1
|
Mousa H, Abd El-Hay SS, El Sheikh R, Gouda AA, El-Ghaffar SA, El-Aal MA. Development of environmentally friendly catalyst Ag-ZnO@cellulose acetate derived from discarded cigarette butts for reduction of organic dyes and its antibacterial applications. Int J Biol Macromol 2024; 258:128890. [PMID: 38134996 DOI: 10.1016/j.ijbiomac.2023.128890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
The release of harmful organic dyes from different industries besides its degradation products is a major contributor to environmental contamination. The catalytic reduction of these organic pollutants using nanocomposites based on polymeric material presents potential advantages for the environment. In this study, novel nanocomposite based on cellulose acetate (CA)-derived from discharged cigarette butts and zinc oxide nanoparticles (ZnO NPs) was prepared utilizing a very simple and low-cost solution blending method and used as support for silver nanoparticles (Ag NPs). A simple reduction method was used to anchor different percentages of Ag NPs on the ZnO@CA nanocomposite surface via utilizing sodium borohydride as a reducing agent. The Ag-ZnO@CA nanocomposite was characterized using X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The TEM analysis showed spherical Ag NPs, with an average diameter of ∼17.6 nm, were uniformly anchored on the ZnO@CA nanocomposite surface. The prepared nanocomposites were evaluated as catalysts for the reduction of organic dyes in water. It was found that 10 % Ag-ZnO@CA nanocomposite showed a remarkable reduction of Rhodamine B (RhB), Rhodamine 6G (Rh6G), Methylene Blue (MB), and Sunset Yellow (SY) dyes in short time. In the presence of this nanocomposite, the rate constant, kapp values for RhB, Rh6G, MB, and SY were 0.3498 min-1, 1.51 min-1, 0.2292 min-1, and 0.733 min-1, respectively. This nanocomposite was recovered and reused in five successive cycles, with a negligible loss of its activity. Furthermore, the nanocomposites demonstrated moderate antibacterial activity toward Staphylococcus aureus and Escherichia coli. Thus, this study directed attention on recycling of waste material to a valuable nanocomposite and its applications in environmental protection.
Collapse
Affiliation(s)
- Heba Mousa
- Department of Special Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Soad S Abd El-Hay
- Department of Analytical Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Ragaa El Sheikh
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ayman A Gouda
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | | | - Mohamed Abd El-Aal
- Catalysis and Surface Chemistry Lab, Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
2
|
Mladin G, Ciopec M, Negrea A, Duteanu N, Negrea P, Svera M Ianăşi P, Ianăşi C. Selenite Removal from Aqueous Solution Using Silica-Iron Oxide Nanocomposite Adsorbents. Gels 2023; 9:497. [PMID: 37367167 DOI: 10.3390/gels9060497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
In recent years, during industrial development, the expanding discharge of harmful metallic ions from different industrial wastes (such as arsenic, barium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, or zinc) into different water bodies has caused serious concern, with one of the problematic elements being represented by selenium (Se) ions. Selenium represents an essential microelement for human life and plays a vital role in human metabolism. In the human body, this element acts as a powerful antioxidant, being able to reduce the risk of the development of some cancers. Selenium is distributed in the environment in the form of selenate (SeO42-) and selenite (SeO32-), which are the result of natural/anthropogenic activities. Experimental data proved that both forms present some toxicity. In this context, in the last decade, only several studies regarding selenium's removal from aqueous solutions have been conducted. Therefore, in the present study, we aim to use the sol-gel synthesis method to prepare a nanocomposite adsorbent material starting from sodium fluoride, silica, and iron oxide matrices (SiO2/Fe(acac)3/NaF), and to further test it for selenite adsorption. After preparation, the adsorbent material was characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The mechanism associated with the selenium adsorption process has been established based on kinetic, thermodynamic, and equilibrium studies. Pseudo second order is the kinetic model that best describes the obtained experimental data. Also, from the intraparticle diffusion study, it was observed that with increasing temperature the value of the diffusion constant, Kdiff, also increases. Sips isotherm was found to best describe the experimental data obtained, the maximum adsorption capacity being ~6.00 mg Se(IV) per g of adsorbent material. From a thermodynamic point of view, parameters such as ΔG0, ΔH0, and ΔS0 were evaluated, proving that the process studied is a physical one.
