1
|
Costopoulou D, Leondiadis L, Rose M. Climate change influence on the trends of BFRs in the environment and food. CHEMOSPHERE 2024; 367:143578. [PMID: 39433097 DOI: 10.1016/j.chemosphere.2024.143578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
Climate change poses new challenges for environmental protection and food safety. With reported consequences including warmer temperatures, melting of Alpine glaciers, higher sea levels, droughts, extreme rainfall events and increased surface UV radiation, concerns about the impact on food contaminants have been raised. While the effects of climate change on POPs were initially expected to have the biggest impact in the arctic region, given the intensity, frequency and spread of extreme weather events, global influence on environmental pollution and food safety is currently anticipated. Warmer temperatures are expected to enhance the volatilization of POPs and influence their partitioning between soil, sediment, water and atmosphere, enhancing their mobility and their potential for long-range atmospheric transport. Floods and strong winds can cause dilution but also spread of pollutants to wider areas. Limited data are available for the impact of climate change on BFRs levels, trends and toxicity. BFRs are widely used to protect people from fire hazards. Numerous BFR containing products are disposed in landfills where climate change could possibly induce increased leaching and resulting impacts on the food chain. Heat and UV exposure can lead to degradation of novel polymeric BFRs with adverse environmental effects. Long-term monitoring data are needed for feed, food and environmental compartments in order to evaluate climate change influence, which will also enable the development of prediction models specific for legacy and novel BFRs, for various climate change scenarios. Furthermore, there is a need to promote further discussion in the scientific community for the design of risk management and remediation activities for contaminated areas, in response to potential future conditions as the climate continues to change.
Collapse
Affiliation(s)
- Danae Costopoulou
- Laboratory of Mass Spectrometry and Dioxin Analysis, NCSR "Demokritos", Athens, 153 41, Greece
| | - Leondios Leondiadis
- Laboratory of Mass Spectrometry and Dioxin Analysis, NCSR "Demokritos", Athens, 153 41, Greece.
| | - Martin Rose
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| |
Collapse
|
2
|
Martinez G, Zhu J, Takser L, Baccarelli AA, Bellenger JP. Indoor environment, physiological factors, and diet as predictors of halogenated flame retardant levels in stool and plasma of children from a Canadian cohort. CHEMOSPHERE 2024; 352:141443. [PMID: 38346512 DOI: 10.1016/j.chemosphere.2024.141443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
Exposure to halogenated flame retardants (HFRs) has been associated with various adverse effects on human health. Human exposure to HFRs mainly occurs through diet, ingesting contaminated dust, and inhaling contaminated air. Understanding and characterizing the variables linked to these exposure pathways is essential for developing effective risk assessment and mitigation strategies. We investigated indoor environment quality, physiological factors, and diet as potential predictors of HFRs concentration in children's plasma and stool. A selected number of HFRs, including polybrominated diphenyl ethers (PBDEs), Dechlorane-like compounds, and emerging halogenated flame retardants, were measured in children from eastern Quebec (Canada). Information on indoor environment quality, physiological factors, and diet was obtained through self-report questionnaires. Our results show that lower brominated compounds, which are more volatile, were primarily correlated to indoor environment quality. Notably, the use of air purifiers was associated with lower BDE47 and BDE100 levels in blood and newer residential buildings were associated with higher concentrations of BDE47. A significant seasonal variation was found in stool samples, with higher levels of lower brominated PBDEs (BDE47 and BDE100) in samples collected during summer. No association between household income or maternal education degree and HFRs was found. Among emerging compounds, Dec602 and Dec603 were associated with the most variables, including the use of air dehumidifiers, air conditioning, and air purifiers, and the child's age and body fat percentage.
