1
|
Oksel C, Liyanapathiranage P, Parajuli M, Avin FA, Jennings C, Simmons T, Baysal-Gurel F. Evaluation of Chemical and Biological Products for Control of Crown Gall on Rose. Pathogens 2024; 13:708. [PMID: 39204308 PMCID: PMC11357299 DOI: 10.3390/pathogens13080708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Crown gall is a soil-borne bacterial disease caused by Agrobacterium tumefaciens, leading to significant economic losses in many plant species. For the assessment of the biological and chemical products on crown gall, each plant's crown region and roots were wounded, and then were dipped into their respective treatments. After the treatments, the plants were inoculated with a suspension of pathogenic A. tumefaciens isolate FBG1034 and maintained in a greenhouse for six months to assess them for gall formation. A quantitative real-time PCR assay was performed to quantify the A. tumefaciens using the chvE gene. Biological products such as the Agrobacterium radiobacter strain K1026, and strains 1 and 2, resulted in the lowest average root gall diameter and significantly reduced the crown gall diameter to stem diameter ratio, and the chemical product copper octanoate reduced the number of crown and root galls as well as the crown and root gall diameter compared to the inoculated, non-treated control. Moreover, both the A. radiobacter strain K1026 and strain 1 treatments resulted in an approximately 85% and 65% reduction in crown and root gall incidence, respectively, in both of the trials compared to the inoculated, non-treated plants. The findings of this study indicate that the use of biological and chemical products could help to suppress crown and root gall disease in rose plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fulya Baysal-Gurel
- Department of Agricultural Sciences and Engineering, College of Agriculture, Otis L. Floyd Nursery Research Center, Tennessee State University, McMinnville, TN 37110, USA; (C.O.); (P.L.); (M.P.); (F.A.A.); (C.J.); (T.S.)
| |
Collapse
|
2
|
Dini S, Bekhit AEDA, Roohinejad S, Vale JM, Agyei D. The Physicochemical and Functional Properties of Biosurfactants: A Review. Molecules 2024; 29:2544. [PMID: 38893420 PMCID: PMC11173842 DOI: 10.3390/molecules29112544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Surfactants, also known as surface-active agents, have emerged as an important class of compounds with a wide range of applications. However, the use of chemical-derived surfactants must be restricted due to their potential adverse impact on the ecosystem and the health of human and other living organisms. In the past few years, there has been a growing inclination towards natural-derived alternatives, particularly microbial surfactants, as substitutes for synthetic or chemical-based counterparts. Microbial biosurfactants are abundantly found in bacterial species, predominantly Bacillus spp. and Pseudomonas spp. The chemical structures of biosurfactants involve the complexation of lipids with carbohydrates (glycolipoproteins and glycolipids), peptides (lipopeptides), and phosphates (phospholipids). Lipopeptides, in particular, have been the subject of extensive research due to their versatile properties, including emulsifying, antimicrobial, anticancer, and anti-inflammatory properties. This review provides an update on research progress in the classification of surfactants. Furthermore, it explores various bacterial biosurfactants and their functionalities, along with their advantages over synthetic surfactants. Finally, the potential applications of these biosurfactants in many industries and insights into future research directions are discussed.
Collapse
Affiliation(s)
- Salome Dini
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; (S.D.); (A.E.-D.A.B.)
| | - Alaa El-Din A. Bekhit
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; (S.D.); (A.E.-D.A.B.)
| | - Shahin Roohinejad
- Research and Development Division, Zoom Essence Inc., 1131 Victory Place, Hebron, KY 41048, USA (J.M.V.)
| | - Jim M. Vale
- Research and Development Division, Zoom Essence Inc., 1131 Victory Place, Hebron, KY 41048, USA (J.M.V.)
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; (S.D.); (A.E.-D.A.B.)
| |
Collapse
|
3
|
Saiyam D, Dubey A, Malla MA, Kumar A. Lipopeptides from Bacillus: unveiling biotechnological prospects-sources, properties, and diverse applications. Braz J Microbiol 2024; 55:281-295. [PMID: 38216798 PMCID: PMC10920585 DOI: 10.1007/s42770-023-01228-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/21/2023] [Indexed: 01/14/2024] Open
Abstract
Bacillus sp. has proven to be a goldmine of diverse bioactive lipopeptides, finding wide-range of industrial applications. This review highlights the importance of three major families of lipopeptides (iturin, fengycin, and surfactin) produced by Bacillus sp. and their diverse activities against plant pathogens. This review also emphasizes the role of non-ribosomal peptide synthetases (NRPS) as significant enzymes responsible for synthesizing these lipopeptides, contributing to their peptide diversity. Literature showed that these lipopeptides exhibit potent antifungal activity against various plant pathogens and highlight their specific mechanisms, such as siderophore activity, pore-forming properties, biofilm inhibition, and dislodging activity. The novelty of this review comes from its comprehensive coverage of Bacillus sp. lipopeptides, their production, classification, mechanisms of action, and potential applications in plant protection. It also emphasizes the importance of ongoing research for developing new and enhanced antimicrobial agents. Furthermore, this review article highlights the need for future research to improve the production efficiency of these lipopeptides for commercial applications. It recognizes the potential for these lipopeptides to expand the field of biological pest management for both existing and emerging plant diseases.
Collapse
Affiliation(s)
- Diksha Saiyam
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, MP, India
| | - Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, MP, India
| | - Muneer Ahmad Malla
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, MP, India
- Department of Zoology, Dr. Harisingh Gour University (A Central University), Sagar, 470003, MP, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, MP, India.
- Metagenomics and Secretomics Research Laboratory, Department of Botany, University of Allahabad (A Central University), Prayagraj, 211002, UP, India.
| |
Collapse
|
4
|
Gordon MI, Thomas WJ, Putnam ML. Transmission and Management of Pathogenic Agrobacterium tumefaciens and Rhodococcus fascians in Select Ornamentals. PLANT DISEASE 2024; 108:50-61. [PMID: 37368442 DOI: 10.1094/pdis-11-22-2557-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Pathogenic Agrobacterium tumefaciens and Rhodococcus fascians are phytobacteria that induce crown gall and leafy gall disease, respectively, resulting in undesirable growth abnormalities. When present in nurseries, plants infected by either bacterium are destroyed, resulting in substantial losses for growers, especially those producing plants valued for their ornamental attributes. There are many unanswered questions regarding pathogen transmission on tools used to take cuttings for propagation and whether products used for bacterial disease control are effective. We investigated the ability to transmit pathogenic A. tumefaciens and R. fascians on secateurs and the efficacy of registered control products against both bacteria in vitro and in vivo. Experimental plants used were Rosa × hybrida, Leucanthemum × superbum, and Chrysanthemum × grandiflorum for A. tumefaciens and Petunia × hybrida and Oenothera 'Siskiyou' with R. fascians. In separate experiments, we found secateurs could convey both bacteria in numbers sufficient to initiate disease in a host-dependent manner and that bacteria could be recovered from secateurs after a single cut through an infected stem. In in vivo assays, none of six products tested against A. tumefaciens prevented crown gall disease, although several products appeared promising in in vitro trials. Likewise, four compounds trialed against R. fascians failed to prevent disease. Sanitation and clean planting material remain the primary means of disease management.
