1
|
Huang J, Lu H, Du J, Zhang L, Wei J, Huang Q, Wu S, Zhou X, Ren L. Effects of exposure to PM 2.5 during pregnancy on the multigenerational reproductive outcomes of male mouse offspring and the role of Sertoli cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103823-103835. [PMID: 37697192 DOI: 10.1007/s11356-023-29751-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/03/2023] [Indexed: 09/13/2023]
Abstract
There is a paucity of studies on the multigenerational reproductive toxicity of fine particle matter (PM2.5) exposure during pregnancy on male offspring and the underlying mechanisms. This study explored the effects of PM2.5 exposure during pregnancy on the spermatogenesis of three consecutive generations of male mouse offspring. We randomized pregnant C57BL/6 mice into the control group, the Quartz Fiber Membrane control group, and two experimental groups exposed to different concentrations of PM2.5 (4.8 and 43.2 mg/kg B.Wt.). Pregnant mice from experimental groups received intratracheal instillation of PM2.5 of different doses on a three-day basis until birth. F1 mature male offspring from PM2.5-exposed pregnant mice were mated with normal female C57BL/6 mice. Likewise, their F2 mature male followed the same to produce the F3 generation. The results showed that PM2.5 exposure during pregnancy led to decreased body and tail length, body weight, and survival rates, decreased sperm concentration and sperm motility, and increased sperm abnormality rates significantly in F1 male offspring. We barely observed significant impacts of PM2.5 on the birth number, survival rates, and index of testes in the F2 and F3 offspring. Further exploration showed that PM2.5 exposure during pregnancy caused the morphological abnormality of Sertoli cells, downregulated androgen receptor (AR) and connexin43, upregulated anti-Müllerian hormone (AMH), cytokeratin-18 (CK-18), caspase-3, and cleaved caspase-3, decreased thyroid-stimulating hormone (TSH) and testosterone (T), and increased triiodothyronine (T3) in F1 male mouse offspring. Overall, we hypothesize that PM2.5 exposure during pregnancy mainly negatively impacts spermatogenesis in the F1 offspring. The possible mechanism could be that PM2.5 exposure during pregnancy disrupts endocrine hormone release in the F1 generation, thereby influencing the maturation and proliferation of their Sertoli cells and hindering spermatogenesis. This study for the first time investigates the role of Sertoli cells in the reproductive toxicity of PM2.5 on offspring.
Collapse
Affiliation(s)
- Jing Huang
- School of Nursing, Peking University, Beijing, 100191, China
| | - Hong Lu
- School of Nursing, Peking University, Beijing, 100191, China
| | - Jiwei Du
- Nursing Department, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518040, China
| | - Lianshuang Zhang
- Department of Histology and Embryology, Binzhou Medical University, Yan Tai, 264003, China
| | - Jialiu Wei
- Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Qifang Huang
- School of Nursing, Peking University, Beijing, 100191, China
| | - Shaowei Wu
- School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Xianqing Zhou
- School of Public Health, Capital Medical University, Beijing, 10069, China
| | - Lihua Ren
- School of Nursing, Peking University, Beijing, 100191, China.
| |
Collapse
|
2
|
Kong Y, Wen Y, Cao G, Xu Y, Zhang C, Tang C, Zhang J, Wang Y. Di-n-butyl phthalate promotes monocyte recruitment via miR-137-3p-SP1-MCP-1 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113491. [PMID: 35397443 DOI: 10.1016/j.ecoenv.2022.113491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Since non-covalent bound character and widespread application in numerous products, people are exposed to di-n-butyl phthalate (DBP) at low levels through various ways. Epidemiological studies suggested an association between DBP exposure and atherosclerosis (AS). Still, molecular mechanisms remain unclear. This study aimed to explore the effects of DBP on monocyte recruitment, a key and initial step of AS. EA.hy926 cells were treated with DBP (10-9-10-5 M) or DMSO as control. Chemotaxis assay was applied to investigate THP-1 recruitment. Expression of mRNA /miRNAs and proteins were measured by qRT-PCR and Western blotting, respectively. Levels of monocyte chemotactic protein 1 (MCP-1) in supernatant were detected by ELISA assay. Receptor internalization assay was performed to confirm C-C chemokine receptor type 2 (CCR2) subcellular localization in THP-1 cells and the binding between CCR2 and MCP-1. Dual-luciferase reporter assay was used to analyze the combination between miR-137-3p and specificity protein 1 (SP1), as well as SP1 and MCP-1. Results showed that number of recruited THP-1 cells after EA.hy926 cells treated by DBP was significantly higher than that in the control group due to promoted MCP-1 expression. In addition, expression of MCP-1 was regulated through miR-137-3p-SP1 cascade. Besides, overexpression of miR-137-3p reversed the increased number of recruited THP-1 cells. Our results implied that DBP might promote THP-1 recruitment by targeting miR-137-3p-SP1-MCP-1 in EA.hy926 cells.