Collapse
Affiliation(s)
- Guillaume Martinez
- Département de chimie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jiping Zhu
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Larissa Takser
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | - Jean-Philippe Bellenger
- Département de chimie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
3
|
Li WL, McDaniel TV, de Solla SR, Bradley L, Dove A, McGoldrick D, Helm P, Hung H. Temporal Trends of Legacy and Current-Use Halogenated Flame Retardants in Lake Ontario in Relation to Atmospheric Loadings, Sources, and Environmental Fate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14396-14406. [PMID: 37695984 PMCID: PMC10537453 DOI: 10.1021/acs.est.3c04876] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Since the phase-out of polybrominated diphenyl ethers (PBDEs), large amounts of alternative halogenated flame retardants (AHFRs) have been introduced to the market. Due to their persistence and toxicity, halogenated flame retardants (HFRs) have become a concern for the ecosystem and human health. However, there remains limited assessment of the atmospheric loadings, sources, and environmental fate of HFRs in Lake Ontario, which receives urban-related inputs and cumulative chemical inputs from the upstream Great Lakes from Canada and the United States. We combined long-term measurements with a modified multimedia model based on site-specific environmental parameters from Lake Ontario to understand the trends and fate of HFRs. All HFRs were detected in the air, precipitation, lake trout, and herring gull egg samples throughout the sampling periods. General decreasing trends were found for PBDEs, while the temporal trends for AHFRs were not clear. Physical-chemical properties and emissions significantly influence the levels, profiles, and trends. Using the probabilistic modeling, HFR concentrations in lake water and sediment were predicted to be close to the measurement, suggesting a good performance for the modified model. The loadings from tributaries and wastewater effluent were the primary input pathways. Transformations in the water and sedimentation were estimated to be the dominant output pathway for the three HFRs.
Collapse
Affiliation(s)
- Wen-Long Li
- Air
Quality Processes Research Section, Environment
and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Tana V. McDaniel
- Water
Quality Monitoring and Surveillance Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Shane R. de Solla
- Ecotoxicology
and Wildlife Health Division, Environment
and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Lisa Bradley
- Water
Quality Monitoring and Surveillance Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Alice Dove
- Water
Quality Monitoring and Surveillance Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Daryl McGoldrick
- Water
Quality Monitoring and Surveillance Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Paul Helm
- Environmental
Monitoring and Reporting Branch, Ontario
Ministry of the Environment, Conservation and Parks, 125 Resources Road, Toronto, Ontario M9P 3V6, Canada
| | - Hayley Hung
- Air
Quality Processes Research Section, Environment
and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| |
Collapse
|
4
|
Wang J, Lou Y, Mo K, Zheng X, Zheng Q. Occurrence of hexabromocyclododecanes (HBCDs) and tetrabromobisphenol A (TBBPA) in indoor dust from different microenvironments: levels, profiles, and human exposure. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6043-6052. [PMID: 37222968 DOI: 10.1007/s10653-023-01620-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/12/2023] [Indexed: 05/25/2023]
Abstract
The levels and distributions of hexabromocyclododecane diastereoisomers (HBCDs) (including α, β, and γ-HBCD) and tetrabromobisphenol A (TBBPA) were investigated in indoor dust from bedrooms and offices. HBCDs diastereoisomers were the most abundant compounds in the dust samples, and the concentrations of ∑HBCDs in the bedrooms and offices ranged from 10.6 to 290.1 ng/g and 17.6 to 1521.9 ng/g, respectively. The concentrations of target compounds in the offices were generally higher than those in the bedrooms, probably due to the presence of more electrical equipment in the offices. In this study, highest levels of target compounds were all found in the electronics. In the bedrooms, the highest mean level of ∑HBCDs was found in air conditioning filter dust (118.57 ng/g), while the personal computer table surface dust showed the peak mean concentrations of ∑HBCDs (290.74 ng/g) and TBBPA (539.69 ng/g) in the offices. Interestingly, a significantly positive correlation was observed between the concentrations of ∑HBCDs in windowsills and beddings dust in the bedrooms, suggesting beddings was one of the crucial sources of ∑HBCDs in the bedrooms. The high dust ingestion values of ∑HBCDs and TBBPA were 0.046 and 0.086 ng/kg bw/day for adults, while 0.811 and 0.04 ng/kg bw/day for toddlers, respectively. The high dermal exposure values of ∑HBCDs were 0.026 and 0.226 ng/kg bw/day for adults and toddlers, respectively. Except for dust ingestion, other human exposure pathways (such as the dermal contact with beddings and furniture) should be paid attention.