Collapse
Affiliation(s)
- Michael I Gordon
- Department of Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - William J Thomas
- Department of Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Melodie L Putnam
- Department of Plant Pathology, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
5
|
Ye C, Liu D, Huang K, Li D, Ma X, Jin Y, Xiong H. Isolation of starch and protein degrading strain Bacillus subtilis FYZ1-3 from tobacco waste and genomic analysis of its tolerance to nicotine and inhibition of fungal growth. Front Microbiol 2023; 14:1260149. [PMID: 38033584 PMCID: PMC10687635 DOI: 10.3389/fmicb.2023.1260149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
Aerobic fermentation is an effective technique for the large-scale processing of tobacco waste. However, the specificity of the structure and composition of tobacco-derived organic matter and the toxic alkaloids in the material make it currently difficult to directly use microbial agents. In this study, a functional strain FYZ1-3 was isolated and screened from thermophilic phase samples of tobacco waste composting. This strain could withstand temperatures as high as 80°C and grow normally at 0.6% nicotine content. Furthermore, it had a strong decomposition capacity of tobacco-derived starch and protein, with amylase activity of 122.3 U/mL and protease activity and 52.3 U/mL, respectively. To further understand the mechanism of the metabolic transformation of the target, whole genome sequencing was used and the secondary metabolite gene cluster was predicted. The inhibitory effect of the strain on common tobacco fungi was verified using the plate confrontation and agar column methods. The results showed that the strain FYZ1-3 was Bacillus subtilis, with a genome size of 4.17 Mb and GC content of 43.68%; 4,338 coding genes were predicted. The genome was annotated and analyzed using multiple databases to determine its ability to efficiently degrade starch proteins at the molecular level. Moreover, 14 functional genes related to nicotine metabolism were identified, primarily located on the distinct genomic island of FYZ1-3, giving a speculation for its nicotine tolerance capability on the molecular mechanism. By mining the secondary metabolite gene cluster prediction, we found potential synthetic bacteriocin, antimicrobial peptide, and other gene clusters on its chromosome, which may have certain antibacterial properties. Further experiments confirmed that the FYZ1-3 strain was a potent growth inhibitor of Penicillium chrysogenum, Aspergillus sydowii, A. fumigatus, and Talaromyces funiculosus. The creation and industrial use of the functional strains obtained in this study provide a theoretical basis for its industrial use, where it would be of great significance to improve the utilization rate of tobacco waste.
Collapse
Affiliation(s)
- Changwen Ye
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- China Tobacco Standardization Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Dandan Liu
- China Tobacco Standardization Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Kuo Huang
- China Tobacco Standardization Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Dong Li
- China Tobacco Standardization Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Xinxin Ma
- School of Environment, Tsinghua University, Beijing, China
| | - Yiying Jin
- School of Environment, Tsinghua University, Beijing, China
| | - Hanguo Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Mohy Eldin A, Hossam N. Microbial surfactants: characteristics, production and broader application prospects in environment and industry. Prep Biochem Biotechnol 2023; 53:1013-1042. [PMID: 37651735 DOI: 10.1080/10826068.2023.2175364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Microbial surfactants are green molecules with high surface activities having the most promising advantages over chemical surfactants including their ability to efficiently reducing surface and interfacial tension, nontoxic emulsion-based formulations, biocompatibility, biodegradability, simplicity of preparation from low cost materials such as residual by-products and renewable resources at large scales, effectiveness and stabilization under extreme conditions and broad spectrum antagonism of pathogens to be part of the biocontrol strategy. Thus, biosurfactants are universal tools of great current interest. The present work describes the major types and microbial origin of surfactants and their production optimization from agro-industrial wastes in the batch shake-flasks and bioreactor systems through solid-state and submerged fermentation industries. Various downstream strategies that had been developed to extract and purify biosurfactants are discussed. Further, the physicochemical properties and functional characteristics of biosurfactants open new future prospects for the development of efficient and eco-friendly commercially successful biotechnological product compounds with diverse potential applications in environment, industry, biomedicine, nanotechnology and energy-saving technology as well.
Collapse
Affiliation(s)
- Ahmed Mohy Eldin
- Department of Microbiology, Soils, Water and Environmental Research Institute (SWERI), Agricultural Research Center (ARC), Giza, Egypt
| | | |
Collapse
|
7
|
Pengproh R, Thanyasiriwat T, Sangdee K, Saengprajak J, Kawicha P, Sangdee A. Evaluation and Genome Mining of Bacillus stercoris Isolate B.PNR1 as Potential Agent for Fusarium Wilt Control and Growth Promotion of Tomato. THE PLANT PATHOLOGY JOURNAL 2023; 39:430-448. [PMID: 37817491 PMCID: PMC10580056 DOI: 10.5423/ppj.oa.01.2023.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/07/2023] [Accepted: 08/26/2023] [Indexed: 10/12/2023]
Abstract
Recently, strategies for controlling Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of Fusarium wilt of tomato, focus on using effective biocontrol agents. In this study, an analysis of the biocontrol and plant growth promoting (PGP) attributes of 11 isolates of loamy soil Bacillus spp. has been conducted. Among them, the isolates B.PNR1 and B.PNR2 inhibited the mycelial growth of Fol by inducing abnormal fungal cell wall structures and cell wall collapse. Moreover, broad-spectrum activity against four other plant pathogenic fungi, F. oxysporum f. sp. cubense race 1 (Foc), Sclerotium rolfsii, Colletotrichum musae, and C. gloeosporioides were noted for these isolates. These two Bacillus isolates produced indole acetic acid, phosphate solubilization enzymes, and amylolytic and cellulolytic enzymes. In the pot experiment, the culture filtrate from B.PNR1 showed greater inhibition of the fungal pathogens and significantly promoted the growth of tomato plants more than those of the other treatments. Isolate B.PNR1, the best biocontrol and PGP, was identified as Bacillus stercoris by its 16S rRNA gene sequence and whole genome sequencing analysis (WGS). The WGS, through genome mining, confirmed that the B.PNR1 genome contained genes/gene cluster of a nonribosomal peptide synthetase/polyketide synthase, such as fengycin, surfactin, bacillaene, subtilosin A, bacilysin, and bacillibactin, which are involved in antagonistic and PGP activities. Therefore, our finding demonstrates the effectiveness of B. stercoris strain B.PNR1 as an antagonist and for plant growth promotion, highlighting the use of this microorganism as a biocontrol agent against the Fusarium wilt pathogen and PGP abilities in tomatoes.
