1
|
Huang J, Zhang J, Sun J, Gong M, Yuan Z. Exposure to polystyrene microplastics and perfluorooctane sulfonate disrupt the homeostasis of intact planarians and the growth of regenerating planarians. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171653. [PMID: 38485023 DOI: 10.1016/j.scitotenv.2024.171653] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Microplastics (MPs) and perfluorinated compounds (PFAS) are widespread in the global ecosystem. MPs have the ability to adsorb organic contaminants such as perfluorooctane sulfonate (PFOS), leading to combined effects. The current work aims to explore the individual and combined toxicological effects of polystyrene (PS) and PFOS on the growth and nerves of the freshwater planarian (Dugesia japonica). The results showed that PS particles could adsorb PFOS. PS and PFOS impeded the regeneration of decapitated planarians eyespots, whereas the combined treatment increased the locomotor speed of intact planarians. PS and PFOS caused significant DNA damage, while co-treatment with different PS concentrations aggravated and attenuated DNA damage, respectively. Further studies at the molecular level have shown that PS and PFOS affect the proliferation and differentiation of neoblasts in both intact and regenerating planarians, alter the expression levels of neuronal genes, and impede the development of the nervous system. PS and PFOS not only disrupted the homeostasis of intact planarians, but also inhibited the regeneration of decapitated planarians. This study is the first to assess the multiple toxicity of PS and PFOS to planarians after combined exposure. It provides a basis for the environmental and human health risks of MPs and PFAS.
Collapse
Affiliation(s)
- Jinying Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Jianyong Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Jingyi Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Mengxin Gong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Zuoqing Yuan
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China.
| |
Collapse
|
2
|
Sun J, Shao X, Huang J, Gong M, Zhang J, Yuan Z. Multiple toxicity evaluations of perfluorooctane sulfonate on intact planarian Dugesia japonica. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60932-60945. [PMID: 37042918 DOI: 10.1007/s11356-023-26842-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/03/2023] [Indexed: 05/10/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is gaining widespread attention as a persistent organic pollutant with multiple mechanisms of toxicity. In this study, PFOS at different concentrations and different exposure times was used to evaluate the multiple toxicities on intact planarian Dugesia japonica. The proliferation of neoblasts, apoptosis, DNA damage and the expression levels of neuronal genes and the major genes of the Wnt pathway were effectively studied. The results demonstrated that the balance between proliferation and apoptosis of intact planarian cells was disrupted after PFOS exposure, which in turn affected tissue homeostasis and differentiation. PFOS exposure led to increased DNA damage and altered neuronal gene expression. In addition, PFOS exposure could down-regulate the expression of Wnt pathway genes, but the inhibition of the Wnt pathway by PFOS was time- and concentration-dependent. These findings suggest that PFOS has multiple toxic effects on planarians and may interfere with cell proliferation and neurodevelopment by affecting the key gene expression in the Wnt pathway, providing estimable information on the neurodevelopmental toxicity and ecotoxicity of PFOS toxicity in aquatic animals and environments.
Collapse
Affiliation(s)
- Jingyi Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Xinxin Shao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Jinying Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Mengxin Gong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Jianyong Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Zuoqing Yuan
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China.
