We also discussed the valorisation of these peels for manufacturing the value-added products including enzymes, essential oil and other products that can be used in human food, in medical and cosmetic industry. Additionally, recent studies concerning the valorisation of these peels by biorefinery for bioethanol, biogas and biohydrogen production have been discussed. In the same context some other recent studies about valorisation of microorganisms isolated from these peels for medical, agronomic and industrial interests have been also discussed.
Collapse
Affiliation(s)
- Azeddin El Barnossi
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Fatimazhrae Moussaid
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Abdelilah Iraqi Housseini
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
8
|
Díaz Vargas CA, Solarte-Toro JC, Cuadros Veloza LW, Cardona Alzate CA, Restrepo-Parra E, Higuita JC. Cocaine degradation using a rotating biological disc reactor: Techno-economic and environmental analysis using experimental data. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124219. [PMID: 33075627 DOI: 10.1016/j.jhazmat.2020.124219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/19/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
A bacterial mixed culture that utilizes cocaine as the sole carbon and energy sources was isolated and used in a Rotary Disc Reactor as an alternative method for the final disposal of seized cocaine. This study aimed to compare the performances of cocaine incineration (oven) and biodegradation (Rotary Disc Reactor), considering economic and environmental aspects. There was a 99.4% cocaine removal efficiency when bacterial C1T consortium was grown in a Rotary Disc Reactor for 42 h. The economic analysis allowed determining the high potential of the biotechnological cocaine degradation to be evaluated at higher scales. Indeed, the unit disposition price of the biotechnological degradation pathway was 58% higher than the calculated value for the incineration process considering an initial cocaine concentration of 30 g/L. Moreover, the economic sensitivity analysis demonstrated a price reduction of 20% in the unit disposition price of the biotechnological degradation using a rotary disc reactor. Further, cocaine degradation using a rotary disc reactor system presented a better environmental performance than the incineration process considering atmospheric and toxicological impact categories because of the low release of hazardous materials to the atmosphere.
Collapse
Affiliation(s)
- Carlos A Díaz Vargas
- Universidad Nacional de Colombia sede Manizales, Laboratorio de Ciencias Biológicas y Moleculares, Departamento de Ingeniería Química, Km 07 vía al Magdalena, Manizales, Colombia.
| | - Juan C Solarte-Toro
- Universidad Nacional de Colombia sede Manizales, Instituto de Biotecnología y Agroindustria, Laboratorio de Equilibrios Químicos y Cinética Enzimática, Departamento de Ingeniería Química, Km 07 vía al Magdalena, Manizales, Colombia
| | - Liz W Cuadros Veloza
- International Center of Strategic Studies Against Drug Trafficking, Narcotics Division Policía Nacional de Colombia, Bogotá, Colombia
| | - Carlos A Cardona Alzate
- Universidad Nacional de Colombia sede Manizales, Instituto de Biotecnología y Agroindustria, Laboratorio de Equilibrios Químicos y Cinética Enzimática, Departamento de Ingeniería Química, Km 07 vía al Magdalena, Manizales, Colombia
| | - Elisabeth Restrepo-Parra
- Universidad Nacional de Colombia sede Manizales, Laboratorio de Física del Plasma, Departamento de Física y Química, Km 07 vía al Magdalena, Manizales, Colombia
| | - Juan C Higuita
- Universidad Nacional de Colombia sede Manizales, Laboratorio de Ciencias Biológicas y Moleculares, Departamento de Ingeniería Química, Km 07 vía al Magdalena, Manizales, Colombia.
| |
Collapse
|
9
|
Economic, social and environmental impacts attained by the use of the effluents generated within a small-scale biorefinery concept. ACTA INNOVATIONS 2020. [DOI: 10.32933/actainnovations.36.5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biorefineries are emerging as the proper route to defeat climate change and other social, socio-economic and environmental concerns. So far, no residual lignocellulosic biomass-based biorefineries have been yet industrially implemented, mainly due to its economic viability. This article exposes some elements that may help overcome the bottlenecks associated to its social, economic and environmental sustainability: small-scale approaches, biomass valorisation through added-value products and near-zero effluent.