Collapse
Affiliation(s)
- Jing Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yueshang Lou
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Kexin Mo
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaobo Zheng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Guangzhou, 510000, China
| | - Qian Zheng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Guangzhou, 510000, China.
| |
Collapse
|
5
|
Ma Y, Stubbings WA, Abdallah MAE, Cline-Cole R, Harrad S. Formal waste treatment facilities as a source of halogenated flame retardants and organophosphate esters to the environment: A critical review with particular focus on outdoor air and soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150747. [PMID: 34619188 DOI: 10.1016/j.scitotenv.2021.150747] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/16/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Extensive use of halogenated flame retardants (HFRs) and organophosphate esters (OPEs) has generated great concern about their adverse effects on environmental and ecological safety and human health. As well as emissions during use of products containing such chemicals, there are mounting concerns over emissions when such products reach the waste stream. Here, we review the available data on contamination with HFRs and OPEs arising from formal waste treatment facilities (including but not limited to e-waste recycling, landfill, and incinerators). Evidence of the transfer of HFRs and OPEs from products to the environment shows that it occurs via mechanisms such as: volatilisation, abrasion, and leaching. Higher contaminant vapour pressure, increased temperature, and elevated concentrations of HFRs and OPEs in products contribute greatly to their emissions to air, with highest emission rates usually observed in the early stages of test chamber experiments. Abrasion of particles and fibres from products is ubiquitous and likely to contribute to elevated FR concentrations in soil. Leaching to aqueous media of brominated FRs (BFRs) is likely to be a second-order process, with elevated dissolved humic matter and temperature of leaching fluids likely to facilitate such emissions. However, leaching characteristics of OPEs are less well-understood and require further investigation. Data on the occurrence of HFRs and OPEs in outdoor air and soil in the vicinity of formal e-waste treatment facilities suggests such facilities exert a considerable impact. Waste dumpsites and landfills constitute a potential source of HFRs and OPEs to soil, and improper management of waste disposal might also contribute to HFR contamination in ambient air. Current evidence suggests minimal impact of waste incineration plants on BFR contamination in outdoor air and soil, but further investigation is required to confirm this.
Collapse
Affiliation(s)
- Yulong Ma
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - William A Stubbings
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Reginald Cline-Cole
- Department of African Studies & Anthropology, School of History and Cultures, University of Birmingham, Birmingham B15 2TT, UK
| | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
6
|
Hu PT, Ma WL, Zhang ZF, Liu LY, Song WW, Cao ZG, Macdonald RW, Nikolaev A, Li L, Li YF. Approach to Predicting the Size-Dependent Inhalation Intake of Particulate Novel Brominated Flame Retardants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15236-15245. [PMID: 34724783 DOI: 10.1021/acs.est.1c03749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The risk of human exposure to particulate novel brominated flame retardants (NBFRs) in the atmosphere has received increasing attention from scientists and the public, but currently, there is no reliable approach to predict the intake of these compounds on the basis of their size distribution. Here, we develop a reliable approach to predict the size-dependent inhalation intake of particulate NBFRs, based on the gas/particle (G/P) partitioning behavior of the NBFRs. We analyzed the concentrations of eight NBFRs in 363 size-segregated particulate samples and 99 paired samples of gaseous and bulk particles. Using these data, we developed an equation to predict the G/P partitioning quotients of NBFRs in particles in different size ranges (KPi) based on particle size. This equation was then successfully applied to predict the size-dependent inhalation intake of particulate NBFRs in combination with an inhalation exposure model. This new approach provides the first demonstration of the effects of the temperature-dependent octanol-air partitioning coefficient (KOA) and total suspended particle concentration (TSP) on the intake of particulate NBFRs by inhalation. In an illustrative case where TSP = 100 μg m-3, inhalation intake of particulate NBFRs exceeded the intake of gaseous NBFRs when log KOA > 11.4.
