1
|
Shoukat A, Saqib ZA, Akhtar J, Aslam Z, Pitann B, Hossain MS, Mühling KH. Zinc and Silicon Nano-Fertilizers Influence Ionomic and Metabolite Profiles in Maize to Overcome Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1224. [PMID: 38732438 PMCID: PMC11085825 DOI: 10.3390/plants13091224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
Salinity stress is a major factor affecting the nutritional and metabolic profiles of crops, thus hindering optimal yield and productivity. Recent advances in nanotechnology propose an avenue for the use of nano-fertilizers as a potential solution for better nutrient management and stress mitigation. This study aimed to evaluate the benefits of conventional and nano-fertilizers (nano-Zn/nano-Si) on maize and subcellular level changes in its ionomic and metabolic profiles under salt stress conditions. Zinc and silicon were applied both in conventional and nano-fertilizer-using farms under stress (100 mM NaCl) and normal conditions. Different ions, sugars, and organic acids (OAs) were determined using ion chromatography and inductively coupled plasma mass spectroscopy (ICP-MS). The results revealed significant improvements in different ions, sugars, OAs, and other metabolic profiles of maize. Nanoparticles boosted sugar metabolism, as evidenced by increased glucose, fructose, and sucrose concentrations, and improved nutrient uptake, indicated by higher nitrate, sulfate, and phosphate levels. Particularly, nano-fertilizers effectively limited Na accumulation under saline conditions and enhanced maize's salt stress tolerance. Furthermore, nano-treatments optimized the potassium-to-sodium ratio, a critical factor in maintaining ionic homeostasis under stress conditions. With the growing threat of salinity stress on global food security, these findings highlight the urgent need for further development and implementation of effective solutions like the application of nano-fertilizers in mitigating the negative impact of salinity on plant growth and productivity. However, this controlled environment limits the direct applicability to field conditions and needs future research, particularly long-term field trials, to confirm such results of nano-fertilizers against salinity stress and their economic viability towards sustainable agriculture.
Collapse
Affiliation(s)
- Abbas Shoukat
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan; (A.S.); (J.A.)
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Str. 2, 24118 Kiel, Germany; (B.P.); (M.S.H.)
| | - Zulfiqar Ahmad Saqib
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan; (A.S.); (J.A.)
| | - Javaid Akhtar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan; (A.S.); (J.A.)
| | - Zubair Aslam
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Britta Pitann
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Str. 2, 24118 Kiel, Germany; (B.P.); (M.S.H.)
| | - Md. Sazzad Hossain
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Str. 2, 24118 Kiel, Germany; (B.P.); (M.S.H.)
- Department of Agronomy and Haor Agriculture, Faculty of Agriculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Karl Hermann Mühling
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Str. 2, 24118 Kiel, Germany; (B.P.); (M.S.H.)
| |
Collapse
|
2
|
He X, Liu S, Huang X, Yu F, Li Y, Li F, Liu K. Effects of sulfate on the photosynthetic physiology characteristics of Hydrocotyle vulgaris under zinc stress. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:724-735. [PMID: 37544656 DOI: 10.1071/fp23054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
The effects of sulfate on the zinc (Zn) bioaccumulation characteristics and photophysiological mechanisms of the ornamental plant Hydrocotyle vulgaris were explored using a hydroponic culture under three Zn concentrations (300, 500 and 700mgL-1 ) with (400μmolL-1 ) or without the addition of sulfate. Results showed that: (1) tissue Zn concentrations and total Zn contents increased with increasing hydroponic culture Zn concentrations; and sulfate addition decreased Zn uptake and translocation from roots to shoots; (2) Zn exposure decreased photosynthetic pigment synthesis, while sulfate changed this phenomenon, especially for chlorophyll a under 300mgL-1 Zn treatment; (3) Zn exposure decreased photosynthetic function, while sulfate had positive effects, especially on the photosynthetic rate (Pn ) and stomatal conductance (Gs ); and (4) chlorophyll fluorescence parameters related to light energy capture, transfer and assimilation were generally downregulated under Zn stress, while sulfate had a positive effect on these processes. Furthermore, compared to photosynthetic pigment synthesis and photosynthesis, chlorophyll fluorescence was more responsive, especially under 300mgL-1 Zn treatment with sulfate addition. In general, Zn stress affected photophysiological processes at different levels, while sulfate decreased Zn uptake, translocation, and bioaccumulation and showed a positive function in alleviating Zn stress, ultimately resulting in plant growth promotion. All of these results provide a theoretical reference for combining H. vulgaris with sulfate application in the bioremediation of Zn-contaminated environments at the photophysiological level.