Collapse
Affiliation(s)
- Georgiana Mladin
- Faculty of Industrial Chemistry, Environmental Engineering, Polytechnic University of Timişoara, Victoriei Square no. 2, 300006 Timişoara, Romania
| | - Mihaela Ciopec
- Faculty of Industrial Chemistry, Environmental Engineering, Polytechnic University of Timişoara, Victoriei Square no. 2, 300006 Timişoara, Romania
| | - Adina Negrea
- Faculty of Industrial Chemistry, Environmental Engineering, Polytechnic University of Timişoara, Victoriei Square no. 2, 300006 Timişoara, Romania
| | - Narcis Duteanu
- Faculty of Industrial Chemistry, Environmental Engineering, Polytechnic University of Timişoara, Victoriei Square no. 2, 300006 Timişoara, Romania
| | - Petru Negrea
- Faculty of Industrial Chemistry, Environmental Engineering, Polytechnic University of Timişoara, Victoriei Square no. 2, 300006 Timişoara, Romania
| | - Paula Svera M Ianăşi
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 144th Dr. A. P. Podeanu Street, 300569 Timisoara, Romania
| | - Cătălin Ianăşi
- "Coriolan Drăgulescu" Institute of Chemistry, Bv. Mihai Viteazul, No. 24, 300223 Timisoara, Romania
| |
Collapse
|
3
|
Malhotra M, Pal M, Chakrabortty S, Pal P. A single functionalized graphene nanocomposite in cross flow module for removal of multiple toxic anionic contaminants from drinking water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:65250-65266. [PMID: 37081367 DOI: 10.1007/s11356-023-26937-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Polyether sulfone (PES)-based thin-film nanofiltration (TFN) membranes embedded with ferric hydroxide (FeIII(OH)x) functionalized graphene oxide (GO) nanoparticles were fabricated through interfacial polymerization for a generalized application in removal of a plethora of anionic and toxic water contaminants. Following the most relevant characterization, the newly synthesized membranes were fitted in a novel flat sheet cross-flow module, for experimental investigation on purification of live contaminated groundwater collected from different affected areas. The separation performances of the membranes in the flat sheet cross-flow module demonstrated that GOF membranes had higher selectivity for monovalent and divalent salt rejections than pristine GO membranes. Furthermore, both membranes were tested for simultaneously removing widely occurring hazardous ions of heavy metals and metalloids in groundwater, such as arsenic, selenium, chromium, and fluoride. Compared to the pristine GO and the reported membranes in the literature, the GOF membrane exhibited remarkable performance in terms of rejection efficiency (Cr (VI): 97.2%, Se (IV): 96.6%, As(V): 96.3%, F- 88.4%) and sustained flux of 184 LMH (Lm-2 h-1) at an optimum transmembrane pressure of 16 bar. The investigated membrane module equipped with the GOF membrane proved to be a low-cost system with higher anionic rejection and sustained high flux at a comprehensive pH range, as evident over long hours of study vis-à-vis reported systems.
Collapse
Affiliation(s)
- Meenakshi Malhotra
- Environment and Membrane Technology Laboratory, Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, India
| | - Madhubonti Pal
- Environment and Membrane Technology Laboratory, Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, India
| | - Sankha Chakrabortty
- School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Parimal Pal
- Environment and Membrane Technology Laboratory, Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, 713209, India.
| |
Collapse
|
4
|
Li T, Xu H, Zhang Y, Zhang H, Hu X, Sun Y, Gu X, Luo J, Zhou D, Gao B. Treatment technologies for selenium contaminated water: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118858. [PMID: 35041898 DOI: 10.1016/j.envpol.2022.118858] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Selenium is an indispensable trace element for humans and other organisms; however, excessive selenium in water can jeopardize the aquatic environment. Investigations on the biogeochemical cycle of selenium have shown that anthropogenic activities such as mining, refinery, and coal combustion mainly contribute to aquatic selenium pollution, imposing tremendous risks on ecosystems and human beings. Various technologies thus have been developed recently to treat selenium contaminated water to reduce its environmental impacts. This work provides a critical review on the applications, characteristics, and latest developments of current treatment technologies for selenium polluted water. It first outlines the present status of the characteristics, sources, and toxicity of selenium in water. Selenium treatment technologies are then classified into three categories: 1) physicochemical separation including membrane filtration, adsorption, coagulation/precipitation, 2) redox decontamination including chemical reduction and catalysis, and 3) biological transformation including microbial treatment and constructed wetland. Details of these methods including their overall efficiencies, applicability, advantages and drawbacks, and latest developments are systematically analyzed and compared. Although all these methods are promising in treating selenium in water, further studies are still needed to develop sustainable strategies based on existing and new technologies. Perspectives on future research directions are laid out at the end.
