1
|
de Cassia Soares Brandão B, Oliveira CYB, Dos Santos EP, de Abreu JL, Oliveira DWS, da Silva SMBC, Gálvez AO. Microalgae-based domestic wastewater treatment: a review of biological aspects, bioremediation potential, and biomass production with biotechnological high-value. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1384. [PMID: 37889346 DOI: 10.1007/s10661-023-12031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
This review aims to perform an updated bibliographical survey on the cultivation of microalgae in domestic wastewater with a focus on biotechnological aspects. It was verified that the largest number of researches developed was about cultures in microalgae-bacteria consortium and mixed cultures of microalgae, followed by researches referring to the species Chlorella vulgaris and to the family Scenedesmaceae. According to published studies, these microorganisms are efficient in the biological treatment of domestic wastewater, as well as in the production of high value-added biomass, as they are capable of biosorbing the organic and inorganic compounds present in the culture medium, thus generating cells with high levels of lipids, proteins, and carbohydrates. These compounds are of great importance for different industry sectors, such as pharmaceuticals, food, and also for agriculture and aquaculture. In addition, biomolecules produced by microalgae can be extracted for several biotechnological applications; however, most studies focus on the production of biofuels, with biodiesel being the main one. There are also other emerging applications that still require more in-depth research, such as the use of biomass as a biofertilizer and biostimulant in the production of bioplastic. Therefore, it is concluded that the cultivation of microalgae in domestic wastewater is a sustainable way to promote effluent bioremediation and produce valuable biomass for the biobased industry, contributing to the development of technology for the green economy.
Collapse
Affiliation(s)
| | - Carlos Yure B Oliveira
- Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | - Jéssika Lima de Abreu
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | | | | | - Alfredo Olivera Gálvez
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
2
|
Ahmad I, Abdullah N, Koji I, Yuzir A, Ahmad MD, Rachmadona N, Al-Dailami A, Show PL, Khoo KS. Micro and macro analysis of restaurant wastewater containing fat, oil, grease (FOG): An approach based on prevention, control, and sustainable management. CHEMOSPHERE 2023; 325:138236. [PMID: 36868419 DOI: 10.1016/j.chemosphere.2023.138236] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/04/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The number of restaurants is increasing day by day in almost all the developing countries, causing the increase in the generation of restaurant wastewater. Various activities (i.e., cleaning, washing, and cooking) going on in the restaurant kitchen lead to restaurant wastewater (RWW). RWW has high concentrations of chemical oxygen demand (COD), biochemical oxygen demand (BOD), nutrients such as potassium, phosphorus, and nitrogen, and solids. RWW also contains fats, oil, and grease (FOG) in alarmingly high concentration, which after congealing can constrict the sewer lines, leading to blockages, backups, and sanitatry sewer overflows (SSOs). The paper provides an insight to the details of RWW containing FOG collected from a gravity grease interceptor at a specific site in Malaysia, and its expected consequences and the sustainable management plan as prevention, control, and mitigation (PCM) approach. The results showed that the concentrations of pollutants are very high as compared to the discharge standards given by Department of Environment, Malaysia. Maximum values for COD, BOD and FOG in the restaurant wastewater samples were found to be 9948, 3170, and 1640 mg/l, respectively. FAME and FESEM analysis are done on the RWW containing FOG. In the FOG, palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1n9c), linoleic acid (C18:2n6c) are the dominant lipid acids with a maximum of 41, 8.4, 43.2, and 11.5%, respectively. FESEM analysis showed formation of whitish layers fprmed due to the deposition of calcium salts. Furthermore, a novel design of indoor hydromechanical grease interceptor (HGI) was proposed in the study based on the Malaysian conditions of restaurant. The HGI was designed for a maximum flow rate of 132 L per minute and a maximum FOG capacity of 60 kg.
Collapse
Affiliation(s)
- Imran Ahmad
- Algae and Biomass Research Laboratory, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, 54100, Malaysia
| | - Norhayati Abdullah
- UTM International, Level 8, Menara Razak, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, 54100, Malaysia.
| | - Iwamoto Koji
- Algae and Biomass Research Laboratory, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, 54100, Malaysia
| | - Ali Yuzir
- Department of Environmental and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, 54100, Malaysia
| | - Mohd Danish Ahmad
- Department of Post-Harvest Engineering and Technology, Aligarh Muslim University, Aligarh, 202001, India
| | - Nova Rachmadona
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia; Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| | - Anas Al-Dailami
- Algae and Biomass Research Laboratory, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, 54100, Malaysia
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India; Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000 Cyberjaya, Selangor, Malaysia.