Collapse
Affiliation(s)
- Rattana Pengproh
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Thanwanit Thanyasiriwat
- Plant Genome and Disease Research Unit, Department of Agriculture and Resources, Faculty of Natural Resources and Agro-Industry, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Kusavadee Sangdee
- Preclinical Group, Faculty of Medicine, Mahasarakham University, Muang District, Maha Sarakham 44000, Thailand
| | - Juthaporn Saengprajak
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Praphat Kawicha
- Plant Genome and Disease Research Unit, Department of Agriculture and Resources, Faculty of Natural Resources and Agro-Industry, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Aphidech Sangdee
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
- Microbiology and Applied Microbiology Research Unit, Faculty of Science, Mahasarakham University, Kantarawichai District, Maha Sarakham 44150, Thailand
| |
Collapse
|
8
|
Duan Y, Pang Z, Yin S, Xiao W, Hu H, Xie J. Screening and Analysis of Antifungal Strains Bacillus subtilis JF-4 and B. amylum JF-5 for the Biological Control of Fusarium Wilt of Banana. J Fungi (Basel) 2023; 9:886. [PMID: 37754994 PMCID: PMC11340694 DOI: 10.3390/jof9090886] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
PURPOSE This study aimed to identify the antagonistic bacteria from the rhizosphere of healthy bananas that can effectively suppress the Fusarium wilt of banana, and to further investigate the inhibitory mechanism. METHOD The primary and secondary screening techniques were implemented using the double-plate and fermentation antagonism methods. The strain was identified based on physiological and biochemical tests, 16S rRNA gene sequencing, and specific gene amplification. The effects of crude extract on the protein content, lipid peroxidation, and pectinase activity of mycelia were determined from the identified isolates. RESULTS Two antagonistic bacteria, JF-4 and JF-5, were screened and initially identified as Bacillus subtilis (GenBank: OR125631) and B. amylum (GenBank: OR125632). The greenhouse experiment showed that the biological control efficiency of the two antagonists against the Fusarium wilt of banana was 48.3% and 40.3%, respectively. The catalase content produced by lipid peroxidation increased significantly after treatment with the crude extracts of JF-4 and JF-5 at concentrations of 0.69 μmol/L and 0.59 μmol/L, respectively. The protein and ergosterol content and pectinase activity decreased significantly. The two antagonistic bacteria might inhibit the growth of pathogens by enhancing lipid peroxidation and decreasing the synthesis of cell metabolites. Twenty compounds were identified by gas chromatography-mass spectrometry (GC-MS). B. subtilis JF-4 was further sequenced and assembled to obtain a complete circular chromosome genome of 681,804,824 bp. The genome consisted of a 4,310,825-bp-long scaffold. CONCLUSION The findings of this study may help elucidate the mechanism behind this biocontrol isolate.
Collapse
Affiliation(s)
- Yajie Duan
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Zhencai Pang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Shunli Yin
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China
| | - Weijun Xiao
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Huigang Hu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Jianghui Xie
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| |
Collapse
|
9
|
Gharsallah H, Ksentini I, Frikha-Gargouri O, Hadj Taieb K, Ben Gharsa H, Schuster C, Chatti-Kolsi A, Triki MA, Ksantini M, Leclerque A. Exploring Bacterial and Fungal Biodiversity in Eight Mediterranean Olive Orchards ( Olea europaea L.) in Tunisia. Microorganisms 2023; 11:microorganisms11041086. [PMID: 37110509 PMCID: PMC10145363 DOI: 10.3390/microorganisms11041086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
A wide array of bacteria and fungi are known for their association with pests that impact the health of the olive tree. The latter presents the most economically important cultivation in Tunisia. The microbial diversity associated with olive orchards in Tunisia remains unknown and undetermined. This study investigated microbial diversity to elucidate the microbial interactions that lead to olive disease, and the bio-prospects for potential microbial biocontrol agents associated with insect pests of economic relevance for olive cultivation in the Mediterranean area. Bacterial and fungal isolation was made from soil and olive tree pests. A total of 215 bacterial and fungal strains were randomly isolated from eight different biotopes situated in Sfax (Tunisia), with different management practices. 16S rRNA and ITS gene sequencing were used to identify the microbial community. The majority of the isolated bacteria, Staphylococcus, Bacillus, Alcaligenes, and Providencia, are typical of the olive ecosystem and the most common fungi are Penicillium, Aspergillus, and Cladosporium. The different olive orchards depicted distinct communities, and exhibited dissimilar amounts of bacteria and fungi with distinct ecological functions that could be considered as promising resources in biological control.
Collapse
Affiliation(s)
- Houda Gharsallah
- Laboratory of Improvement and Protection of Olive Tree Genetic Resources, Olive Tree Institute, University of Sfax, Sfax 3038, Tunisia
| | - Ines Ksentini
- Laboratory of Improvement and Protection of Olive Tree Genetic Resources, Olive Tree Institute, University of Sfax, Sfax 3038, Tunisia
| | - Olfa Frikha-Gargouri
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, Sfax 3038, Tunisia
| | - Karama Hadj Taieb
- Laboratory of Improvement and Protection of Olive Tree Genetic Resources, Olive Tree Institute, University of Sfax, Sfax 3038, Tunisia
| | - Haifa Ben Gharsa
- Department of Biology, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Christina Schuster
- Department of Biology, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Amel Chatti-Kolsi
- Laboratory of Improvement and Protection of Olive Tree Genetic Resources, Olive Tree Institute, University of Sfax, Sfax 3038, Tunisia
| | - Mohamed Ali Triki
- Laboratory of Improvement and Protection of Olive Tree Genetic Resources, Olive Tree Institute, University of Sfax, Sfax 3038, Tunisia
| | - Mohieddine Ksantini
- Laboratory of Improvement and Protection of Olive Tree Genetic Resources, Olive Tree Institute, University of Sfax, Sfax 3038, Tunisia
| | - Andreas Leclerque
- Department of Biology, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
10
|
Kawicha P, Nitayaros J, Saman P, Thaporn S, Thanyasiriwat T, Somtrakoon K, Sangdee K, Sangdee A. Evaluation of Soil Streptomyces spp. for the Biological Control of Fusarium Wilt Disease and Growth Promotion in Tomato and Banana. THE PLANT PATHOLOGY JOURNAL 2023; 39:108-122. [PMID: 36760053 PMCID: PMC9929171 DOI: 10.5423/ppj.oa.08.2022.0124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Fusarium oxysporum f. sp. lycopersici (Fol) and Fusarium oxysporum f. sp. cubense (Foc), are the causal agent of Fusarium wilt disease of tomato and banana, respectively, and cause significant yield losses worldwide. A cost-effective measure, such as biological control agents, was used as an alternative method to control these pathogens. Therefore, in this study, six isolates of the Streptomyces-like colony were isolated from soils and their antagonistic activity against phytopathogenic fungi and plant growth-promoting (PGP) activity were assessed. The results showed that these isolates could inhibit the mycelial growth of Fol and Foc. Among them, isolate STRM304 showed the highest percentage of mycelial growth reduction and broad-spectrum antagonistic activity against all tested fungi. In the pot experiment study, the culture filtrate of isolates STRM103 and STRM104 significantly decreased disease severity and symptoms in Fol inoculated plants. Similarly, the culture filtrate of the STRM304 isolate significantly reduced the severity of the disease and symptoms of the disease in Foc inoculated plants. The PGP activity test presents PGP activities, such as indole acetic acid production, phosphate solubilization, starch hydrolysis, lignin hydrolysis, and cellulase activity. Interestingly, the application of the culture filtrate from all isolates increased the percentage of tomato seed germination and stimulated the growth of tomato plants and banana seedlings, increasing the elongation of the shoot and the root and shoot and root weight compared to the control treatment. Therefore, the isolate STRM103 and STRM104, and STRM304 could be used as biocontrol and PGP agents for tomato and banana, respectively, in sustainable agriculture.