Collapse
Affiliation(s)
- Peng-Tuan Hu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy/School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, P. R. China
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy/School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy/School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy/School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Wei-Wei Song
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy/School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Zhi-Guo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Robie W Macdonald
- Department of Fisheries and Oceans, Institute of Ocean Sciences, P.O. Box 6000, Sidney, British Columbia V8L 4B2, Canada
| | - Anatoly Nikolaev
- Institute of Natural Sciences, North-Eastern Federal University, 58 Belinsky str., Yakutsk 677000, Russia
| | - Li Li
- School of Public Health, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy/School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, P. R. China
- IJRC-PTS-NA, Toronto, Ontario M2N 6X9, Canada
| |
Collapse
|
7
|
Li Z, Zhu Y, Wang D, Zhang X, Jones KC, Ma J, Wang P, Yang R, Li Y, Pei Z, Zhang Q, Jiang G. Modeling of Flame Retardants in Typical Urban Indoor Environments in China during 2010-2030: Influence of Policy and Decoration and Implications for Human Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11745-11755. [PMID: 34410710 DOI: 10.1021/acs.est.1c03402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Novel flame retardants (FRs) are of increasing concern, given growing evidence of health effects and use to replace polybrominated diphenyl ethers (PBDEs). This study modeled combined effects of use policies and decoration on indoor FRs and human exposure for 18 widely used PBDEs, organophosphate esters (OPEs), and novel brominated flame retardants in typical urban indoor environments in China. The current estimated indoor emission rates and average concentrations in air and dust of the 18 FRs were 102-103 ng/h, 561 ng/m3, and 1.5 × 104 ng/g, respectively, with seven OPEs dominant (>69%). Different use patterns exist between China and the US and Europe. Scenarios modeled over 2010-2030 suggested that decoration would affect indoor concentrations of FRs more than use policies, and use policies were mainly responsible for shifts of FR composition. Additional use of hexabromobenzene and 2,3,4,5,6-pentabromotoluene and removal of BDE-209 would make the total human exposure to the modeled FR mixture increase after the restriction of penta- and octa-BDE but decrease after deca-BDE was banned. Better knowledge of the toxicity of substitutes is needed for a complete understanding of the health implications of such changes. Toddlers may be more affected by use changes than adults. Such studies are supportive to the management of FR use.
Collapse
Affiliation(s)
- Zengwei Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dou Wang
- Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Xianming Zhang
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street, West Montreal, Quebec H4B 1R6, Canada
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Jianmin Ma
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Pu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhiguo Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Zhou D, Zheng X, Liu X, Huang Y, Su W, Tan H, Wang Y, Chen D. Photodegradation of 1,3,5-Tris-(2,3-dibromopropyl)-1,3,5-triazine-2,4,6-trione and decabromodiphenyl ethane flame retardants: Kinetics, Main products, and environmental implications. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122983. [PMID: 32473325 DOI: 10.1016/j.jhazmat.2020.122983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Photodegradation has been demonstrated as one of the important environmental factors affecting the fate of contaminants such as brominated flame retardants (BFRs). However, a number of emerging BFRs, particularly those with high bromine substitution, have rarely been investigated for their photodegradation kinetics. Our study evaluated photodegradation of two highly brominated FRs, 1,3,5-tris-(2,3-dibromopropyl)-1,3,5-triazine-2,4,6-trione (TDBP-TAZTO) and decabromodiphenyl ethane (DBDPE), under various conditions. The results indicated that the degradation kinetics was affected by UV irradiation wavelength, intensity, solvent type, as well as the structural characteristics. TDBP-TAZTO exhibited degradation half-lives (t1/2) of 23.5-6931 min under various UV irradiation conditions and 91.2 days under natural sunlight. Its degradation was much slower than that of DBDPE which exhibited t1/2 of 0.8-101.9 min under UV and 41.3 min under natural sunlight. A variety of degradation products were detected as a result of different breakdown pathways. This indicated that photodegradation could substantially influence the fate of these highly brominated FRs, resulting in a cocktail of degradation products as environmentally occurring contaminants. This could also complicate the evaluation of the ecological risks of these target flame retardants, given that degradation products generally possess physicochemical properties and biological effects different from their parent chemicals.