Collapse
Affiliation(s)
- Tianxiao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Hongxia Xu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, People's Republic of China.
| | - Yuxuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Hanshuo Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, Center of Material Analysis and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Yuanyuan Sun
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
5
|
Nakakubo K, Nishimura T, Biswas FB, Endo M, Wong KH, Mashio AS, Taniguchi T, Nishimura T, Maeda K, Hasegawa H. Speciation analysis of inorganic selenium in wastewater using a highly selective cellulose-based adsorbent via liquid electrode plasma optical emission spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127250. [PMID: 34600387 DOI: 10.1016/j.jhazmat.2021.127250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Speciation of selenium (Se) is typically carried out using a sophisticated technique such as ICP-MS after preconcentration using an adsorbent; however, the separation and preconcentration of inorganic Se has not been realized in the solutions containing high concentrations of SO42-. A dithiocarbamate-modified cellulose (DMC) was used in this study for the selective extraction and preconcentration of inorganic Se in wastewater, with a portable liquid electrode plasma-optical emission spectrometry (LEP-OES) being employed for quantification. DMC was found to selectively and quantitatively adsorb selenite (SeIV) over a wide range of pH (1.0-8.0); however, less than 3.0% of selenate (SeVI) was adsorbed in a pH range of 3.0-11. Quantitative extraction of SeIV was achieved even in the presence of 3.5 mol L-1 SO42-. The maximum sample volume from which 10 mg of DMC could quantitatively extract SeIV was found to be 500 mL. KOH (0.60 mL, 1.5 mol L-1) was found to quantitatively desorb SeIV retained on the adsorbent and yielded an enrichment factor of 833. The recovery of Se species from synthetic flue-gas desulfurization wastewater containing SeIV and SeVI at concentrations of 5.0 µmol L-1 was 96.2 ± 1.8% and 105.8 ± 1.8%, respectively.
Collapse
Affiliation(s)
- Keisuke Nakakubo
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan.
| | - Takashi Nishimura
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Foni B Biswas
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan; Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Masaru Endo
- Daicel Corporation, 1239 Shinzaike, Aboshi-ku, Himeji-Shi, Hyogo 671-1283, Japan
| | - Kuo H Wong
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Asami S Mashio
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Tsuyoshi Taniguchi
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Tatsuya Nishimura
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Katsuhiro Maeda
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma, Kanazawa 920-1192, Japan.
| | - Hiroshi Hasegawa
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan.
| |
Collapse
|
6
|
Padmalaya G, Vardhan KH, Kumar PS, Ali MA, Chen TW. A disposable modified screen-printed electrode using egg white/ZnO rice structured composite as practical tool electrochemical sensor for formaldehyde detection and its comparative electrochemical study with Chitosan/ZnO nanocomposite. CHEMOSPHERE 2022; 288:132560. [PMID: 34653482 DOI: 10.1016/j.chemosphere.2021.132560] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/26/2021] [Accepted: 10/11/2021] [Indexed: 05/23/2023]
Abstract
In this study, Chitosan/ZnO nanocomposite (Ch/ZnO) and egg white/ZnO rice structured composite was synthesized by simple wet chemical technique and characterised by various techniques. A comparative electrochemical analysis were carried out and determined that egg white/ZnO rice structured composite modified screen printed electrode (SPCE) showed good electrochemical behaviour. The electrochemical activity of egg white/ZnO rice structured composite SPCE was investigated for the oxidation-reduction of formaldehyde in alkaline media using cyclic voltammetry (CV).Their unique electrocatalytic activity for the formaldehyde found to exhibit 254 mV cathodic current response towards low negative potentials. Based on these results, a novel screen printed sensor (Egg white albumin/ZnO rice structured composite) for the determination of formaldehyde was analysed using differential pulse voltammetry (DPV). The sensor response was linear from 0.001 mM to 0.005 mM with limit of detection (LOD) 6.2 nM and their sensitivity was found to be 770.68 mM/μA. The developed electrochemical formaldehyde sensor was successfully applied as working electrode in cyclic voltammetric determination of formaldehyde in urine samples. The sensor is selective, inexpensive, stable over several days and disposable as well as simple to manufacture and operate. The system described here can be easily be adapted to other substrates and used as practical tool for formaldehyde analysis.
Collapse
Affiliation(s)
- G Padmalaya
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - Kilaru Harsha Vardhan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, SW7 2AZ, United Kingdom
| |
Collapse
|
7
|
Filip J, Vinter Š, Čechová E, Sotolářová J. Materials interacting with inorganic selenium from the perspective of electrochemical sensing. Analyst 2021; 146:6394-6415. [PMID: 34596173 DOI: 10.1039/d1an00677k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Inorganic selenium, the most common form of harmful selenium in the environment, can be determined using electrochemical sensors, which are compact, fast, reliable and easy-to-operate devices. Despite progress in this area, there is still significant room for developing high-performance selenium electrochemical sensors. To achieve this, one should take into account (i) the electrochemical process that selenium undergoes on the electrode; (ii) the valence state of selenium species in the sample and (iii) modification of the sensor surface by a material with high affinity to selenium. The goal of this review is to provide a knowledge base for these issues. After the Introduction section, mechanisms and principles of the electrochemical reduction of selenium are introduced, followed by a section introducing the modification of electrodes with materials interacting with selenium and a section dedicated to speciation methods, including the reduction of non-detectable Se(VI) to detectable Se(IV). In the following sections, the main types of materials (metallic, polymers, hybrid (nano)materials…) interacting with inorganic selenium (mostly absorbents) are reviewed to show the diversity of properties that may be endowed to sensors if the materials were to be used for the modification of electrodes. These features for the main material categories are outlined in the conclusion section, where it is stated that the engineered polymers may be the most promising modifiers.