Collapse
Affiliation(s)
- Xiaoyan He
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Shiling Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Xiaoqian Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Furong Li
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kehui Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| |
Collapse
|
3
|
Lyčka M, Barták M, Helia O, Kopriva S, Moravcová D, Hájek J, Fojt L, Čmelík R, Fajkus J, Fojtová M. Sulfate supplementation affects nutrient and photosynthetic status of Arabidopsis thaliana and Nicotiana tabacum differently under prolonged exposure to cadmium. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130527. [PMID: 36495640 DOI: 10.1016/j.jhazmat.2022.130527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Hydroponic experiments were performed to examine the effect of prolonged sulfate limitation combined with cadmium (Cd) exposure in Arabidopsis thaliana and a potential Cd hyperaccumulator, Nicotiana tabacum. Low sulfate treatments (20 and 40 µM MgSO4) and Cd stress (4 µM CdCl2) showed adverse effects on morphology, photosynthetic and biochemical parameters and the nutritional status of both species. For example, Cd stress decreased NO3- root content under 20 µM MgSO4 to approximately 50% compared with respective controls. Interestingly, changes in many measured parameters, such as chlorophyll and carotenoid contents, the concentrations of anions, nutrients and Cd, induced by low sulfate supply, Cd exposure or a combination of both factors, were species-specific. Our data showed opposing effects of Cd exposure on Ca, Fe, Mn, Cu and Zn levels in roots of the studied plants. In A. thaliana, levels of glutathione, phytochelatins and glucosinolates demonstrated their distinct involvement in response to sub-optimal growth conditions and Cd stress. In shoot, the levels of phytochelatins and glucosinolates in the organic sulfur fraction were not dependent on sulfate supply under Cd stress. Altogether, our data showed both common and species-specific features of the complex plant response to prolonged sulfate deprivation and/or Cd exposure.
Collapse
Affiliation(s)
- Martin Lyčka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic.
| | - Miloš Barták
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Ondřej Helia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Stanislav Kopriva
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, Germany; Cluster of Excellence on Plant Sciences, University of Cologne, 50674 Cologne, Germany
| | - Dana Moravcová
- Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Josef Hájek
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Lukáš Fojt
- Institute of Biophysics of the Czech Academy of Sciences, 612 00 Brno, Czech Republic
| | - Richard Čmelík
- Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; Institute of Biophysics of the Czech Academy of Sciences, 612 00 Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
4
|
Sagervanshi A, Geilfus CM, Kaiser H, Mühling KH. Alkali salt stress causes fast leaf apoplastic alkalinization together with shifts in ion and metabolite composition and transcription of key genes during the early adaptive response of Vicia faba L. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111253. [PMID: 35487662 DOI: 10.1016/j.plantsci.2022.111253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
The mechanisms by which plants respond to alkali salt stress are still obscure, and the relevance of alkaline pH under combined alkali salt stress. Early stress responses can indicate mechanisms leading to damage and plant resistance. The apoplast contains essential determinants for plant growth, specifically early apoplastic pH fluctuations are induced by many stressors and hypothesized to be involved in stress signalling. Hence, this study aims to identify fast responses specific to alkaline pH and alkali salt stress by exposing the root of hydroponically grown Vicia faba L. plants to 150 min of either 50 mM NaHCO3 (pH 9) treatment or alkaline pH 9 alone. Apoplastic pH was monitored in real-time by ratiometric fluorescence microscopy simultaneously with SWIR transmission-based measurements of leaf water content (LWC). Moreover, we examined the effect of these stresses on apoplastic, symplastic and xylem ion and metabolite composition together with transcriptions of certain stress-responsive genes. Physiological and transcriptional changes were observed in response to NaHCO3 but not to alkaline pH alone. NaHCO3 elicited a transient reduction in LWC, followed by a transient alkalinization of the apoplast and stomatal closure. Simultaneously, organic acids and sugars accumulated. Fast upregulation of stress-responsive genes showed the significance of gene regulation for early plant adaptation to alkali salt stress.