Collapse
Affiliation(s)
- Daming Zhou
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiaoshi Zheng
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China
| | - Xiaotu Liu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yichao Huang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Weijie Su
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Hongli Tan
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yan Wang
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
9
|
Hao Y, Meng W, Li Y, Han X, Lu H, Wang P, Yang R, Zhang Q, Jiang G. Concentrations and distribution of novel brominated flame retardants in the atmosphere and soil of Ny-Ålesund and London Island, Svalbard, Arctic. J Environ Sci (China) 2020; 97:180-185. [PMID: 32933733 DOI: 10.1016/j.jes.2020.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Novel brominated flame retardants (NBFRs) were investigated in Arctic air and soil samples collected from Ny-Ålesund and London Island, Svalbard, during Chinese scientific research expeditions to the Arctic during 2014-2015. The concentrations of Σ9NBFRs in the Arctic air and soil were 4.9-8.7 pg/m3 (average 6.8 pg/m3) and 101-201 pg/g dw (average 150 pg/g dw), respectively. The atmospheric concentration of hexabromobenzene (HBB) was significantly correlated with that of pentabromotoluene (PBT) and pentabromobenzene (PBBz), suggesting similar source and environmental fate in the Arctic air. No significant spatial difference was observed among the different sampling sites, both for air and soil samples, indicating that the effects of the scientific research stations on the occurrence of NBFRs in the Arctic were minor. The fugacities from soil to air of pentabromoethylbenzene (PBEB), 2,3-dibromopropyl 2,4,6-tribromophenyl ether (DPTE), and decabromodiphenylethane 1,2-bis (pentabromophenyl) ethane (DBDPE) were lower than the equilibrium value, indicating a nonequilibrium state of these compounds between air and soil, the dominant impact of deposition and the net transport from air to soil. The correlation analysis between the measured and predicted soil-atmosphere coefficients based on the absorption model showed that the impact of the soil organic matter on the distribution of NBFRs in the Arctic region was minor. To the best of our knowledge, this work is one of the limited reports on atmospheric NBFRs in the Arctic and the first study to investigate the occurrence and fate of NBFRs in the Arctic soil.
Collapse
Affiliation(s)
- Yanfen Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenying Meng
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xu Han
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huili Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Pu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Maddela NR, Venkateswarlu K, Kakarla D, Megharaj M. Inevitable human exposure to emissions of polybrominated diphenyl ethers: A perspective on potential health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115240. [PMID: 32698055 DOI: 10.1016/j.envpol.2020.115240] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 05/24/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) serve as flame retardants in many household materials such as electrical and electronic devices, furniture, textiles, plastics, and baby products. Though the use of PBDEs like penta-, octa- and deca-BDE greatly reduces the fire damage, indoor pollution by these toxic emissions is ever-growing. In fact, a boom in the global market projections of PBDEs threatens human health security. Therefore, efforts are made to minimize PBDEs pollution in USA and Europe by encouraging voluntary phasing out of the production or imposing compelled regulations through Stockholm Convention, but >500 kilotons of PBDEs still exist globally. Both 'environmental persistence' and 'bioaccumulation tendencies' are the hallmarks of PBDE toxicities; however, both these issues concerning household emissions of PBDEs have been least addressed theoretically or practically. Critical physiological functions, lipophilicity and toxicity, trophic transfer and tissue specificities are of utmost importance in the benefit/risk assessments of PBDEs. Since indoor debromination of deca-BDE often yields many products, a better understanding on their sorption propensity, environmental fate and human toxicities is critical in taking rigorous measures on the ever-growing global deca-BDE market. The data available in the literature on human toxicities of PBDEs have been validated following meta-analysis. In this direction, the intent of the present review was to provide a critical evaluation of the key aspects like compositional patterns/isomer ratios of PBDEs implicated in bioaccumulation, indoor PBDE emissions versus human exposure, secured technologies to deal with the toxic emissions, and human toxicity of PBDEs in relation to the number of bromine atoms. Finally, an emphasis has been made on the knowledge gaps and future research directions related to endurable flame retardants which could fit well into the benefit/risk strategy.