| |
Collapse
|
3
|
Das M, Ghosh M. Screening, characterization, and kinetic studies of a serine alkaline protease from kitchen wastewater bacteria P2S1An and evaluation of its application in nutraceutical production. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10848. [PMID: 36813755 DOI: 10.1002/wer.10848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/11/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
This present investigation aimed at characterizing the biochemical potential and kinetic study of the protease isolated from kitchen wastewater bacteria, P2S1An. The enzymatic activity was optimum when incubated for 96 h, at 30°C and pH 9.0. The enzymatic activity of the purified protease (PrA) was 10.47-folds that of crude protease (S1). PrA was about 35 kDa in molecular weight. The broad pH and thermal stability, chelators, surfactants and solvent tolerance, and favorable thermodynamics suggested the potentiality of the extracted protease PrA. Thermal activity and stability were enhanced in presence of 1-mM Ca2+ ion at high temperatures. The protease was a serine one as its activity was completely diminished in presence of 1-mM PMSF. The Vmax , Km , and Kcat /Km suggested stability and catalytic efficiency of the protease. PrA hydrolyzes fish protein with 26.61 ± 0.16% of peptide bond cleavage after 240 min, comparable to Alcalase 2.4L (27.13 ± 0.31%). PRACTITIONER POINTS: A serine alkaline protease PrA was extracted from kitchen wastewater bacteria Bacillus tropicus Y14. Protease PrA showed significant activity and stability in a wide temperature and pH range. Protease showed great stability towards additives like metal ions, solvents, surfactants, polyols, and inhibitors. Kinetic study showed that the protease PrA had a prominent affinity and catalytic efficiency for the substrates. PrA hydrolysed fish proteins into short bioactive peptides which signify its potential in the formation of functional food ingredients.
Collapse
Affiliation(s)
- Madhushrita Das
- Department of Chemical Technology, University of Calcutta, Kolkata, West Bengal, India
| | - Mahua Ghosh
- Department of Chemical Technology, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
4
|
Fernández-Rodríguez MJ, de la Lama-Calvente D, García-González M, Moreno-Fernández J, Jiménez-Rodríguez A, Borja R, Rincón-Llorente B. Integral Valorization of Two-Phase Olive Mill Solid Waste (OMSW) and Related Washing Waters by Anaerobic Co-digestion of OMSW and the Microalga Raphidocelis subcapitata Cultivated in These Effluents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3219-3227. [PMID: 35254817 PMCID: PMC8931757 DOI: 10.1021/acs.jafc.1c08100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study evaluates the comprehensive valorization of the byproducts derived from the two-phase olive oil elaboration process [i.e., olive washing water (OWW), olive oil washing water (OOWW), and olive mill solid waste (OMSW)] in a closed-loop process. Initially, the microalga Raphidocelis subcapitata was grown using a mixture of OWW and OOWW as the culture medium, allowing phosphate, nitrate, sugars, and soluble chemical oxygen demand removal. In a second step, the microalgal biomass grown in the mixture of washing waters was used as a co-substrate together with OMSW for an anaerobic co-digestion process. The anaerobic co-digestion of the combination of 75% OMSW-25% R. subcapitata enhanced the methane yield by 7.0 and 64.5% compared to the anaerobic digestion of the OMSW and R. subcapitata individually. This schedule of operation allowed for integration of all of the byproducts generated from the two-phase olive oil elaboration process in a full valorization system and the establishment of a circular economy concept for the olive oil industry.