Collapse
|
10
|
Osman MEH, Abo-Shady AM, Elshobary ME, Abd El-Ghafar MO, Abomohra AEF. Screening of seaweeds for sustainable biofuel recovery through sequential biodiesel and bioethanol production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:32481-32493. [PMID: 32506400 DOI: 10.1007/s11356-020-09534-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/29/2020] [Indexed: 02/05/2023]
Abstract
The present study evaluated the sequential biodiesel-bioethanol production from seaweeds. A total of 22 macroalgal species were collected at different seasons and screened based on lipid and carbohydrate contents as well as biomass production. The promising species was selected, based on the relative increase in energy compounds (REEC, %), for further energy conversion. Seasonal and annual biomass yields of the studied species showed significant variations. The rhodophyte Amphiroa compressa and the chlorophyte Ulva intestinalis showed the highest annual biomass yield of 75.2 and 61.5 g m-2 year-1, respectively. However, the highest annual carbohydrate productivity (ACP) and annual lipid productivity (ALP) were recorded for Ulva fasciata and Ulva intestinalis (17.0 and 3.0 g m-2 year-1, respectively). The later was selected for further studies because it showed 14.8% higher REEC value than Ulva fasciata. Saturated fatty acids (SAFs) showed 73.4%, with palmitic acid as a dominant fatty acid (43.8%). Therefore, biodiesel showed high saturation degree, with average degree of unsaturation (ADU) of 0.508. All the measured biodiesel characteristics complied the international standards. The first route of biodiesel production (R1) from Ulva intestinalis showed biodiesel recovery of 32.3 mg g-1 dw. The hydrolysate obtained after saccharification of the whole biomass (R2) and lipid-free biomass (R3) contained 1.22 and 1.15 g L-1, respectively, reducing sugars. However, bioethanol yield from R3 was 0.081 g g-1 dw, which represented 14.1% higher than that of R2. Therefore, application of sequential biofuel production using R3 resulted in gross energy output of 3.44 GJ ton-1 dw, which was 170.9% and 82.0% higher than R1 and R2, respectively. The present study recommended the naturally-grown Ulva intestinalis as a potential feedstock for enhanced energy recovery through sequential biodiesel-bioethanol production.
Collapse
Affiliation(s)
- Mohamed E H Osman
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Atef M Abo-Shady
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mostafa E Elshobary
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mahasen O Abd El-Ghafar
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Abd El-Fatah Abomohra
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
11
|
Redondo-Gómez C, Rodríguez Quesada M, Vallejo Astúa S, Murillo Zamora JP, Lopretti M, Vega-Baudrit JR. Biorefinery of Biomass of Agro-Industrial Banana Waste to Obtain High-Value Biopolymers. Molecules 2020; 25:E3829. [PMID: 32842473 PMCID: PMC7504234 DOI: 10.3390/molecules25173829] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 11/25/2022] Open
Abstract
On a worldwide scale, food demand is increasing as a consequence of global population growth. This makes companies push their food supply chains' limits with a consequent increase in generation of large amounts of untreated waste that are considered of no value to them. Biorefinery technologies offer a suitable alternative for obtaining high-value products by using unconventional raw materials, such as agro-industrial waste. Currently, most biorefineries aim to take advantage of specific residues (by either chemical, biotechnological, or physical treatments) provided by agro-industry in order to develop high-value products for either in-house use or for sale purposes. This article reviews the currently explored possibilities to apply biorefinery-known processes to banana agro-industrial waste in order to generate high-value products out of this residual biomass source. Firstly, the Central and Latin American context regarding biomass and banana residues is presented, followed by advantages of using banana residues as raw materials for the production of distinct biofuels, nanocellulose fibers, different bioplastics, and other high-value products Lastly, additional uses of banana biomass residues are presented, including energy generation and water treatment.
Collapse
Affiliation(s)
- Carlos Redondo-Gómez
- National Laboratory of Nanotechnology LANOTEC, 1174-1200 Pavas, San José, Costa Rica;
| | - Maricruz Rodríguez Quesada
- School of Chemistry, National University of Costa Rica (UNA), 86-3000 Heredia, Costa Rica; (M.R.Q.); (S.V.A.); (J.P.M.Z.)
| | - Silvia Vallejo Astúa
- School of Chemistry, National University of Costa Rica (UNA), 86-3000 Heredia, Costa Rica; (M.R.Q.); (S.V.A.); (J.P.M.Z.)
| | - José Pablo Murillo Zamora
- School of Chemistry, National University of Costa Rica (UNA), 86-3000 Heredia, Costa Rica; (M.R.Q.); (S.V.A.); (J.P.M.Z.)