Collapse
Affiliation(s)
- Naga Raju Maddela
- Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador; Facultad la Ciencias la Salud, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, 515003, India
| | - Dhatri Kakarla
- University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
11
|
Guo JQ, Li YF, Liu LY, Huo CY, Sun Y, Ma WL, Zhang ZF, Li YF. Occurrence and partitioning of brominated flame retardants (BFRs) in indoor air and dust: a 15-month case study in a test home. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:35126-35136. [PMID: 32588303 DOI: 10.1007/s11356-020-09788-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Ten polybrominated diphenyl ethers (PBDEs) and 16 novel brominated flame retardants (NBFRs) were measured in air and dust samples collected in a test home in Harbin, China, from January 2017 to June 2018. The PBDE and NBFR concentrations in indoor air were in the ranges of 0.598-14.5 pg m-3 and 9.28-686 pg m-3, respectively. The ranges of the PBDE and NBFR concentrations in indoor dust were 221-1060 ng g-1 and 71.9-1160 ng g-1, respectively. Brominated flame retardant (BFR) concentrations in indoor air were affected by the temperature, relative humidity (RH), and ventilation. The BFR concentrations in indoor dust did not show temperature dependence. All dust samples were sieved into 6 size fractions (F1-F6: 1000-2000 μm, 500-1000 μm, 250-500 μm, 125-250 μm, 63-125 μm, and < 63 μm). The mass percentage of BFRs in F6 was the highest. The BFR concentrations did not increase constantly with a particle size decrease, and the concentrations in F2 were higher than those in F3. The partitioning behavior of BFRs illustrates that the dust-air partitioning coefficient approximately approached equilibrium within F5, F6, and the total dust fraction (FA) in the test home when logKOA was between 9.1 and 11.32. Air-dust fugacity fractions were calculated, and the results suggested that most of the BFRs were mainly transferred from air to dust in the indoor environment for F1-F6.
Collapse
Affiliation(s)
- Jia-Qi Guo
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China
- University Corporation for Polar Research, Beijing, 100875, China
| | - Yong-Feng Li
- School of Forestry, Northeast Forestry University, Harbin, 150060, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China.
- University Corporation for Polar Research, Beijing, 100875, China.
| | - Chun-Yan Huo
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China
- University Corporation for Polar Research, Beijing, 100875, China
| | - Yu Sun
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China
- University Corporation for Polar Research, Beijing, 100875, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China
- University Corporation for Polar Research, Beijing, 100875, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China
- University Corporation for Polar Research, Beijing, 100875, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, and School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin, 150090, China
- University Corporation for Polar Research, Beijing, 100875, China
- IJRC-PTS-NA, Toronto, M2N 6X9, Canada
| |
Collapse
|
12
|
Zuiderveen EAR, Slootweg JC, de Boer J. Novel brominated flame retardants - A review of their occurrence in indoor air, dust, consumer goods and food. CHEMOSPHERE 2020; 255:126816. [PMID: 32417508 DOI: 10.1016/j.chemosphere.2020.126816] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/30/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
This critical review summarizes the occurrence of 63 novel brominated flame retardants (NBFRs) in indoor air, dust, consumer goods and food. It includes their EU registration and (potential) risks. The increasing application of NBFRs calls for more research on their occurrence, environmental fate and toxicity. This review reports which NBFRs are actually being studied, which are detected and which are of most concern. It also connects data from the European Chemical Association on NBFRs with other scientific information. Large knowledge gaps emerged for 28 (out of 63) NBFRs, which were not included in any monitoring programs or other studies. This also indicates the need for optimized analytical methods including all NBFRs. Further research on indoor environments, emission sources and potential leaching is also necessary. High concentrations of 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (EH-TBB), bis(2-ethylhexyl)tetrabromophthalate (BEH-TEBP), decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) were often reported. The detection of hexabromobenzene (HBB), pentabromotoluene (PBT), 1,4-dimethyltetrabromobenzene (TBX), 4-(1,2-dibromoethyl)-1,2-dibromocyclohexane (DBE-DBCH) and tetrabromobisphenol A bis(2,3-dibromopropyl) ether (TBBPA-BDBPE) also raises concern.