Collapse
Affiliation(s)
- Yi Kong
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Yun Wen
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Guofa Cao
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Yuan Xu
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Chengxiang Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Chunhui Tang
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Jingshu Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Yubang Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Xue R, Wang Y, Wang T, Lyu M, Mo G, Fan X, Li J, Yen K, Yu S, Liu Q, Xu J. Functional Verification of Novel ELMO1 Variants by Live Imaging in Zebrafish. Front Cell Dev Biol 2021; 9:723804. [PMID: 34993193 PMCID: PMC8724260 DOI: 10.3389/fcell.2021.723804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/17/2021] [Indexed: 02/02/2023] Open
Abstract
ELMO1 (Engulfment and Cell Motility1) is a gene involved in regulating cell motility through the ELMO1-DOCK2-RAC complex. Contrary to DOCK2 (Dedicator of Cytokinesis 2) deficiency, which has been reported to be associated with immunodeficiency diseases, variants of ELMO1 have been associated with autoimmune diseases, such as diabetes and rheumatoid arthritis (RA). To explore the function of ELMO1 in immune cells and to verify the functions of novel ELMO1 variants in vivo, we established a zebrafish elmo1 mutant model. Live imaging revealed that, similar to mammals, the motility of neutrophils and T-cells was largely attenuated in zebrafish mutants. Consequently, the response of neutrophils to injury or bacterial infection was significantly reduced in the mutants. Furthermore, the reduced mobility of neutrophils could be rescued by the expression of constitutively activated Rac proteins, suggesting that zebrafish elmo1 mutant functions via a conserved mechanism. With this mutant, three novel human ELMO1 variants were transiently and specifically expressed in zebrafish neutrophils. Two variants, p.E90K (c.268G>A) and p.D194G (c.581A>G), could efficiently recover the motility defect of neutrophils in the elmo1 mutant; however, the p.R354X (c.1060C>T) variant failed to rescue the mutant. Based on those results, we identified that zebrafish elmo1 plays conserved roles in cell motility, similar to higher vertebrates. Using the transient-expression assay, zebrafish elmo1 mutants could serve as an effective model for human variant verification in vivo.
Collapse
Affiliation(s)
- Rongtao Xue
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Wang
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | | | - Mei Lyu
- Laboratory of Immunology and Regeneration, School of Medicine, South China University of Technology, Guangzhou, China
| | - Guiling Mo
- GuangZhou KingMed Center For Clinical Laboratory Co., Ltd., International Biotech Island, Guangzhou, China
| | - Xijie Fan
- GuangZhou KingMed Center For Clinical Laboratory Co., Ltd., International Biotech Island, Guangzhou, China
| | - Jianchao Li
- Laboratory of Molecular and Structural Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Kuangyu Yen
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Kuangyu Yen, ; Shihui Yu, ; Qifa Liu, ; Jin Xu,
| | - Shihui Yu
- GuangZhou KingMed Center For Clinical Laboratory Co., Ltd., International Biotech Island, Guangzhou, China
- *Correspondence: Kuangyu Yen, ; Shihui Yu, ; Qifa Liu, ; Jin Xu,
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Kuangyu Yen, ; Shihui Yu, ; Qifa Liu, ; Jin Xu,
| | - Jin Xu
- Laboratory of Immunology and Regeneration, School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Kuangyu Yen, ; Shihui Yu, ; Qifa Liu, ; Jin Xu,
| |
Collapse
|
4
|
Rusanov AL, Kozhin PM, Tikhonova OV, Zgoda VG, Loginov DS, Chlastáková A, Selinger M, Sterba J, Grubhoffer L, Luzgina NG. Proteome Profiling of PMJ2-R and Primary Peritoneal Macrophages. Int J Mol Sci 2021; 22:6323. [PMID: 34204832 PMCID: PMC8231560 DOI: 10.3390/ijms22126323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/30/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
In vitro models are often used for studying macrophage functions, including the process of phagocytosis. The application of primary macrophages has limitations associated with the individual characteristics of animals, which can lead to insufficient standardization and higher variability of the obtained results. Immortalized cell lines do not have these disadvantages, but their responses to various signals can differ from those of the living organism. In the present study, a comparative proteomic analysis of immortalized PMJ2-R cell line and primary peritoneal macrophages isolated from C57BL/6 mice was performed. A total of 4005 proteins were identified, of which 797 were quantified. Obtained results indicate significant differences in the abundances of many proteins, including essential proteins associated with the process of phagocytosis, such as Elmo1, Gsn, Hspa8, Itgb1, Ncf2, Rac2, Rack1, Sirpa, Sod1, C3, and Msr1. These findings indicate that outcomes of studies utilizing PMJ2-R cells as a model of peritoneal macrophages should be carefully validated. All MS data are deposited in ProteomeXchange with the identifier PXD022133.