Collapse
Affiliation(s)
- Jaroslav Filip
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nad Ovčírnou 3685, Zlín 760 01, Czechia.
| | - Štěpán Vinter
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nad Ovčírnou 3685, Zlín 760 01, Czechia.
| | - Erika Čechová
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nad Ovčírnou 3685, Zlín 760 01, Czechia.
| | - Jitka Sotolářová
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Nad Ovčírnou 3685, Zlín 760 01, Czechia.
| |
Collapse
|
8
|
Ali I, Shrivastava V. Recent advances in technologies for removal and recovery of selenium from (waste)water: A systematic review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:112926. [PMID: 34118514 DOI: 10.1016/j.jenvman.2021.112926] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
Selenium (Se) is distributed into different environmental compartments by natural and anthropogenic activities, and generally discharged in the form of selenate [SeO42-] and selenite [SeO32-], which are both toxic. Physical-chemical and biological treatment processes have been reported to exhibit good treatment efficiencies for Se from aqueous streams, only a few demonstrated to achieve effluent concentrations <5 μg/L. Moreover, there are only a few numbers of studies that describe the progress in technological developments over the last decade. Therefore, to unify the state of knowledge, identify ongoing research trends, and determine the challenges associated with available technologies, this systematic review critically analyses the published research on Se treatment. Specific topics covered in this review include (1) Se chemistry, toxicity, sources and legislation, (2) types of Se treatment technologies, (3) development in Se treatment approaches, (4) Se recovery and circular economy and (5) future prospects. The current research has been found to majorly focused on Se removal via adsorption techniques. However, the key challenges facing Se treatment technologies are related to the presence of competing ions in the solution and the persistence of selenate compared to selenite during their reduction.
Collapse
Affiliation(s)
- Izba Ali
- InOpSys - Mobiele Waterzuivering voor Chemie en Farma, Zandvoortstraat 12a, 2800, Mechelen, Belgium.
| | | |
Collapse
|
9
|
Tian Q, Guo B, Chuaicham C, Sasaki K. Mechanism analysis of selenium (VI) immobilization using alkaline-earth metal oxides and ferrous salt. CHEMOSPHERE 2020; 248:126123. [PMID: 32059334 DOI: 10.1016/j.chemosphere.2020.126123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/16/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
The immobilization of selenate (SeO42-) using metal oxides (CaO and MgO) and ferrous salt as the immobilization reagents were examined by the leaching test and solid-phase analysis via XRD, XAFS, TGA, and XPS. The results indicated that nearly all of SeO42- was reduced to SeO32- in the CaO-based reaction within 7 days. Then, the generated SeO32- was mainly sorbed onto the iron-based minerals (Fe2O3 and FeOOH) through the formation of both bidentate mononuclear edge-sharing (1E) and monodentate mononuclear corner-sharing (1V) inner-sphere surface complexes, suggested by PHREEQC simulation and EXAFS analysis. Differently, less amount of SeO42- (approximately 45.50%) was reduced to SeO32- for the MgO-based reaction. However, if the curing time increases to a longer time (more than 7 days), the further reduction could occur because there are still Fe(II) species in the matrix. As for the associations of Se in the solid residue, most of the selenium (SeO32- and SeO42-) was preferentially distributed onto the Mg(OH)2 through outer-sphere adsorption. Definitely, this research can provide a deep understanding of the immobilization of selenium using alkaline-earth metal oxide related materials and ferrous substances.
Collapse
Affiliation(s)
- Quanzhi Tian
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan.
| | - Binglin Guo
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Chitiphon Chuaicham
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Keiko Sasaki
- Department of Earth Resources Engineering, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
10
|
Mo Y, Vincent T, Faur C, Guibal E. Se(VI) sorption from aqueous solution using alginate/polyethylenimine membranes: Sorption performance and mechanism. Int J Biol Macromol 2020; 147:832-843. [DOI: 10.1016/j.ijbiomac.2019.10.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 02/01/2023]
|
11
|
Synthesis of Micro-dumbbell Shaped rGO/ZnO Composite Rods and Its Application Towards as Electrochemical Sensor for the Simultaneous Determination of Ammonia and Formaldehyde Using Hexamine and Its Structural Analysis. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01224-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|