| | - Mary Lopretti
- Laboratorio de Técnicas Nucleares Aplicadas a Bioquímica y Biotecnología, Centro de Investigaciones Nucleares-Facultad de Ciencias, UDELAR University, cp1140 Montevideo, Uruguay;
| | - José Roberto Vega-Baudrit
- National Laboratory of Nanotechnology LANOTEC, 1174-1200 Pavas, San José, Costa Rica;
- School of Chemistry, National University of Costa Rica (UNA), 86-3000 Heredia, Costa Rica; (M.R.Q.); (S.V.A.); (J.P.M.Z.)
| |
Collapse
|
12
|
Environmental and Economic Analysis of an Anaerobic Co-Digestion Power Plant Integrated with a Compost Plant. ENERGIES 2020. [DOI: 10.3390/en13112724] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Italian power generation through anaerobic digestion (AD) has grown significantly between 2009 and 2016, becoming an important renewable energy resource for the country, also thanks to the generous incentives for produced electricity available in the last years. This work focuses on the economic and environmental issues of AD technology and proposes a techno-economic analysis of investment profitability without government support. In particular, the analysis focuses on an AD power plant fed by zootechnical wastewater and agro-industrial residues coupled to a cogeneration (CHP) system and a digestate-composting plant that produces soil fertilizers. We aim to determine the economic profitability of such AD power plants fed by inner-farm biomass wastes, exploiting digestate as fertilizer, using the cogenerated heat and taking into account the externalities (environmental benefits). Environmental analysis was carried out via a life cycle analysis (LCA), and encompassing the production of biogas, heat/electricity and compost in the downstream process. The un-released environmental emissions were converted into economic benefits by means of a stepwise approach. The results indicate that integrating a compost plant with a biogas plant can significantly increase the carbon credits of the process. The results were evaluated by means of a sensitivity analysis, and they report an IRR in the range of 6%–9% according to the Italian legislative support mechanisms, and possibilities to increase revenues with the use of digestate as fertilizer. The results significantly improve when externalities are included.
Collapse
|
13
|
Performance evaluation and economic analysis of the bioethanol and flour production using rejected unripe plantain fruits (Musa paradisiaca L.) as raw material. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Removal Efficiencies of Manganese and Iron Using Pristine and Phosphoric Acid Pre-Treated Biochars Made from Banana Peels. WATER 2020. [DOI: 10.3390/w12041173] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The purpose of this study was to compare the removal efficiencies of manganese (Mn) and iron (Fe) using pristine banana peel biochar (BPB) and phosphoric acid pre-treated biochars (PBPB) derived from banana peels. The removal efficiencies of Mn and Fe were investigated under different adsorbent dosages (0.4–2 g L−1), temperatures (15–45 °C), and ionic strengths (0–0.1 M), and were directly correlated to the differences in physicochemical properties of BPB and PBPB, to identify the removal mechanisms of heavy metals by adsorption processes. The removal of Mn by PBPB obeyed the Freundlich isotherm model while the removal of Mn and Fe by BPB followed the Langmuir isotherm model. However, the removal of Fe by PBPB followed both Freundlich and Langmuir isotherm models. The removal efficiencies of Mn and Fe by BPB and PBPB increased with increasing temperatures and decreased with increasing ionic strengths. PBPB more effectively removed Mn and Fe compared to BPB due to its higher content of oxygen-containing functional groups (O/C ratio of PBPB = 0.45; O/C ratio of BPB = 0.01), higher surface area (PBPB = 27.41 m2 g−1; BPB = 11.32 m2 g−1), and slightly greater pore volume (PBPB = 0.03 cm3 g−1; BPB = 0.027 cm3 g−1). These observations clearly show that phosphoric acid pre-treatment can improve the physicochemical properties of biochar prepared from banana peels, which is closely related to the removal of heavy metals by adsorption processes.
