1
|
Liu LF, Yu J, Jiang Y, Liu Q, Jiang Y, Chen R, Yang GP, Song XR. Size-dependent influences of nano- and micro-plastics exposure on feeding, antioxidant systems, and organic sulfur compounds in ciliate Uronema marinum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124653. [PMID: 39095002 DOI: 10.1016/j.envpol.2024.124653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Protozoa play a pivotal role in the microbial cycle, and ciliated protozoan grazing habits are associated with dimethyl sulfide (DMS) cycle. Many studies have explored the impacts of nanoplastics (NPs) and microplastics (MPs) on ecotoxicological effects of ciliates. However, limited research exists on NPs and MPs influences on the production of organic sulfur compounds. The impact of NPs and MPs on the production of dimethyl sulfoxide (DMSO) and carbonyl sulfide (COS) remains unclear. Therefore, we examined the impacts of three concentrations (1 × 105, 5 × 105, and 1 × 106 items/mL) of polystyrene (PS) NPs (50 nm) and MPs (1 and 5 μm) on the ecotoxicology and DMS/dimethylsulfoniopropionate (DMSP)/DMSO/COS production in the ciliate Uronema marinum. NPs and MPs exposure were found to reduce the abundance, growth rate, volume, and biomass of U. marinum. Additionally, NPs and MPs increased the superoxide anion radical (O2˙─) production rates and malondialdehyde (MDA) contents (24 h), leading to a decline in glutathione (GSH) content and an ascend in superoxide dismutase (SOD) activity to mitigate the effects of reactive oxygen species (ROS). Exposure to PS NPs and MPs decreased the ingestion rates of algae by 7.5-14.4%, resulting in decreases in DMS production by 56.8-85.4%, with no significant impact on DMSO production. The results suggest a distinct pathway for the production of DMSO or COS compared to DMS. These findings help us to understand the NPs and MPs impacts on the marine ecosystem and organic sulfur compound yield, potentially influencing the global climate.
Collapse
Affiliation(s)
- Long-Fei Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Juan Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Yu Jiang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Qian Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Yong Jiang
- Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; MoE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Rong Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Gui-Peng Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xin-Ran Song
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| |
Collapse
|
2
|
Jia R, Zhang Y, Wang Y, Wang Y, Sun G, Jiang Y. Toxic effects on ciliates under nano-/micro-plastics coexist with silver nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133058. [PMID: 38006860 DOI: 10.1016/j.jhazmat.2023.133058] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/08/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Owing to the degradation of plastics, microplastics (MPs) and nanoplastics (NPs) have remained the focus of global attention. Silver nanoparticles (AgNPs) could adversely affect marine organisms due to their broad application. So far, the combined effects of MPs/NPs (strong adsorbents) with AgNPs on marine organisms are scant. Thus, four sizes polystyrene beads (80 nm, 220 nm, 1.07 µm, and 2.14 µm) combined with AgNPs (30 nm) were assessed using ciliated protozoa Uronema marinum. Results showed that MPs/NPs dramatically decrease the abundance, biovolume, and carbon biomass of U. marinum. And, exposure could cause changes of antioxidant enzyme activity and antioxidant content on U. marinum. The combined toxicity of MPs/NPs with AgNPs to ciliates showed an enhanced effect compared to exposure alone. Additionally, the negative effects under exposure of NPs plus AgNPs were more significant than those of MPs plus AgNPs. Transcriptome sequencing showed that co-exposure could affect the energy metabolism and lipid metabolism of ciliates, even cause DNA and protein damage. Our study provided a novel insight and first-hand basic data for the understanding of combined toxicity of MPs /NPs with AgNPs on the basic trophic level ciliated protozoa in marine ecosystems.
Collapse
Affiliation(s)
- Ruiqi Jia
- Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yan Zhang
- Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yaxin Wang
- Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yunlong Wang
- Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Gaojingwen Sun
- Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yong Jiang
- Institute of Evolution and Marine Biodiversity & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; MoE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
3
|
Muñiz-González AB, Paoli F, Martínez-Guitarte JL, Lencioni V. Molecular biomarkers as tool for early warning by chlorpyrifos exposure on Alpine chironomids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118061. [PMID: 34523523 DOI: 10.1016/j.envpol.2021.118061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Pesticides used in agriculture can be transported at a medium-high distance due to the drift effect, reaching even remote areas as mountain regions, glaciers, and snow cover. With the melting process, pesticides enter freshwater glacier ecosystems, becoming a threat to wildlife fauna, mainly dominated by Diptera Chironomidae. Chlorpyrifos (CPF), as one of the most commonly used pesticides in alpine vineyards and apple orchards, is frequently detected in icemelt waters. We selected as target species, larvae of the cold stenothermal chironomid Diamesa zernyi, collected in two glacier-fed streams (Presena and Amola) in the Italian Alps. Firstly, a de novo transcriptome was obtained, and secondly, a gene array was designed to study the molecular response of a wild population of D. zernyi exposed to three sub-lethal CPF concentrations corresponding to 1/100 LC10 (0.011 μg/L), 1/10 LC10 (0.11 μg/L), and LC10 (1.1 μg/L), for 24 h. The sub-organismal response was evaluated by Real-Time Polymerase Chain Reaction (RT-PCR), employing 40 genes related to essential metabolic routes as future candidates for biomarkers in wildlife chironomids. After 24 h, the endocrine system (E75, E93, EcR, and Met), detoxification response (GSTO3, GSTS1), and stress response (hsp75, hsp83, HYOU1) were altered. CPF seems to act as an endocrine disruptor and could lead to defective larval development, disrupted cellular homeostasis through heat shock proteins (HSPs) alteration (defective protein folding and mitochondrial functions), as well as oxidative damage (confirmed by increased GST expression). For the first time, molecular studies detected early alarm signals in wildlife in glacier environments. Our findings confirm the high environmental risk of CPF affecting aquatic insect metabolism and raise the level of concern about this pesticide in high altitude water bodies, generally considered pristine. Furthermore, this study emphasizes the incipient need to use non-model organisms for the evaluation of natural ecosystems. We also highlight the demand for research into new molecular biomarkers, and the importance of including molecular approaches in toxicology evaluations to detect the early adverse effects of pollutants.