Collapse
Affiliation(s)
- Praphat Kawicha
- Plant Pest and Biocontrol Research Unit, Department of Agriculture and Resources, Faculty of Natural Resources and Agro-Industry, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000,
Thailand
| | - Jariya Nitayaros
- Plant Pest and Biocontrol Research Unit, Department of Agriculture and Resources, Faculty of Natural Resources and Agro-Industry, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000,
Thailand
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham 44150,
Thailand
| | - Prakob Saman
- Plant Pest and Biocontrol Research Unit, Department of Agriculture and Resources, Faculty of Natural Resources and Agro-Industry, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000,
Thailand
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham 44150,
Thailand
| | - Sirikanya Thaporn
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham 44150,
Thailand
| | - Thanwanit Thanyasiriwat
- Plant Pest and Biocontrol Research Unit, Department of Agriculture and Resources, Faculty of Natural Resources and Agro-Industry, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000,
Thailand
| | - Khanitta Somtrakoon
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham 44150,
Thailand
- Microbiology and Applied Microbiology Research Unit, Faculty of Science, Mahasarakham University, Kantarawichai District, Maha Sarakham 44150,
Thailand
| | - Kusavadee Sangdee
- Preclinical Group, Faculty of Medicine, Mahasarakham University, Muang District, Maha Sarakham 44000,
Thailand
| | - Aphidech Sangdee
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham 44150,
Thailand
- Microbiology and Applied Microbiology Research Unit, Faculty of Science, Mahasarakham University, Kantarawichai District, Maha Sarakham 44150,
Thailand
| |
Collapse
|
11
|
Zhumakayev AR, Varga M, Vörös M, Kocsubé S, Ramteke PW, Szekeres A, Vágvölgyi C, Hatvani L, Marik T. Characterization of the antagonistic potential of the glyphosate-tolerant Pseudomonas resinovorans SZMC 25872 strain against the plant pathogenic bacterium Agrobacterium tumefaciens. FRONTIERS IN PLANT SCIENCE 2022; 13:1034237. [PMID: 36518497 PMCID: PMC9743988 DOI: 10.3389/fpls.2022.1034237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
The utilization of microorganisms with biocontrol activity against fungal and bacterial pathogens of plants is recognized as a promising, effective, and environment-friendly strategy to protect agricultural crops. We report the glyphosate-tolerant Pseudomonas resinovorans SZMC 25872 isolate as a novel strain with antagonistic potential towards the plant pathogenic bacterium Agrobacterium tumefaciens. In our studies, the growth of the P. resinovorans SZMC 25872 and A. tumefaciens SZMC 14557 isolates in the presence of 74 different carbon sources, and the effect of 11 carbon sources utilized by both strains on the biocontrol efficacy was examined. Seven variations of media with different carbon sources were selected for the assays to observe the biocontrol potential of the P. resinovorans strain. Also, 50% concentrations of the cell-free culture filtrates (CCF) obtained from medium amended with L-alanine or succinic acid as sole carbon source were found to be effective for the growth suppression of A. tumefaciens by 83.03 and 56.80%, respectively. The effect of 7 media on siderophore amount and the activity of extracellular trypsin- and chymotrypsin-like proteases, as well as esterases were also evaluated. Significant positive correlation was found between the siderophore amount and the percentage of inhibition, and the inhibitory effect of the CCFs obtained from medium amended with succinic acid was eliminated in the presence of an additional iron source, suggesting that siderophores produced by P. resinovorans play an important role in its antagonistic potential. The metabolic profile analysis of the P. resinovorans SZMC 25872 strain, performed by high performance liquid chromatography - high resolution mass spectrometry (HPLC-HRMS), has identified several previously not reported metabolites that might play role in the antagonistic effect against A. tumefaciens. Based on our findings we suggest that the possible inhibition modes of A. tumefaciens SZMC 14557 by P. resinovorans SZMC 25872 include siderophore-mediated suppression, extracellular enzyme activities and novel bioactive metabolites.
Collapse
Affiliation(s)
- Anuar R. Zhumakayev
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Mónika Varga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Mónika Vörös
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Sándor Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- ELKH-SZTE Fungal Pathogenicity Mechanisms Research Group, University of Szeged, Szeged, Hungary
| | - Pramod W. Ramteke
- Department of Biotechnology, Dr. Ambedkar College, Deekshbhoomi, Nagpur, India
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Lóránt Hatvani
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Tamás Marik
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
12
|
Akbarian M, Chen SH, Kianpour M, Farjadian F, Tayebi L, Uversky VN. A review on biofilms and the currently available antibiofilm approaches: Matrix-destabilizing hydrolases and anti-bacterial peptides as promising candidates for the food industries. Int J Biol Macromol 2022; 219:1163-1179. [PMID: 36058386 DOI: 10.1016/j.ijbiomac.2022.08.192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
Biofilms are communities of microorganisms that can be harmful and/or beneficial, depending on location and cell content. Since in most cases (such as the formation of biofilms in laboratory/medicinal equipment, water pipes, high humidity-placed structures, and the food packaging machinery) these bacterial and fungal communities are troublesome, researchers in various fields are trying to find a promising strategy to destroy or slow down their formation. In general, anti-biofilm strategies are divided into the plant-based and non-plant categories, with the latter including nanoparticles, bacteriophages, enzymes, surfactants, active peptides and free fatty acids. In most cases, using a single strategy will not be sufficient to eliminate biofilm, and consequently, two or more strategies will inevitably be used to deal with this unwanted phenomenon. According to the analysis of potential biofilm inhibition strategies, the best option for the food industry would be the use of hydrolase enzymes and peptides extracted from natural sources. This article represents a systematic review of the previous efforts made in these directions.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan.