| |
Collapse
|
3
|
Ghasemi S, Javid AH, Farsad F, Robati M, Farshchi P. An evaluation of the marine environmental resilience to the north of Qeshm Island. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:859. [PMID: 34855014 DOI: 10.1007/s10661-021-09627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
There is always an adamant need to comprehend and draw the complex challenges of sustainability in order to help organize studies, due to the increasing human-related pressures on coastal zones. Hence, by formulating such a comprehensive framework, it could be possible to anticipate changes and support managerial decisions, as well as the degree of resilience of the region's environment. One of the approaches utilized in littoral or coastal zones is the conceptual framework of drivers, pressure, status, impact, and responses (DPSIR)..Qeshm Island, the largest island in the Persian Gulf, is accounted for being the most vital and strategic areas of the mentioned region. In recent decades, Qeshm has become one of the major cultural, natural, geological, and tourism hubs of the country due to its unique regional characteristics, along with its biodiversity and environmental sensitivity. Thereby, in the present research, a combined approach shall be followed to explore the resilience of the marine environment on the northern coast of Qeshm Island by taking advantage of the socioeconomic criterion. In this respect, the conceptual framework of the DPSIR model is utilized in combination with the structural equation model (SEM-PLS) (or partial least squares), which is one of the nonexperimental techniques, to quantify the results in the best manner possible. On the basis of the fuzzy cognitive map (FCM), the regional economic index bearing the weights of 0.62, 0.62, and 0.5, along with an institutional-managerial and biological index, respectively, denotes a two-way positive correlation, whereas this factor has a two-way, but adverse correlation, relationship with a weight of 0.65 in terms of the sociocultural index. Similarly, there is also a one-way and negative relationship, as to the economic index, with a weight of 0.69 which is in relevance with the physio-chemical index.
Collapse
Affiliation(s)
- Sarvin Ghasemi
- Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Hossein Javid
- Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Forough Farsad
- Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Robati
- Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parvin Farshchi
- Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Wang B, Li D, Yuan Z, Zhang Y, Ma X, Lv Z, Xiao Y, Zhang J. Evaluation of joint effects of perfluorooctane sulfonate and wood vinegar on planarians, Dugesia japonica. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18089-18098. [PMID: 32170611 DOI: 10.1007/s11356-020-08342-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/05/2020] [Indexed: 05/15/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant and can cause oxidative stress in animals. Wood vinegar (WV) is the water condensate of smoke produced during wood carbonization. It was used for antibacterial application, pest control, and antioxidant. In the study, PFOS and WV were used to treat the planarian, and then the oxidative stress induced by PFOS on the planarian (Dugesia japonica) and the protective effects of WV on lipid peroxidation, related antioxidant enzyme activity, and mRNA expression in the planarian were studied. PFOS caused an increase in malondialdehyde (MDA) contents, a decrease in superoxide dismutase (SOD) and catalase (CAT) activities, and a change in glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR) activities. The mRNA levels of glutathione peroxidase gene (gpx), glutathione S-transferase enzyme gene (gst), and glutathione reductase gene (gr) are upregulated or downregulated to varying degrees. The WV and co-treatment planarians reduced MDA levels, increased the activities of oxidative stress biomarker enzymes, and restored gene expression levels. Our results show that low concentration of WV has protective effects on the oxidative damage caused by PFOS in the planarian.
Collapse
Affiliation(s)
- Bin Wang
- School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Danping Li
- School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Zuoqing Yuan
- School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Yuejie Zhang
- School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Xue Ma
- School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Ziheng Lv
- School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Yu Xiao
- School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Jianyong Zhang
- School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong, China.
| |
Collapse
|
5
|
Shao X, Zhao B, Wang B, Zhao B, Zhu Y, Yuan Z, Zhang J. Neuroprotective effects of blueberry anthocyanins against perfluorooctanoic sulfonate on planarian Dugesia japonica. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 175:39-47. [PMID: 30884343 DOI: 10.1016/j.ecoenv.2019.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
In this study, the planarian Dugesia japonica was exposed to perfluorooctane sulfonate (PFOS) and blueberry anthocyanins (ANT) for 1-10 days to investigate the protective effects of ANT on neurotoxicity and DNA damage induced by PFOS. The expression of neural related genes (Djnlg, DjFoxD, DjFoxG, DjotxA, and DjotxB) in D. japonica following exposure was determined using quantitative real-time PCR (qPCR). Immunofluorescence was performed to determine the alterations in neural morphology. In addition, ELISA kits were used to measure level of the neurotransmitters Dopamine (DA), serotonin (5-HT) and γ-aminobutyric acid (GABA). Furthermore, single cell gel electrophoresis was measured to analyze DNA damage. In this study, PFOS treatment induced neural morphology defects, alterations in neural-related gene expression, alterations in neurotransmitter levels, and DNA damage. However, co-exposure to ANT and PFOS mitigated the damage to D. japonica induced by PFOS. Restoration of neurotransmitter contents and neural related genes expression were observed in planarians following co-application of ANT and PFOS, immunofluorescence showed that nerve morphology almost recovered, and DNA damage was decreased. The results of this study showed that ANT may have a protective effect against PFOS induced neurotoxicity and DNA damage.