Collapse
Affiliation(s)
- Emma A R Zuiderveen
- Department Environment and Health, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands.
| | - J Chris Slootweg
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, 1090, GD, Amsterdam, the Netherlands
| | - Jacob de Boer
- Department Environment and Health, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| |
Collapse
|
13
|
Jiang Y, Yuan L, Lin Q, Ma S, Yu Y. Polybrominated diphenyl ethers in the environment and human external and internal exposure in China: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133902. [PMID: 31470322 DOI: 10.1016/j.scitotenv.2019.133902] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 05/12/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used as brominated flame retardants. Because of their toxicity and persistence, some PBDEs were restricted under the Stockholm Convention in 2009. Since then, many studies have been carried out on PBDEs in China and in many other countries. In the present review, the occurrences and contamination of PBDEs in air, water, sediment, soil, biota and daily food, human blood, hair, and other human tissues in China are comprehensively reviewed and described. The human exposure pathways and associated health risks of PBDEs are summarized. The data showed no obvious differences between North and South China, but concentrations from West China were generally lower than in East China, which can be mainly attributed to the production and widespread use of PBDEs in eastern regions. High levels of PBDEs were generally observed in the PBDE production facilities (e.g., Jiangsu Province and Shandong Province, East China) and e-waste recycling sites (Taizhou City, Zhejiang Province, East China, and Guiyu City and Qingyuan City, both located in Guangdong Province, South China) and large cities, whereas low levels were detected in rural and less-developed areas, especially in remote regions such as the Tibetan Plateau. Deca-BDE is generally the major congener. Existing problems for PBDE investigations in China are revealed, and further studies are also discussed and anticipated. In particular, non-invasive matrices such as hair should be more thoroughly studied; more accurate estimations of human exposure and health risks should be performed, such as adding bioaccessibility or bioavailability to human exposure assessments; and the degradation products and metabolites of PBDEs in human bodies should receive more attention. More investigations should be carried out to evaluate the quantitative relationships between internal and external exposure so as to provide a scientific basis for ensuring human health.
Collapse
Affiliation(s)
- Yufeng Jiang
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Longmiao Yuan
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Qinhao Lin
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Shentao Ma
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515100, China
| | - Yingxin Yu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
14
|
Barroso PJ, Martín J, Santos JL, Aparicio I, Alonso E. Evaluation of the airborne pollution by emerging contaminants using bitter orange (Citrus aurantium) tree leaves as biosamplers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 677:484-492. [PMID: 31063891 DOI: 10.1016/j.scitotenv.2019.04.391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/22/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
In this work, an analytical method has been applied to biomonitor airborne emerging pollutants in urban areas using bitter orange (Citrus aurantium) tree leaves, which is an evergreen species widely extended in the Mediterranean region, as biosampler. Leaves, from trees located in 20 different locations from Seville City (South of Spain) were sampled during one year period. Sampling sites were located in six highly populated areas, in seven lowly populated areas, in six urban parks and in one industrial area. Fifteen of the target compounds were detected in the analysed samples. The highest concentrations corresponded to plasticizers (up to 852ng/g dry matter (dm)) and surfactants (up to 752ng/gdm), especially di(2-ethylhexyl)phthalate and nonylphenol. Spatial distribution allowed assessing the influence of populated areas in the concentration of some of the studied compounds, such as plasticizers and perfluorinated compounds, and the influence of industrial areas, in the concentration of surfactants. No clear influence of the climatic conditions (temperature, solar radiation and rainfall) on the concentrations of studied compounds was observed. This fact could be due to the presence of diffuse sources of these compounds. In the case of the brominated flame retardant, the measured concentrations could be related with two fire episodes in the vicinity, but until now it has not been possible to rigorously demonstrate a causal relationship. This fact could reveal the suitability and valuable use of Citrus aurantium tree leaves for biomonitoring atmospheric pollutants, especially from unexpected emissions in atmospheric pollution episodes.