| | - Shu-Hui Chen
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Maryam Kianpour
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine and Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow region, Russia.
| |
Collapse
|
13
|
Afridi MS, Fakhar A, Kumar A, Ali S, Medeiros FHV, Muneer MA, Ali H, Saleem M. Harnessing microbial multitrophic interactions for rhizosphere microbiome engineering. Microbiol Res 2022; 265:127199. [PMID: 36137486 DOI: 10.1016/j.micres.2022.127199] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/02/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
The rhizosphere is a narrow and dynamic region of plant root-soil interfaces, and it's considered one of the most intricate and functionally active ecosystems on the Earth, which boosts plant health and alleviates the impact of biotic and abiotic stresses. Improving the key functions of the microbiome via engineering the rhizosphere microbiome is an emerging tool for improving plant growth, resilience, and soil-borne diseases. Recently, the advent of omics tools, gene-editing techniques, and sequencing technology has allowed us to unravel the entangled webs of plant-microbes interactions, enhancing plant fitness and tolerance to biotic and abiotic challenges. Plants secrete signaling compounds with low molecular weight into the rhizosphere, that engage various species to generate a massive deep complex array. The underlying principle governing the multitrophic interactions of the rhizosphere microbiome is yet unknown, however, some efforts have been made for disease management and agricultural sustainability. This review discussed the intra- and inter- microbe-microbe and microbe-animal interactions and their multifunctional roles in rhizosphere microbiome engineering for plant health and soil-borne disease management. Simultaneously, it investigates the significant impact of immunity utilizing PGPR and cover crop strategy in increasing rhizosphere microbiome functions for plant development and protection using omics techniques. The ecological engineering of rhizosphere plant interactions could be used as a potential alternative technology for plant growth improvement, sustainable disease control management, and increased production of economically significant crops.
Collapse
Affiliation(s)
- Muhammad Siddique Afridi
- Department of Plant Pathology, Federal University of Lavras, CP3037, 37200-900 Lavras, MG, Brazil.
| | - Ali Fakhar
- Division of Applied Science, Gyeongsang National University, South Korea
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, MP, India
| | - Sher Ali
- NMR Lab, Department of Chemistry, Federal University of Paraná, Curitiba 81530-900, PR, Brazil
| | - Flavio H V Medeiros
- Department of Plant Pathology, Federal University of Lavras, CP3037, 37200-900 Lavras, MG, Brazil
| | - Muhammad Atif Muneer
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hina Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
| |
Collapse
|
14
|
Foliar Application of Nano-Silicon Improves the Physiological and Biochemical Characteristics of ‘Kalamata’ Olive Subjected to Deficit Irrigation in a Semi-Arid Climate. PLANTS 2022; 11:plants11121561. [PMID: 35736712 PMCID: PMC9229156 DOI: 10.3390/plants11121561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 01/14/2023]
Abstract
In Egypt’s arid and semi-arid lands where the main olive production zone is located, evapotranspiration is higher than rainfall during winter. Limited research has used nanomaterials, especially nano-silicon (nSi) to improve the growth, development, and productivity of drought-stressed fruit trees, amid the global water scarcity problem. To assess the role of nSi on drought-sensitive ‘Kalamata’ olive tree growth, and biochemical and physiological changes under drought conditions, a split-plot experiment was conducted in a randomized complete block design. The trees were foliar sprayed with nSi in the field using nine treatments (three replicates each) of 0, 150, and 200 mg·L−1 under different irrigation regimes (100, 90, and 80% irrigation water requirements ‘IWR’) during the 2020 and 2021 seasons. Drought negatively affected the trees, but both concentrations of nSi alleviated drought effects at reduced irrigation levels, compared to the non-stressed trees. Foliar spray of both concentrations of nSi at a moderate level (90% IWR) of drought resulted in improved yield and fruit weight and reduced fruit drop percentage, compared to 80% IWR. In addition, there were reduced levels of osmoprotectants such as proline, soluble sugars, and abscisic acid (ABA) with less membrane damage expressed as reduced levels of malondialdehyde (MDA), H2O2 and electrolyte leakage at 90% compared to 80% IWR. These results suggest that ‘Kalamata’ olive trees were severely stressed at 80% compared to 90% IWR, which was not surprising as it is classified as drought sensitive. Overall, the application of 200 mg·L−1 nSi was beneficial for the improvement of the mechanical resistance, growth, and productivity of moderately-stressed (90% IWR) ‘Kalamata’ olive trees under the Egyptian semi-arid conditions.
Collapse
|
15
|
Wang X, Liang L, Shao H, Ye X, Yang X, Chen X, Shi Y, Zhang L, Xu L, Wang J. Isolation of the Novel Strain Bacillus amyloliquefaciens F9 and Identification of Lipopeptide Extract Components Responsible for Activity against Xanthomonas citri subsp. citri. PLANTS (BASEL, SWITZERLAND) 2022; 11:457. [PMID: 35161438 PMCID: PMC8840523 DOI: 10.3390/plants11030457] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is a quarantine disease that seriously affects citrus production worldwide. The use of microorganisms and their products for biological control has been proven to be effective in controlling Xanthomonas disease. In this study, a novel Xcc antagonistic strain was isolated and identified as Bacillus amyloliquefaciens F9 by morphological and molecular analysis. The lipopeptide extract of B. amyloliquefaciens F9 (F9LE) effectively inhibited the growth of Xcc in an agar diffusion assay and restrained the occurrence of canker lesions in a pathogenicity test under greenhouse conditions. Consistent with these findings, F9LE treatment significantly inhibited the production of extracellular enzymes in Xcc cells and induced cell wall damage, with leakage of bacterial contents revealed by scanning electron microscopy and transmission electron microscopy analyses. In addition, F9LE also showed strong antagonistic activity against a wide spectrum of plant pathogenic bacteria and fungi. Furthermore, using electrospray ionization mass spectrometry analysis, the main antimicrobial compounds of strain F9 were identified as three kinds of lipopeptides, including homologues of surfactin, fengycin, and iturin. Taken together, our results show that B. amyloliquefaciens F9 and its lipopeptide components have the potential to be used as biocontrol agents against Xcc, and other plant pathogenic bacteria and fungi.