Collapse
Affiliation(s)
- Ana-Belén Muñiz-González
- Biology and Toxicology Group, Dept. Physics, Mathematics and Fluids, UNED. Paseo Senda del Rey, 9, 28040, Madrid, Spain.
| | - Francesca Paoli
- Department of Invertebrate Zoology and Hydrobiology, MUSE-Museo delle Scienze, Corso del Lavoro e della Scienza 3, I-38122, Trento, Italy
| | - José-Luis Martínez-Guitarte
- Biology and Toxicology Group, Dept. Physics, Mathematics and Fluids, UNED. Paseo Senda del Rey, 9, 28040, Madrid, Spain
| | - Valeria Lencioni
- Department of Invertebrate Zoology and Hydrobiology, MUSE-Museo delle Scienze, Corso del Lavoro e della Scienza 3, I-38122, Trento, Italy
| |
Collapse
|
4
|
Bacteria-Derived Hemolysis-Related Genes Widely Exist in Scuticociliates. Microorganisms 2020; 8:microorganisms8111838. [PMID: 33266460 PMCID: PMC7709021 DOI: 10.3390/microorganisms8111838] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 11/30/2022] Open
Abstract
Scuticociliatosis is an invasive external or systemic infection caused by ciliated protozoa, mainly those within the subclass Scuticociliatia (scuticociliates). Many scuticociliates are fish pathogens, including Miamiensis avidus, Philasterides dicentrarchi, Pseudocohnilembus persalinus, and Uronema marinum. Our previous study showed that hemolysis-related genes derived from bacteria through horizontal gene transfer (HGT) may contribute to virulence in P. persalinus. Hemorrhagic lesions are a common feature of scuticociliatosis, but it is not known whether other scuticociliates also have bacteria-derived hemolysis-related genes. In this study, we constructed a high-quality macronuclear genome of another typical pathogenic scuticociliate, U. marinum. A total of 105 HGT genes were identified in this species, of which 35 were homologs of hemolysis-related genes (including hemolysin-like genes) that had previously been identified in P. persalinus. Sequencing of an additional five species from four scuticociliate families showed that bacteria-derived hemolysis-related genes (especially hemolysin-like genes) are widely distributed in scuticociliates. Based on these findings, we suggest that hemolysin-like genes may have originated before the divergence of scuticociliates.
Collapse
|
5
|
Muñoz-Palazon B, Rodriguez-Sanchez A, Hurtado-Martinez M, de Castro IM, Juarez-Jimenez B, Gonzalez-Martinez A, Gonzalez-Lopez J. Performance and microbial community structure of an aerobic granular sludge system at different phenolic acid concentrations. JOURNAL OF HAZARDOUS MATERIALS 2019; 376:58-67. [PMID: 31121453 DOI: 10.1016/j.jhazmat.2019.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
The present work aims to use aerobic granular sludge technology for the treatment of wastewater containing high organic matter loads and a mixture of phenolic compounds normally present in olive washing water. The physicochemical performance of five bioreactors treating different concentrations of mixture of phenolic acid was monitored to observe the response of the systems. The bioreactors that operated at 50, 100 and 300 mg L-1 did not show relevant changes in terms of performance and granules properties, showing high ratio of phenolic compound removal ratio. However, the bioreactors operated with high phenolic compound concentrations showed low rates of organic matter, nitrogen and phenolic acid removal. In the same way, high concentrations of phenolic compounds determined the disintegration of the granular biomass. Next-generation sequencing studies showed a stable community structure in the bioreactors operating with 50, 100 and 300 mg L-1 of phenolic acids, with the genera Lampropedia and Arenimonas, family Xanthobacteraceae and Fungi Pezizomycotina as the dominant phylotypes. Conversely, the reactors operated at 500 and 600 mg L-1 of phenolic substances promoted the proliferation of Oligohymenophorea ciliates. Thus, this study suggests that aerobic granular sludge technology could be useful for the treatment of wastewaters such as olive washing water.
Collapse
Affiliation(s)
- Barbara Muñoz-Palazon
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain.
| | | | - Miguel Hurtado-Martinez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| | - Ines Manuel de Castro
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| | - Belén Juarez-Jimenez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| | | | - Jesus Gonzalez-Lopez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| |
Collapse
|