Collapse
Affiliation(s)
- Pedro José Barroso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África 7, E-41011 Seville, Spain
| | - Julia Martín
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África 7, E-41011 Seville, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África 7, E-41011 Seville, Spain.
| | - Irene Aparicio
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África 7, E-41011 Seville, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África 7, E-41011 Seville, Spain
| |
Collapse
|
15
|
Ruan Y, Zhang K, Lam JCW, Wu R, Lam PKS. Stereoisomer-specific occurrence, distribution, and fate of chiral brominated flame retardants in different wastewater treatment systems in Hong Kong. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:211-218. [PMID: 31005053 DOI: 10.1016/j.jhazmat.2019.04.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the occurrence and fate of 1,2,5,6,9,10-hexabromocyclododecane (HBCD) and 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH), two chiral brominated flame retardants (BFRs) with sixteen different stereoisomers, in four Hong Kong wastewater treatment plants (WWTPs) featuring diverse treatment processes during a two-year sampling campaign. More effective HBCD removal was achieved via biodegradation as compared to sludge sorption, whereas both chemically enhanced primary treatment and secondary treatment yielded high TBECH elimination (>90%). α-HBCD (54-75%) predominated in all samples, and its proportions were increased in effluent as compared to influent and sludge. α- and β-TBECH (72.3-84.4% in total) were the predominant TBECH diastereomers, with a proportional shift from the latter to the former diastereomer mostly observed after treatment. More rapid biodegradation and preferential sorption of γ-HBCD as compared to α-HBCD as well as β-TBECH as compared to α-TBECH might account for this changing pattern. This is the first study to report the enantiomer-specific behavior of chiral BFRs in different wastewater treatment processes. A preferential elimination of (+)-α- and (+)-γ-HBCD and E2-β-TBECH (the second enantiomeric elution order) took place consistently after biological treatment, possibly due to enantioselective adsorption and microbial degradation. Our results highlight the importance of conducting enantiospecific analysis for chiral pollutants in wastewater samples.
Collapse
Affiliation(s)
- Yuefei Ruan
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kai Zhang
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong Special Administrative Region, China
| | - James C W Lam
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Science and Environmental Studies, The Education University of Hong of Kong, Hong Kong Special Administrative Region, China.
| | - Rongben Wu
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, City University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
16
|
Qian Z, Xu Y, Zheng C, Zhang A, Sun J. Enhanced emissions of brominated flame retardants from indoor sources by direct contact with dust. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:170. [PMID: 30778779 DOI: 10.1007/s10661-019-7303-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
The emissions of brominated flame retardants (BFRs) from consumer products have been considered the major to the ubiquitous occurrence of contaminants in indoor environments. Direct contact with dust covering the surface of source materials in a real environment could introduce significant uncertainty. This study investigated the effects of dust coverage on the emissions of four BFRs, including 1, 2, 5, 6, 9, and 10-hexabromocyclododecane (HBCD), bis(2-ethyl-1-hexyl) tetrabromophthalate (BEHTBP), tetrabromobisphenol A (TBBPA), and hexabromobenzene (HBBZ), from decorative laminate, cotton sound insulation, PVC floor, and carpet. Direct contact with dust was confirmed to increase the total emissions by 30.8-98.1% compared with the emissions in the non-dust group. The emissions of HBCD, TBBPA, and HBBZ from cotton sound insulation were obviously enhanced by dust with smaller particles but did not linearly increase along with the dust amounts. Thus, these findings have practical implications in that the frequent removal of dust could be important to minimize the exposure risk from indoor emissions of BFRs.
Collapse
Affiliation(s)
- Zhuxiu Qian
- International Joint Research Center for Persistent Toxic Substances, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yiwen Xu
- International Joint Research Center for Persistent Toxic Substances, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chaofan Zheng
- International Joint Research Center for Persistent Toxic Substances, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Anping Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianqiang Sun
- International Joint Research Center for Persistent Toxic Substances, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|