Collapse
Affiliation(s)
- Xin Wang
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.L.); (H.S.); (X.Y.); (X.Y.); (X.C.); (Y.S.); (L.Z.)
| | - Liqiong Liang
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.L.); (H.S.); (X.Y.); (X.Y.); (X.C.); (Y.S.); (L.Z.)
| | - Hang Shao
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.L.); (H.S.); (X.Y.); (X.Y.); (X.C.); (Y.S.); (L.Z.)
| | - Xiaoxin Ye
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.L.); (H.S.); (X.Y.); (X.Y.); (X.C.); (Y.S.); (L.Z.)
| | - Xiaobei Yang
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.L.); (H.S.); (X.Y.); (X.Y.); (X.C.); (Y.S.); (L.Z.)
| | - Xiaoyun Chen
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.L.); (H.S.); (X.Y.); (X.Y.); (X.C.); (Y.S.); (L.Z.)
| | - Yu Shi
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.L.); (H.S.); (X.Y.); (X.Y.); (X.C.); (Y.S.); (L.Z.)
| | - Lianhui Zhang
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.L.); (H.S.); (X.Y.); (X.Y.); (X.C.); (Y.S.); (L.Z.)
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Linghui Xu
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.L.); (H.S.); (X.Y.); (X.Y.); (X.C.); (Y.S.); (L.Z.)
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Junxia Wang
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.L.); (H.S.); (X.Y.); (X.Y.); (X.C.); (Y.S.); (L.Z.)
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
16
|
Cui L, Yang C, Wang Y, Ma T, Cai F, Wei L, Jin M, Osei R, Zhang J, Tang M. Potential of an endophytic bacteria Bacillus amyloliquefaciens 3-5 as biocontrol agent against potato scab. Microb Pathog 2021; 163:105382. [PMID: 34974122 DOI: 10.1016/j.micpath.2021.105382] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022]
Abstract
To obtain a potential biocontrol agent for potato scab, 75 endophytic bacteria were isolated from the healthy potato tubers and strain 3-5 was selected as an optimal antagonistic bacterium against Streptomyces griseoplanus (Streptacidiphilus griseoplanus) causing potato scab. Strain 3-5 was identified as Bacillus amyloliquefaciens based on its morphological characteristics, 16S rDNA and gyrB gene sequence analysis. B. amyloliquefaciens 3-5 has biological functions of indole-3-acetic acid (IAA) production and nitrogen fixation. Polymerase chain reaction (PCR) detection revealed that B. amyloliquefaciens 3-5 had 6 diverse antibacterial substance synthesis genes, named bacD, bacAB, ituD, ituC, sfP and albF, which resulted in the production of bacilysin, iturin, surfactin and subtilosin. Field efficacy evaluation revealed that B. amyloliquefaciens 3-5 (solid fermentation) was successful in controlling potato scab with a 38.90 ± 3.2140% efficiency which is higher than other chemical bactericides except zhongshengmycin·oligosaccharins and kasugamycin·zhongshengmycin. The endophytic bacterium B. amyloliquefaciens 3-5 could be used as a biocontrol agent against potato scab due its control efficacy and environmental safety.
Collapse
Affiliation(s)
- Lingxiao Cui
- Laboratory of Biocontrol Engineering of Crop Pests and Diseases in Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Chengde Yang
- Laboratory of Biocontrol Engineering of Crop Pests and Diseases in Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yinyu Wang
- Laboratory of Biocontrol Engineering of Crop Pests and Diseases in Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ting Ma
- Laboratory of Biocontrol Engineering of Crop Pests and Diseases in Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Fengfeng Cai
- Laboratory of Biocontrol Engineering of Crop Pests and Diseases in Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lijuan Wei
- Laboratory of Biocontrol Engineering of Crop Pests and Diseases in Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Mengjun Jin
- Laboratory of Biocontrol Engineering of Crop Pests and Diseases in Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Richard Osei
- Laboratory of Biocontrol Engineering of Crop Pests and Diseases in Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Junlian Zhang
- Gansu Key Lab of Crop Improvement & Germplasm Enhancement, Lanzhou, 730070, China
| | - Mei Tang
- Laboratory of Biocontrol Engineering of Crop Pests and Diseases in Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
17
|
Ben Gharsa H, Bouri M, Mougou Hamdane A, Schuster C, Leclerque A, Rhouma A. Bacillus velezensis strain MBY2, a potential agent for the management of crown gall disease. PLoS One 2021; 16:e0252823. [PMID: 34129651 PMCID: PMC8205166 DOI: 10.1371/journal.pone.0252823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/22/2021] [Indexed: 11/18/2022] Open
Abstract
The reduction of the use chemical pesticides in agriculture is gaining importance as an objective of decision-makers in both politics and economics. Consequently, the development of technically efficient and economically affordable alternatives as, e.g., biological control agents or practices is highly solicited. Crown gall disease of dicotyledonous plants is caused by ubiquitous soil borne pathogenic bacteria of the Agrobacterium tumefaciens species complex, that comprises the species Agrobacterium fabrum and represents a globally relevant plant protection problem. Within the framework of a screening program for bacterial Agrobacterium antagonists a total of 14 strains were isolated from Tunisian soil samples and assayed for antagonistic activity against pathogenic agrobacteria. One particularly promising isolate, termed strain MBY2, was studied more in depth. Using a Multilocus Sequence Analysis (MLSA) approach, the isolate was assigned to the taxonomic species Bacillus velezensis. Strain MBY2 was shown to display antagonistic effects against the pathogenic A. fabrum strain C58 in vitro and to significantly decrease pathogen populations under sterile and non-sterile soil conditions as well as in the rhizosphere of maize and, to a lower extent, tomato plants. Moreover, the ability of B. velezensis MBY2 to reduce C58-induced gall development has been demonstrated in vivo on stems of tomato and almond plants. The present study describes B. velezensis MBY2 as a newly discovered strain holding potential as a biological agent for crown gall disease management.
Collapse
Affiliation(s)
- Haifa Ben Gharsa
- Laboratory of Protection and Improvement of Genetic Resources of Olive, Olive Tree Institute, Tunis, Tunisia
- Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Institute for Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Meriam Bouri
- Laboratory of Protection and Improvement of Genetic Resources of Olive, Olive Tree Institute, Tunis, Tunisia
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | | | - Christina Schuster
- Institute for Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Andreas Leclerque
- Institute for Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Protezione Sostenibile delle Piante (IPSP), Portici, Italy
| | - Ali Rhouma
- Laboratory of Protection and Improvement of Genetic Resources of Olive, Olive Tree Institute, Tunis, Tunisia
| |
Collapse
|
18
|
Paraszkiewicz K, Moryl M, Płaza G, Bhagat D, K Satpute S, Bernat P. Surfactants of microbial origin as antibiofilm agents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:401-420. [PMID: 31509014 DOI: 10.1080/09603123.2019.1664729] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
The microbial world provides new energy sources and many various 'green' chemicals. One type of chemicals produced by microorganisms is the biosurfactant group. Biosurfactants are universal molecules, exhibiting surface properties often accompanied by desired biological activity. Biosurfactants are considered to be environmentally 'friendly' due to their low toxicity and biodegradable nature. These compounds have unique features and therefore they can find potential applications in many different industries, ranging from biotechnology to environmental remediation technologies. Antibacterial and antifungal activities make them relevant for applications as inhibitory agents against microbial biofilm. This review covers the current knowledge and the recent advances in the field of biosurfactants as antibiofilm agents.