Collapse
Affiliation(s)
- María José Fernández-Rodríguez
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Pablo de Olavide, Edificio 46, Carretera de Utrera, km 1, 41013 Sevilla, Spain
- Departamento de Sistemas Físico, Químicos y Naturales, Universidad Pablo de Olavide, Carretera de Utrera, km 1, 41013 Sevilla, Spain
| | - David de la Lama-Calvente
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Pablo de Olavide, Edificio 46, Carretera de Utrera, km 1, 41013 Sevilla, Spain
| | - Mercedes García-González
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 49, 41092 Sevilla, Spain
| | - José Moreno-Fernández
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 49, 41092 Sevilla, Spain
| | - Antonia Jiménez-Rodríguez
- Departamento de Sistemas Físico, Químicos y Naturales, Universidad Pablo de Olavide, Carretera de Utrera, km 1, 41013 Sevilla, Spain
| | - Rafael Borja
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Pablo de Olavide, Edificio 46, Carretera de Utrera, km 1, 41013 Sevilla, Spain
| | - Bárbara Rincón-Llorente
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Pablo de Olavide, Edificio 46, Carretera de Utrera, km 1, 41013 Sevilla, Spain
| |
Collapse
|
5
|
Khajvand M, Mostafazadeh AK, Drogui P, Tyagi RD, Brien E. Greywater characteristics, impacts, treatment, and reclamation using adsorption processes towards the circular economy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:10966-11003. [PMID: 35001276 DOI: 10.1007/s11356-021-16480-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 09/07/2021] [Indexed: 06/14/2023]
Abstract
The gap between water demand and available water supply led to wastewater treatment, particularly greywater. Due to specific characteristics of grey wastewater, treatment and recycling of this type of wastewater capture global attention. This paper presents a literature review of the remediation of greywater by adsorption processes. Besides, the reclamation of the grey wastewater in the context of the circular economy is highlighted. In this regard, the characterization of various types of grey wastewater, the potential risks associated with greywater, and the properties of reclaimed water as per the regulation or guideline are summarized. These standards vary based on the application of reused water and from a country to another country. Furthermore, this review elucidates the adsorption process in terms of the type of adsorbents, modification of adsorbents and their regeneration process, adsorption isotherm, kinetics and thermodynamic of adsorption, and optimization of adsorption system. Finally, the removal of different pollutants from greywater by various adsorbents and techno-economic aspects are illustrated.
Collapse
Affiliation(s)
- Mahdieh Khajvand
- Institut National de la Recherche Scientifique (INRS), Centre-Eau Terre Environnement (ETE), Université du Québec, 490 Rue de la Couronne, Québec, G1K 9A9, Canada
| | - Ali Khosravanipour Mostafazadeh
- Institut National de la Recherche Scientifique (INRS), Centre-Eau Terre Environnement (ETE), Université du Québec, 490 Rue de la Couronne, Québec, G1K 9A9, Canada
- Collège de Maisonneuve, Centre d'études des procédés chimiques du Québec (CÉPROCQ), 6220 rue Sherbrooke Est, Montréal, H1N 1C1, Canada
| | - Patrick Drogui
- Institut National de la Recherche Scientifique (INRS), Centre-Eau Terre Environnement (ETE), Université du Québec, 490 Rue de la Couronne, Québec, G1K 9A9, Canada.
| | | | - Emmanuel Brien
- Groupe Veos Inc, 1552 rue Nationale, Terrebonne, Québec, J6W 6M1, Canada
| |
Collapse
|
6
|
Katam K, Tiwari Y, Shimizu T, Soda S, Bhattacharyya D. Start-up of a trickling photobioreactor for the treatment of domestic wastewater. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1690-1699. [PMID: 33715232 DOI: 10.1002/wer.1554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
A stand-alone trickling photobioreactor (TPBR) was seeded with activated sludge and microalgae to treat domestic wastewater. The TPBR was started-up at 12-h hydraulic retention time at room temperature with 12:12 h light:dark cycle. The light was provided by blue LED strips. The reactor has a total volume of 30 L and is divided into six segments. Each segment is 30 cm long and has a diameter of 15 cm. Each segment was packed with polyurethane foam sponge cubes (2.5 × 2.5 × 2.5 cm3 ) with 40% occupancy. The chemical oxygen demand (COD), total organic carbon (TOC), total nitrogen (TN), and phosphorus (P) of domestic wastewater varied in the range of 164-256 mg/L, 84.4-133.8 mg/L, 34.2-55.6 mg/L, and 24.7-39.3 mg/L, respectively, during this period. The COD, TOC, TN, and P concentrations in the effluent after 45 days of operation were 30.24 ± 3.36 mg/L, 7.69 ± 0.09 mg/L, 16.67 ± 0.39 mg/L, and 17.48 ± 0.5 mg/L, respectively. The chlorophyll-to-biofilm biomass ratio increased during the experimental period. The above results indicate that the algal-bacterial symbiotic relationship is beneficial for carbon and nutrient removal from domestic wastewater. PRACTITIONER POINTS: Trickling photobioreactor works on natural ventilation and has low power requirements and a small footprint. The porous sponge media helped in immobilizing and subsequent harvesting of biomass. The reactor conditions favored the growth of diatoms (brown algae) over green algae.