Collapse
Affiliation(s)
- Amit Sagervanshi
- Institute of Plant Nutrition and Soil Science, Kiel University, Kiel, Germany
| | - Christoph-Martin Geilfus
- Institute of Plant Nutrition and Soil Science, Kiel University, Kiel, Germany; Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, Germany
| | - Hartmut Kaiser
- Institute of Plant Nutrition and Soil Science, Kiel University, Kiel, Germany
| | - Karl H Mühling
- Institute of Plant Nutrition and Soil Science, Kiel University, Kiel, Germany.
| |
Collapse
|
5
|
Qian L, Song F, Xia J, Wang R. A Glucuronic Acid-Producing Endophyte Pseudomonas sp. MCS15 Reduces Cadmium Uptake in Rice by Inhibition of Ethylene Biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:876545. [PMID: 35498658 PMCID: PMC9047996 DOI: 10.3389/fpls.2022.876545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Dynamic regulation of phytohormone levels is pivotal for plant adaptation to harmful conditions. It is increasingly evidenced that endophytic bacteria can regulate plant hormone levels to help their hosts counteract adverse effects imposed by abiotic and biotic stresses, but the mechanisms underlying the endophyte-induced stress resistance of plants remain largely elusive. In this study, a glucuronic acid-producing endophyte Pseudomonas sp. MCS15 alleviated cadmium (Cd) toxicity in rice plants. Inoculation with MCS15 significantly inhibited the expression of ethylene biosynthetic genes including OsACO3, OsACO4, OsACO5, OsACS2, and OsACS5 and thus reduced the content of ethylene in rice roots. In addition, the expression of iron uptake-related genes including OsIRT1, OsIRT2, OsNAS1, OsNAS2 and OsYSL15 was significantly downregulated in the MCS15-inoculated roots under Cd stress. Similarly, glucuronic acid treatment also remarkably inhibited root uptake of Cd and reduced the production of ethylene. However, treatment with 1-aminocyclopropyl carboxylic acid (ACC), a precursor of ethylene, almost abolished the MCS15 or glucuronic acid-induced inhibition of Cd accumulation in rice plants. Conversely, treatment with aminoethoxyvinyl glycine (AVG), an inhibitor of ethylene biosynthesis, markedly reduced the Cd accumulation in plants. Taken together, our results revealed that the endophytic bacteria MCS15-secreted glucuronic acid inhibited the biosynthesis of ethylene and thus weakened iron uptake-related systems in rice roots, which contributed to preventing the Cd accumulation.