Collapse
Affiliation(s)
- Alexander L. Rusanov
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Pogodinskaja Str. 10, 119121 Moscow, Russia; (P.M.K.); (O.V.T.); (V.G.Z.); (D.S.L.); (N.G.L.)
| | - Peter M. Kozhin
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Pogodinskaja Str. 10, 119121 Moscow, Russia; (P.M.K.); (O.V.T.); (V.G.Z.); (D.S.L.); (N.G.L.)
| | - Olga V. Tikhonova
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Pogodinskaja Str. 10, 119121 Moscow, Russia; (P.M.K.); (O.V.T.); (V.G.Z.); (D.S.L.); (N.G.L.)
| | - Victor G. Zgoda
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Pogodinskaja Str. 10, 119121 Moscow, Russia; (P.M.K.); (O.V.T.); (V.G.Z.); (D.S.L.); (N.G.L.)
| | - Dmitry S. Loginov
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Pogodinskaja Str. 10, 119121 Moscow, Russia; (P.M.K.); (O.V.T.); (V.G.Z.); (D.S.L.); (N.G.L.)
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic; (A.C.); (M.S.); (J.S.); (L.G.)
- BioCeV—Institute of Microbiology of the CAS, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Adéla Chlastáková
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic; (A.C.); (M.S.); (J.S.); (L.G.)
| | - Martin Selinger
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic; (A.C.); (M.S.); (J.S.); (L.G.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Jan Sterba
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic; (A.C.); (M.S.); (J.S.); (L.G.)
| | - Libor Grubhoffer
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic; (A.C.); (M.S.); (J.S.); (L.G.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Nataliya G. Luzgina
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Pogodinskaja Str. 10, 119121 Moscow, Russia; (P.M.K.); (O.V.T.); (V.G.Z.); (D.S.L.); (N.G.L.)
| |
Collapse
|
5
|
Fonseca PAS, Suárez-Vega A, Cánovas A. Weighted Gene Correlation Network Meta-Analysis Reveals Functional Candidate Genes Associated with High- and Sub-Fertile Reproductive Performance in Beef Cattle. Genes (Basel) 2020; 11:E543. [PMID: 32408659 PMCID: PMC7290847 DOI: 10.3390/genes11050543] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Improved reproductive efficiency could lead to economic benefits for the beef industry, once the intensive selection pressure has led to a decreased fertility. However, several factors limit our understanding of fertility traits, including genetic differences between populations and statistical limitations. In the present study, the RNA-sequencing data from uterine samples of high-fertile (HF) and sub-fertile (SF) animals was integrated using co-expression network meta-analysis, weighted gene correlation network analysis, identification of upstream regulators, variant calling, and network topology approaches. Using this pipeline, top hub-genes harboring fixed variants (HF × SF) were identified in differentially co-expressed gene modules (DcoExp). The functional prioritization analysis identified the genes with highest potential to be key-regulators of the DcoExp modules between HF and SF animals. Consequently, 32 functional candidate genes (10 upstream regulators and 22 top hub-genes of DcoExp modules) were identified. These genes were associated with the regulation of relevant biological processes for fertility, such as embryonic development, germ cell proliferation, and ovarian hormone regulation. Additionally, 100 candidate variants (single nucleotide polymorphisms (SNPs) and insertions and deletions (INDELs)) were identified within those genes. In the long-term, the results obtained here may help to reduce the frequency of subfertility in beef herds, reducing the associated economic losses caused by this condition.
Collapse
Affiliation(s)
- Pablo A. S. Fonseca
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | | | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|