Collapse
Affiliation(s)
- Keerthi Katam
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, India
| | - Yashendra Tiwari
- Department of Civil Engineering, Indian Institute of Technology - BHU, Banaras Hindu University Campus, Varanasi, India
| | - Toshiyuki Shimizu
- Department of Civil and Environmental Engineering, Ritsumeikan University, Shiga, Japan
| | - Satoshi Soda
- Department of Civil and Environmental Engineering, Ritsumeikan University, Shiga, Japan
| | - Debraj Bhattacharyya
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, India
| |
Collapse
|
7
|
Zhu Q, Wu L, Li G, Li X, Zhao C, Du C, Wang F, Li W, Zhang L. A novel of transforming wastewater pollution into resources for desertification control by sand-consolidating cyanobacteria, Scytonema javanicum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:13861-13872. [PMID: 33200387 DOI: 10.1007/s11356-020-11553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
Cultivation of desert cyanobacteria in wastewater can lead to the optimal redistribution of regional resources and is likely to solve two global problems, i.e., wastewater pollution and desertification. However, the potential of using wastewater instead of traditional artificial culture media to cultivate sand-consolidating cyanobacteria for desert management is not well understood. This study compares undistilled and distilled wastewater with an artificial culture medium (BG110) to explore the potential of wastewater as a replacement culture medium for Scytonema javanicum. The results show that the photosynthetic activity (Fv/Fm) of S. javanicum was inhibited in the undistilled wastewater and was lower than that in distilled water and the culture medium. The lowest Chl-a concentration and the highest concentration in BG110 were found in distilled wastewater. However, there was no difference in the biomass (dry weight) between the undistilled wastewater and BG110 at the end of the experiment. After long-term dry storage of the biomass collected after cultivation, there was no difference in the photosynthetic recovery between S. javanicum cultivated in undistilled wastewater and that cultivated in BG110. Accordingly, although wastewater depressed the Chl-a content, it did not affect the biomass accumulation and subsequent photosynthetic recovery after long-term storage. The results reveal the significant potential of cultivating sand-consolidating cyanobacterium in wastewater and using this technology as a new nutrient redistribution method in human settlements and desert areas.
Collapse
Affiliation(s)
- Qiuheng Zhu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Li Wu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Guowen Li
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaoguang Li
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chen Zhao
- Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Caili Du
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Fan Wang
- Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wei Li
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lieyu Zhang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
8
|
Serejo ML, Farias SL, Ruas G, Paulo PL, Boncz MA. Surfactant removal and biomass production in a microalgal-bacterial process: effect of feeding regime. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:1176-1183. [PMID: 33055407 DOI: 10.2166/wst.2020.276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The influence of the feeding regime on surfactant and nutrient removal and biomass production was evaluated in three high rate algal ponds for primary domestic wastewater treatment. Feeding times of 24, 12 and 0.1 h d-1 were studied in each reactor at a similar hydraulic retention time of 7.0 days and organic load of 2.3 mg m-2 d-1. Semi-continuous feeding at 12 and 0.1 h d-1 showed better microalgal biomass production (0.21-0.23 g L-1) and nutrient removal, including nitrogen (74-76%) and phosphorus (80-86%), when compared to biomass production (0.13 g L-1) and nitrogen (69%) and phosphorus (46%) removals obtained at continuous feeding (24 h d-1). Additionally, the removal efficiency of surfactant in the three reactors ranged between 90 and 97%, where the best result was obtained at 0.1 h d-1, resulting in surfactant concentrations in the treated effluent (0.3 mg L-1) below the maximum freshwater discharge limits.
Collapse
Affiliation(s)
- Mayara L Serejo
- Post-graduate Programme of Environmental Technology (PGTA), Federal University of Mato Grosso do Sul (UFMS), Campo Grande-MS, Brazil; Federal Institute of Education, Science and Technology of Mato Grosso do Sul (IFMS), Campus Aquidauana, Aquidauana, Brazil E-mail:
| | - Sarah L Farias
- Post-graduate Programme of Environmental Technology (PGTA), Federal University of Mato Grosso do Sul (UFMS), Campo Grande-MS, Brazil
| | - Graziele Ruas
- Post-graduate Programme of Environmental Technology (PGTA), Federal University of Mato Grosso do Sul (UFMS), Campo Grande-MS, Brazil
| | - Paula L Paulo
- Post-graduate Programme of Environmental Technology (PGTA), Federal University of Mato Grosso do Sul (UFMS), Campo Grande-MS, Brazil
| | - Marc A Boncz
- Post-graduate Programme of Environmental Technology (PGTA), Federal University of Mato Grosso do Sul (UFMS), Campo Grande-MS, Brazil
| |
Collapse
|
9
|
Di Caprio F, Altimari P, Pagnanelli F. New strategies enhancing feasibility of microalgal cultivations. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/b978-0-444-64337-7.00016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
10
|
|
11
|
Simultaneous treatment of domestic wastewater and bio-lipid synthesis using immobilized and suspended cultures of microalgae and activated sludge. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.09.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|