Collapse
Affiliation(s)
- Lisheng Qian
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Fei Song
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Jinlin Xia
- College of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui Shengnong Agricultural Group Co., Ltd., Maanshan, China
| | - Rongfu Wang
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
6
|
Huang Y, Chen J, Sun Y, Wang H, Zhan J, Huang Y, Zou J, Wang L, Su N, Cui J. Mechanisms of calcium sulfate in alleviating cadmium toxicity and accumulation in pak choi seedlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150115. [PMID: 34818763 DOI: 10.1016/j.scitotenv.2021.150115] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/15/2021] [Accepted: 08/30/2021] [Indexed: 05/22/2023]
Abstract
Gypsum (calcium sulfate dihydrate, CaSO4 ·2H₂O) is commonly applied to improve soil quality and nutrient supply. Previous studies also suggested it is a cost-effective soil amendment in alleviating cadmium (Cd) toxicity and accumulation in plants. The aim of this study was to investigate how this is achieved. We used pak choi as our research material because it is a popular vegetable in Asia, and as a leafy vegetable, it accumulates higher Cd level than other types of vegetable. Under Cd stress, application of CaSO4 promoted pak choi seedling growth, decreased the oxidative stress in roots, reduced Cd accumulation, and enhanced the photosynthesis in shoots. We revealed the inhibition of Cd2+ absorption by CaSO4 is largely due to the competition between Ca2+ and Cd2+ for ion channels or transporter. Moreover, under Cd stress, CaSO4 facilitated the sulphate assimilation, increased the biosynthesis of phytochelatins, and activated the expression of transporters for vacuolar sequestration. Together, CaSO4 could benefit plant growth and enhance Cd tolerance by suppressing Cd root uptake and lowering the Cd content in cytoplasm.
Collapse
Affiliation(s)
- Yifan Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jiahui Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yangming Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Haixia Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Junyi Zhan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yanni Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jianwen Zou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lu Wang
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jin Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
7
|
Wu J, Li R, Lu Y, Bai Z. Sustainable management of cadmium-contaminated soils as affected by exogenous application of nutrients: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113081. [PMID: 34171783 DOI: 10.1016/j.jenvman.2021.113081] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) pollution in arable land is of great concern as it impairs plant growth and further threats human health via food-chain. Exogenous supplementation of nutrients is an environmentally-friendly, cost-effective, convenient and feasible strategy for regulating Cd uptake, transport and accumulation in plants. To sustain Cd-contaminated soils management, on the one hand, a low level of the Cd-contaminated soil is expected to cultivate crops with decreased Cd accumulation as affected by exogenous nutrients application, on another hand, a high level of the Cd-contaminated soil is suggested to cultivate phytoextraction plants with increased Cd accumulation as affected by exogenous nutrients application. Nevertheless, effects of nutrients on Cd accumulation in plants are still ambiguous. Thus, data of Cd accumulation in shoots of plants as affected by exogenous application of nutrients were collected from previously published articles between 2005 and 2021 in the present study. According to the data, exogenous supply of calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn) and silicon (Si) to a larger extent decrease Cd amounts in shoots of plants. By contrast, exogenous nitrogen (N), and deficient Ca, Mg and Fe supply have a great possibility to increase Cd amounts in shoots of plants. Although exogenous application of phosphorus (P), sulfur (S), potassium (K), zinc (Zn) and selenium (Se) have a great opportunity to increase biomass, they show different effects on Cd concentrations. As a result, the odds are even for increasing and decreasing Cd amounts in shoots of plants. Taken together, exogenous application of Ca, Mg, Fe, Mn and Si might decrease Cd accumulation in plants that are recommended for crops production. Exogenous N and deficient Ca, Mg and Fe supply might increase Cd accumulation in plants that are recommended for phytoextraction plants. Exogenous application of P, S, K, Zn and Se have half a chance to increase or decrease Cd accumulation in plants. Therefore, dosages, forms and species should be taken into account when exogenous P, S, K, Zn and Se are added.
Collapse
Affiliation(s)
- Jiawen Wu
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China.