Collapse
Affiliation(s)
- Xinxin Shao
- School of Life Sciences, Shandong University of Technology, No. 266 Xincun West Road, 255000 Zibo, Shandong, China
| | - Baoying Zhao
- School of Life Sciences, Shandong University of Technology, No. 266 Xincun West Road, 255000 Zibo, Shandong, China
| | - Bin Wang
- School of Life Sciences, Shandong University of Technology, No. 266 Xincun West Road, 255000 Zibo, Shandong, China
| | - Bosheng Zhao
- School of Life Sciences, Shandong University of Technology, No. 266 Xincun West Road, 255000 Zibo, Shandong, China
| | - Yi Zhu
- School of Life Sciences, Shandong University of Technology, No. 266 Xincun West Road, 255000 Zibo, Shandong, China
| | - Zuoqing Yuan
- School of Life Sciences, Shandong University of Technology, No. 266 Xincun West Road, 255000 Zibo, Shandong, China.
| | - Jianyong Zhang
- School of Life Sciences, Shandong University of Technology, No. 266 Xincun West Road, 255000 Zibo, Shandong, China.
| |
Collapse
|
6
|
Qiao W, Zhang Y, Xie Z, Luo Y, Zhang X, Sang C, Xie S, Huang J. Toxicity of perfluorooctane sulfonate on Phanerochaete chrysosporium: Growth, pollutant degradation and transcriptomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:66-74. [PMID: 30822669 DOI: 10.1016/j.ecoenv.2019.02.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
As a persistent organic pollutant listed in the Stockholm Convention, perfluorooctane sulfonate (PFOS) is extremely refractory to degradation under ambient conditions. Its potential ecotoxicity has aroused great concerns and research interests. However, little is known about the toxicity of PFOS on fungus. In this study, the white rot fungus Phanerochaete chrysosporium (P. chrysosporium) was adopted to assess the toxicity of PFOS in liquid culture. The addition of 100 mg/L PFOS potassium salt significantly decreased the fungal biomass by up to 76.4% comparing with un-amended control during the incubation period. The hyphostroma of P. chrysosporium was wizened and its cell membrane was thickened, while its vesicle structure was increased, based on the observation with scanning electron microscope (SEM) and transmission electron microscope (TEM). Nevertheless, the PFOS dosage of below 100 mg/L did not show a considerable damage to the growth of P. chrysosporium. The degradation of malachite green (MG) and 2,4-dichlorophenol (2,4-DCP) by P. chrysosporium was negatively affected by PFOS. At the initial dosage of 100 mg/L PFOS, the decolorization efficiency of MG and the degradation efficiency of 2,4-DCP decreased by 37% and 20%, respectively. This might be attributed to the inhibition of PFOS on MnP and LiP activities. The activities of MnP and LiP decreased by 20.6% and 43.4%, respectively. At a high dosage PFOS (100 mg/L), P. chrysosporium could show a high adsorption of MG but lose its pollutant degradation ability. Transcriptome analysis indicated that PFOS contamination could lead to the change of gene expression in the studied white rot fungus, and the genes regulating membrane structure, cell redox process, and cell transport, synthesis and metabolism were impacted. Membrane damage and oxidative damage were the two main mechanisms of PFOS' toxicity to P. chrysosporium.
Collapse
Affiliation(s)
- Weichuan Qiao
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yunhao Zhang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenyu Xie
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Luo
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Xuansong Zhang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Cunxing Sang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKJLESPC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Jun Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control(BKLEOC), School of Environment, POPs Research Center, Tsinghua University, Beijing 100084, China.
| |
Collapse
|