Collapse
Affiliation(s)
- Katarzyna Paraszkiewicz
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Magdalena Moryl
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Grażyna Płaza
- Institute of Production Engineering, Faculty of Organization and Management, Silesian University of Technology, Zabrze, Poland
| | - Diksha Bhagat
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Surekha K Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| |
Collapse
|
19
|
Chen L, Wang X, Liu Y. Contribution of macrolactin in Bacillus velezensis CLA178 to the antagonistic activities against Agrobacterium tumefaciens C58. Arch Microbiol 2021; 203:1743-1752. [PMID: 33471134 DOI: 10.1007/s00203-020-02141-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 11/02/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
Beneficial rhizobacteria can inhibit soilborne pathogens by secreting an array of polyketides, lipopeptides and dipeptides, but the effect of polyketides on crown gall disease caused by Agrobacterium tumefaciens C58 is unclear. In this study, the antagonistic compounds of the plant growth-promoting rhizobacterium Bacillus velezensis CLA178 was sorted with different organic phases, purified by high-pressure liquid chromatography, and detected by a liquid chromatography ionization-mass spectrometry system. Macrolactins were found to be the compounds with antagonistic activity against A. tumefaciens C58. When the macrolactin synthesis pathway was disrupted, the mutant △mlnA only showed slight antagonistic activity against A. tumefaciens C58. Transmission electron microscopy showed that the inhibition of C58 cell division by cell-free culture from the mutant △mlnA was weaker than that by cell-free culture from CLA178. The mutant deficient in production of macrolactin showed a weaker transcription of genes involved in attachment of C58 to plant and lower biocontrol of crown gall disease in rose than the wild-type strain CLA178. The effect of macrolactins on pathogen C58 has been also confirmed by the purified macrolactins. These results reveal that macrolactins contribute to the biocontrol activity of C58 by inhibiting cell division and downregulating the transcription of chvB and chvE.
Collapse
Affiliation(s)
- Lin Chen
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 102300, People's Republic of China.,National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain, Beijing, 102300, People's Republic of China
| | - Xinghong Wang
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 102300, People's Republic of China.,National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain, Beijing, 102300, People's Republic of China
| | - Yunpeng Liu
- Key Laboratory of Agricultural Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
20
|
Abdallah DB, Krier F, Jacques P, Tounsi S, Frikha-Gargouri O. Agrobacterium tumefaciens C58 presence affects Bacillus velezensis 32a ecological fitness in the tomato rhizosphere. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28429-28437. [PMID: 32415456 DOI: 10.1007/s11356-020-09124-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
The persistence of pathogenic Agrobacterium strains as soil-associated saprophytes may cause an inconsistency in the efficacy of the biocontrol inoculants under field condition. The study of the interaction occurring in the rhizosphere between the beneficial and the pathogenic microbes is thus interesting for the development of effective biopesticides for the management of crown gall disease. However, very little is still known about the influence of these complex interactions on the biocontrol determinants of beneficial bacteria, especially Bacillus strains. This study aimed to evaluate the effect of the soil borne pathogen Agrobacterium tumefaciens C58 on root colonization and lipopeptide production by Bacillus velezensis strain 32a during interaction with tomato plants. Results show that the presence of A. tumefaciens C58 positively impacted the root colonization level of the Bacillus strain. However, negative impact on surfactin production was observed in Agrobacterium-treated seedling, compared with control. Further investigation suggests that these modulations are due to a modified tomato root exudate composition during the tripartite interaction. Thus, this work contributes to enhance the knowledge on the impact of interspecies interaction on the ecological fitness of Bacillus cells living in the rhizosphere.
Collapse
Affiliation(s)
- Dorra Ben Abdallah
- Biopesticides Laboratory, Centre of Biotechnology of Sfax, Sfax University, P.O. Box 1177, 3018, Sfax, Tunisia
| | - François Krier
- Université de Lille, INRA, Université d'Artois, Université du Littoral-Côte d'Opale, EA 7394 - ICV-Institut Charles Viollette, F-59000, Lille, France
| | - Philippe Jacques
- Microbial Processes and Interactions (MiPI), TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech University of Liege, B-5030, Gembloux, Belgium
| | - Slim Tounsi
- Biopesticides Laboratory, Centre of Biotechnology of Sfax, Sfax University, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Olfa Frikha-Gargouri
- Biopesticides Laboratory, Centre of Biotechnology of Sfax, Sfax University, P.O. Box 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
21
|
Duan Y, Chen J, Pang Z, Ye X, Zhang C, Hu H, Xie J. Antifungal mechanism of Streptomyces ma. FS-4 on fusarium wilt of banana. J Appl Microbiol 2020; 130:196-207. [PMID: 32654413 DOI: 10.1111/jam.14784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/15/2020] [Accepted: 07/03/2020] [Indexed: 12/24/2022]
Abstract
AIM Research on prevention and cure of banana wilt is important to ensure the healthy development of the banana industry. In this study, antifungal mechanism of Streptomyces ma. FS-4 on fusarium wilt of banana was investigated. METHODS AND RESULTS The physiological strain of banana fusarium pathogen Fusarium oxysporum f. sp. cubense Race 4 (FOC.4) was used as the target fungus, and the antifungal mechanism of the crude extract of Streptomyces ma. FS-4 was investigated. Eighteen different compounds identified by gas chromatography-mass spectrometry were composed of aldehydes, methyl, hydrocarbons, amides, esters and acids. FS-4 significantly inhibited the spore germination of the target fungi, with an EC50 of 22·78 μg ml-1 . After treatment with 100 μg ml-1 FS-4 crude extract, the N-acetylglucosamine content in the mycelium increased 1·95-fold. However, the extract had no significant effect on β-1,3-glucanase. At the FS-4 crude extract dose of 100 μg ml-1 , the total sugar and protein contents decreased by 28·6 and 29·1% respectively, and the fat content was 41·3%. FS-4 significantly inhibited the activity of the mitochondrial complex III of Foc4, which was reduced by 52·45%. Moreover FS-4 reduced the activity of succinate dehydrogenase, a key enzyme in the Krebs cycle, by 60·2%. However, FS-4 had no significant effect on malate dehydrogenase. The membrane potential on the mitochondrial inner membrane was significantly reduced at the test concentration of 100 μg ml-1 . ROS gradually accumulated in the Foc4 hypha, and the burst was 3·97 times higher than the control. CONCLUSIONS This study demonstrated that the antifungal mechanism of Streptomyces ma. FS-4 against Foc4 includes the destruction of the plasma membrane and mitochondrial dysfunction and finally induction of cell apoptosis. SIGNIFICANCE AND IMPACT OF THE STUDY These results may indicate the prevention and control of banana wilt, which is of great significance to the healthy development of banana industry system.