| | - Ruijuan Li
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Yuan Lu
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Zhenqing Bai
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, China
| |
Collapse
|
8
|
Bai ZQ, Zhu L, Chang HX, Wu JW. Enhancement of cadmium accumulation in sweet sorghum as affected by nitrate. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:66-73. [PMID: 32989911 DOI: 10.1111/plb.13186] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/20/2020] [Indexed: 05/22/2023]
Abstract
The Cadmium (Cd)-polluted soils are is an increasing concern worldwide. Phytoextraction of Cd pollutants by high biomass plants, such as sweet sorghum, is considered an environmentally-friendly, cost-effective and sustainable strategy for remediating this problem. Nitrogen (N) is a macronutrient essential for plant growth, development and stress resistance. Nevertheless, how nitrate, as an important form of N, affects Cd uptake, translocation and accumulation in sweet sorghum is still unclear. In the present study, a series of nitrate levels (N1, 0.5 mm; N2, 2 mm; N3, 4 mm; N4, 8 mm and N5, 16 mm) with or without added 5 μm CdCl2 treatment in sweet sorghum was investigated hydroponically. The results indicate that Cd accumulation in the aboveground parts of sweet sorghum was enhanced by optimum nitrate supply, resulting from both increased dry weight and Cd concentration. Although root-to-shoot Cd translocation was not enhanced by increased nitrate, some Cd was transferred from cell walls to vacuoles in leaves. Intriguingly, expression levels of Cd uptake and transport genes, SbNramp1, SbNramp5 and SbHMA3, were not closely related to increased Cd as affected by nitrate supply. The expression of SbNRT1.1B in relation to nitrate transport showed an inverted 'U' shape with increasing nitrate levels under Cd stress, which was in agreement with trends in Cd concentration changes in aboveground tissues. Based on the aforementioned results, nitrate might regulate Cd uptake and accumulation through expression of SbNRT1.1B rather than SbNramp1, SbNramp5 or SbHMA3, the well-documented genes related to Cd uptake and transport in sweet sorghum.
Collapse
Affiliation(s)
- Z Q Bai
- Shaanxi Key Laboratory of Chinese Jujube, Yan'an University, Yan'an, China
- College of Life Sciences, Yan'an University, Yan'an, China
| | - L Zhu
- College of Life Sciences, Yan'an University, Yan'an, China
| | - H X Chang
- College of Life Sciences, Yan'an University, Yan'an, China
| | - J W Wu
- Shaanxi Key Laboratory of Chinese Jujube, Yan'an University, Yan'an, China
- College of Life Sciences, Yan'an University, Yan'an, China
| |
Collapse
|
9
|
Bai Z, Li D, Zhu L, Tang X, Wang Y, Mao R, Wu J. Nitrate Increases Cadmium Accumulation in Sweet Sorghum for Improving Phytoextraction Efficiency Rather Than Ammonium. FRONTIERS IN PLANT SCIENCE 2021; 12:643116. [PMID: 34093607 PMCID: PMC8172601 DOI: 10.3389/fpls.2021.643116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/26/2021] [Indexed: 05/05/2023]
Abstract
Sweet sorghum has potential for phytoextraction of cadmium (Cd) owning to its large biomass and relatively high Cd tolerance. Nitrogen affects both growth and Cd concentrations in plants. However, different forms of nitrogen effects on Cd accumulation in sweet sorghum to improve efficiency of Cd phytoremediation is still elusive. In this study, nitrate substantially promoted both dry weight and Cd concentrations in leaves, stems + sheaths and roots of sweet sorghum when compared with ammonium. As a result, Cd accumulation in nitrate-supplied sweet sorghum was around 3.7-fold of that in ammonium-supplied plants under unbuffered pH condition, while the fold was about 2.2 under buffered pH condition. We speculated pH values and Cd species in the growth medium to some extent contributed to increased Cd accumulation as affected by nitrate. Net photosynthesis rate and Fv/Fm of nitrate-treated plants under Cd stress were higher than that of ammonium-treated plants when the pH was unbuffered. Responses of antioxidant capacity in roots to Cd stress with nitrate application were stronger than that with ammonium supplementation. Taken together, nitrate is more suitable than ammonium for Cd phytoextraction by using sweet sorghum, which is able to enhance at least double efficiency of phytoextraction.