Collapse
|
15
|
Joglekar SN, Pathak PD, Mandavgane SA, Kulkarni BD. Process of fruit peel waste biorefinery: a case study of citrus waste biorefinery, its environmental impacts and recommendations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34713-34722. [PMID: 30645745 DOI: 10.1007/s11356-019-04196-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 01/08/2019] [Indexed: 05/21/2023]
Abstract
Fruit peels are a rich source of cellulose, hemicellulose, phenolic compounds, and terpenic compounds. Thus, they have the potential to be a novel renewable, sustainable, and low-cost raw material (source) for the production of several value-added products based on framework and concepts such as waste hierarchy that includes biofertilizers, dietary fiber, animal feed, industrial enzymes, substrate for the bioactive compounds production, synthesis of nanomaterials, and clean energy (from residual biomass). With a view of evaluating the environmental burden of biorefinery, a life cycle assessment (LCA) is performed for a representative citrus waste (CW) biorefinery. The functional unit used for LCA was set as 2500 kg of CW processed. The overall GWP was observed to be 937.3 kg CO2 equivalent per 2500 kg of CW processed. On further analysis of the environmental impact, it was found that different steps contributed significantly, as shown by the various environmental indicator values. Alternative advanced process intensification technologies like microwave and ultrasound-assisted steps replacing the conventional steps when implemented show considerable reduction in environmental indicator values. The variations in the contribution to environmental indicators should be considered during the design and process selection of biorefineries.
Collapse
Affiliation(s)
- Saurabh N Joglekar
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, South Ambazari road, Nagpur, Maharashtra, 440 010, India
| | - Pranav D Pathak
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, South Ambazari road, Nagpur, Maharashtra, 440 010, India
- MIT-School of Bioengineering Sciences & Research, Pune, India
| | - Sachin A Mandavgane
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, South Ambazari road, Nagpur, Maharashtra, 440 010, India.
| | | |
Collapse
|
16
|
Chang CC, Li R. Agricultural waste. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1150-1167. [PMID: 31433884 DOI: 10.1002/wer.1211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
The management of agricultural waste has become very important because the inappropriate disposal yields negative effects on the environment. The resource recovery from agricultural waste which converts waste into available resources can reduce the waste and new resource consumption. This review summarizes the 2018 researches of over three hundred scholar papers from several aspects: agricultural waste, and, waste chemical characterization, agricultural waste material, adsorption, waste energy, composting, waste biogas, agricultural waste management, and others.
Collapse
Affiliation(s)
- Chein-Chi Chang
- College of Energy and Environment, Shenyang Aerospace University, Shenyang, China
- Department of Engineering and Technical Services, DC Water and Sewer Authority, Washington, DC, USA
| | - Rundong Li
- College of Energy and Environment, Shenyang Aerospace University, Shenyang, China
| |
Collapse
|
17
|
Okoro OV, Sun Z, Birch J. Techno-Economic Assessment of a Scaled-Up Meat Waste Biorefinery System: A Simulation Study. MATERIALS 2019; 12:ma12071030. [PMID: 30925740 PMCID: PMC6479899 DOI: 10.3390/ma12071030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/15/2019] [Accepted: 03/24/2019] [Indexed: 11/16/2022]
Abstract
While exports from the meat industry in New Zealand constitute a valuable source of foreign exchange, the meat industry is also responsible for the generation of large masses of waste streams. These meat processing waste streams are largely biologically unstable and are capable of leading to unfavourable environmental outcomes if not properly managed. To enable the effective management of the meat processing waste streams, a value-recovery based strategy, for the complete valorisation of the meat processing waste biomass, is proposed. In the present study therefore, a biorefinery system that integrates the biomass conversion technologies of hydrolysis, esterification, anaerobic digestion and hydrothermal liquefaction has been modelled, simulated and optimized for enhanced environmental performance and economic performance. It was determined that an initial positive correlation between the mass feed rate of the waste to the biorefinery system and its environmental performance exists. However, beyond an optimal total mass feed rate of the waste stream there is a deterioration of the environmental performance of the biorefinery system. It was also determined that economies of scale ensure that any improvement in the economic performance of the biorefinery system with increasing total mass feed rate of the waste stream, is sustained. The present study established that the optimized meat waste biorefinery system facilitated a reduction in the unit production costs of the value-added products of biodiesel, biochar and biocrude compared the literature-obtained unit production costs of the respective aforementioned products when generated from stand-alone systems. The unit production cost of biogas was however shown to be comparable to the literature-obtained unit production cost of biogas. Finally, the present study showed that the optimized meat processing waste biorefinery could achieve enhanced economic performance while simultaneously maintaining favourable environmental sustainability.
Collapse
Affiliation(s)
| | - Zhifa Sun
- Department of Physics, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.
| | - John Birch
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|