Collapse
Affiliation(s)
- Y Duan
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, China
| | - J Chen
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Z Pang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, China
| | - X Ye
- College of Food Science and Technology, Hainan University, Haikou, China
| | - C Zhang
- College of Food Science and Technology, Hainan University, Haikou, China
| | - H Hu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, China
| | - J Xie
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, China
| |
Collapse
|
22
|
Yang X, Zhang L, Xiang Y, Du L, Huang X, Liu Y. Comparative transcriptome analysis of Sclerotinia sclerotiorum revealed its response mechanisms to the biological control agent, Bacillus amyloliquefaciens. Sci Rep 2020; 10:12576. [PMID: 32724140 PMCID: PMC7387486 DOI: 10.1038/s41598-020-69434-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 07/12/2020] [Indexed: 11/08/2022] Open
Abstract
Biological control mechanisms of plant diseases have been intensively studied. However, how plant pathogens respond to and resist or alleviate biocontrol agents remains largely unknown. In this study, a comparative transcriptome analysis was performed to elucidate how the pathogen of sclerotinia stem rot, Sclerotinia sclerotiorum, responds and resists to the biocontrol agent, Bacillus amyloliquefaciens. Results revealed that a total of 2,373 genes were differentially expressed in S. sclerotiorum samples treated with B. amyloliquefaciens fermentation broth (TS) when compared to control samples (CS). Among these genes, 2,017 were upregulated and 356 were downregulated. Further analyses indicated that various genes related to fungal cell wall and cell membrane synthesis, antioxidants, and the autophagy pathway were significantly upregulated, including glucan synthesis, ergosterol biosynthesis pathway, fatty acid synthase, heme-binding peroxidase related to oxidative stress, glutathione S-transferase, ABC transporter, and autophagy-related genes. These results suggest that S. sclerotiorum recruits numerous genes to respond to or resist the biocontrol of B. amyloliquefaciens. Thus, this study serves as a valuable resource regarding the mechanisms of fungal pathogen resistance to biocontrol agents.
Collapse
Affiliation(s)
- Xiaoxiang Yang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, People's Republic of China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, 610066, Sichuan, People's Republic of China
| | - Lei Zhang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, People's Republic of China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, 610066, Sichuan, People's Republic of China
| | - Yunjia Xiang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, People's Republic of China
| | - Lei Du
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, People's Republic of China
| | - Xiaoqin Huang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, People's Republic of China.
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, 610066, Sichuan, People's Republic of China.
| | - Yong Liu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, People's Republic of China.
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, 610066, Sichuan, People's Republic of China.
| |
Collapse
|
23
|
Lesson from Ecotoxicity: Revisiting the Microbial Lipopeptides for the Management of Emerging Diseases for Crop Protection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041434. [PMID: 32102264 PMCID: PMC7068399 DOI: 10.3390/ijerph17041434] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 11/17/2022]
Abstract
Microorganisms area treasure in terms of theproduction of various bioactive compounds which are being explored in different arenas of applied sciences. In agriculture, microbes and their bioactive compounds are being utilized in growth promotion and health promotion withnutrient fortification and its acquisition. Exhaustive explorations are unraveling the vast diversity of microbialcompounds with their potential usage in solving multiferous problems incrop production. Lipopeptides are one of such microbial compounds which havestrong antimicrobial properties against different plant pathogens. These compounds are reported to be produced by bacteria, cyanobacteria, fungi, and few other microorganisms; however, genus Bacillus alone produces a majority of diverse lipopeptides. Lipopeptides are low molecular weight compounds which havemultiple industrial roles apart from being usedas biosurfactants and antimicrobials. In plant protection, lipopeptides have wide prospects owing totheirpore-forming ability in pathogens, siderophore activity, biofilm inhibition, and dislodging activity, preventing colonization bypathogens, antiviral activity, etc. Microbes with lipopeptides that haveall these actions are good biocontrol agents. Exploring these antimicrobial compounds could widen the vistasof biological pest control for existing and emerging plant pathogens. The broader diversity and strong antimicrobial behavior of lipopeptides could be a boon for dealing withcomplex pathosystems and controlling diseases of greater economic importance. Understanding which and how these compounds modulate the synthesis and production of defense-related biomolecules in the plants is a key question—the answer of whichneeds in-depth investigation. The present reviewprovides a comprehensive picture of important lipopeptides produced by plant microbiome, their isolation, characterization, mechanisms of disease control, behavior against phytopathogens to understand different aspects of antagonism, and potential prospects for future explorations as antimicrobial agents. Understanding and exploring the antimicrobial lipopeptides from bacteria and fungi could also open upan entire new arena of biopesticides for effective control of devastating plant diseases.
Collapse
|
24
|
Wang Y, Zhao B, Liu Y, Mao L, Zhang X, Meng W, Liu K, Chu J. A novel trehalosamine isolated from Bacillus amyloliquefaciens and its antibacterial activities. AMB Express 2020; 10:6. [PMID: 31938970 PMCID: PMC6960277 DOI: 10.1186/s13568-019-0943-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/28/2019] [Indexed: 12/17/2022] Open
Abstract
Bacillus amyloliquefaciens has been widely used as a probiotic in the field of biological control,and its antibacterial compounds plays an important role in the prevention and control of plant, livestock and poultry diseases. It has the advantages of green, safe and efficiency. This study aims to separate and purify active ingredient from Bacillus amyloliquefaciens GN59 and study its antibacterial activity. A novel compound was isolated from GN59 by column chromatography on silica gel and HPLC purification. The chemical structure was identified as α-D-glucopyranosyl-(1 → 1')-3'-amino-3'-deoxy-β-D-glucopyranoside (a,β-3-trehalosamine) on the basis of spectroscopic analysis. This is the first report about a,β-3-trehalosamine isolated from biological resources on an antibiotic activity against pathogenic bacterium. The 3'-neotrehalosamine displayed antibacterial activity across a broad spectrum of microorganisms, including different gram-positive and gram-negative bacteria, with minimal inhibitory concentration (MIC) values ranging from 0.5 to 0.7 mg/mL. The results indicated that the 3'-neotrehalosamine from GN59 might be a potential candidate for bactericide.
Collapse
|