Collapse
Affiliation(s)
- Zhenqing Bai
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an, China
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Dan Li
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Lin Zhu
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Xiaoyu Tang
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Yanfeng Wang
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an, China
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Renjun Mao
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an, China
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Jiawen Wu
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an, China
- College of Life Sciences, Yan’an University, Yan’an, China
- *Correspondence: Jiawen Wu, ; orcid.org/0000-0001-8646-126X
| |
Collapse
|
10
|
Shi W, Liu W, Ma C, Zhang Y, Ding S, Yu W, Deng S, Zhou J, Li H, Luo ZB. Dissecting MicroRNA-mRNA Regulatory Networks Underlying Sulfur Assimilation and Cadmium Accumulation in Poplar Leaves. PLANT & CELL PHYSIOLOGY 2020; 61:1614-1630. [PMID: 32678905 DOI: 10.1093/pcp/pcaa084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/15/2020] [Indexed: 05/22/2023]
Abstract
The process of cadmium (Cd) accumulation and detoxification under different sulfur levels remains largely unknown in woody plants. To investigate the physiological and transcriptomic regulation mechanisms of poplars in response to different sulfate (S) supply levels and Cd exposure, we exposed Populus deltoides saplings to one of the low, moderate and high S levels together with either 0 or 50 µM Cd. Cd accumulation was decreased in low S-treated poplar leaves, and it tended to be increased in high S-supplied leaves under the Cd exposure condition. Sulfur nutrition was deficient in low S-supplied poplars, and it was improved in high S-treated leaves. Cd exposure resulted in lower sulfur level in the leaves supplied with moderate S, it exacerbated a Cd-induced sulfur decrease in low S-treated leaves and it caused a higher sulfur concentration in high S-supplied leaves. In line with the physiological changes, a number of mRNAs and microRNAs (miRNAs) involved in Cd accumulation and sulfur assimilation were identified and the miRNA-mRNA networks were dissected. In the networks, miR395 and miR399 members were identified as hub miRNAs and their targets were ATP sulfurylase 3 (ATPS3) and phosphate 2 (PHO2), respectively. These results suggest that Cd accumulation and sulfur assimilation are constrained by low and enhanced by high S supply, and Cd toxicity is aggravated by low and relieved by high S in poplar leaves, and that miRNA-mRNA regulatory networks play pivotal roles in sulfur-mediated Cd accumulation and detoxification in Cd-exposed poplars.
Collapse
Affiliation(s)
- Wenguang Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Wenzhe Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Chaofeng Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuhong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Annoroad Gene Technology Co., Ltd, 6 Kechuang Road, Beijing 100176, China
| | - Shen Ding
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenjian Yu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Shurong Deng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jing Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Hong Li
- Postgraduate School, Chinese Academy of Forestry, Beijing 100091, China
| | - Zhi-Bin Luo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
11
|
Liu S, Yang B, Liang Y, Xiao Y, Fang J. Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:16069-16085. [PMID: 32173779 DOI: 10.1007/s11356-020-08282-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/02/2020] [Indexed: 04/16/2023]
Abstract
Accumulation of heavy metals in agricultural soils due to human production activities-mining, fossil fuel combustion, and application of chemical fertilizers/pesticides-results in severe environmental pollution. As the transmission of heavy metals through the food chain and their accumulation pose a serious risk to human health and safety, there has been increasing attention in the investigation of heavy metal pollution and search for effective soil remediation technologies. Here, we summarized and discussed the basic principles, strengths and weaknesses, and limitations of common standalone approaches such as those based on physics, chemistry, and biology, emphasizing their incompatibility with large-scale applications. Moreover, we explained the effects, advantages, and disadvantages of the combinations of common single repair approaches. We highlighted the latest research advances and prospects in phytoremediation-chemical, phytoremediation-microbe, and phytoremediation-genetic engineering combined with remediation approaches by changing metal availability, improving plant tolerance, promoting plant growth, improving phytoextraction and phytostabilization, etc. We then explained the improved safety and applicability of phytoremediation combined with other repair approaches compared to common standalone approaches. Finally, we established a prospective research direction of phytoremediation combined with multi-technology repair strategy.
Collapse
Affiliation(s)
- Shuming Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China
| | - Bo Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China
| | - Yunshan Liang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China.
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China.
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China.
| |
Collapse
|