1
|
Singh PK, Kumar U, Kumar I, Dwivedi A, Singh P, Mishra S, Seth CS, Sharma RK. Critical review on toxic contaminants in surface water ecosystem: sources, monitoring, and its impact on human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56428-56462. [PMID: 39269525 DOI: 10.1007/s11356-024-34932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Surface water pollution is a critical and urgent global issue that demands immediate attention. Surface water plays a crucial role in supporting and sustaining life on the earth, but unfortunately, till now, we have less understanding of its spatial and temporal dynamics of discharge and storage variations at a global level. The contamination of surface water arises from various sources, classified into point and non-point sources. Point sources are specific, identifiable origins of pollution that release pollutants directly into water bodies through pipes or channels, allowing for easier identification and management, e.g., industrial discharges, sewage treatment plants, and landfills. However, non-point sources originate from widespread activities across expansive areas and present challenges due to its diffuse nature and multiple pathways of contamination, e.g., agricultural runoff, urban storm water runoff, and atmospheric deposition. Excessive accumulation of heavy metals, persistent organic pollutants, pesticides, chlorination by-products, pharmaceutical products in surface water through different pathways threatens food quality and safety. As a result, there is an urgent need for developing and designing new tools for identifying and quantifying various environmental contaminants. In this context, chemical and biological sensors emerge as fascinating devices well-suited for various environmental applications. Numerous chemical and biological sensors, encompassing electrochemical, magnetic, microfluidic, and biosensors, have recently been invented by hydrological scientists for the detection of water pollutants. Furthermore, surface water contaminants are monitored through different sensors, proving their harmful effects on human health.
Collapse
Affiliation(s)
- Prince Kumar Singh
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Umesh Kumar
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Indrajeet Kumar
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Akanksha Dwivedi
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Priyanka Singh
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Saumya Mishra
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | | | - Rajesh Kumar Sharma
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Zhu Y, Sun X, Shi L, Zhang D, Wu M, Chai L, Zhao J. Spatial-temporal distribution characteristics of surface water pollutants and their potential sources in Ngari, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:393. [PMID: 39180598 DOI: 10.1007/s10653-024-02176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024]
Abstract
The Ngari region has many important rivers and is critical to water resource security and water resource continuity in China and even in adjoining Asian countries. However, the spatial distribution and monthly variation in local water quality have been poorly understood until recently. In this study, the spatial-temporal variations of 12 water quality parameters, including pH, dissolved oxygen (DO), permanganate index (IMn), chemical oxygen demand (COD), five-day biochemical oxygen demand (BOD5), ammonia nitrogen (NNH3), total nitrogen (Ntotal), total phosphorus (Ptotal), copper (Cu), fluoride (F), arsenic (As) and cadmium (Cd), were determined from samples collected monthly at 22 water cross-sectional sites in the Ngari region in 2020. The surface water pollution in the southern Ngari region was the most serious, and the water pollution level in winter was higher than that in the other seasons. As (0.0781 ~ 0.6154 mg/L) and F (1.05 ~ 4.64 mg/L) were the main exceedance factors derived from the recharge of high arsenic and fluoride geothermal water and weathering of As and F-bearing minerals. The hazard quotient and carcinogenic risk for As and F at the five contaminated sampling sites indicated potential health risks and even carcinogenicity to local populations. The hydrochemistry types of the lakes and rivers in the Ngari region were mainly chloride water and carbonate water. The results from this study can provide a scientific basis for the prevention and control of surface water pollution in the Ngari region and contribute to subsequent research on the ecology of water bodies.
Collapse
Affiliation(s)
- Yubing Zhu
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276005, China
- Tibet Beyond Testing Company Limited, Lhasa, 850032, China
| | - Xiao Sun
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Lin Shi
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276005, China
| | - Di Zhang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276005, China
| | - Meizhen Wu
- Shangrao Wuyuan Ecological Environment Bureau, Shangrao, 333200, China
| | - Liming Chai
- Tibet Beyond Testing Company Limited, Lhasa, 850032, China
| | - Jinfeng Zhao
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276005, China.
| |
Collapse
|
3
|
Li JL, Gan CD, Du XY, Yuan XY, Zhong WL, Yang MQ, Liu R, Li XY, Wang H, Liao YL, Wang Z, Xu MC, Yang JY. Distribution, risk evaluation, and source allocation of cesium and strontium in surface soil in a mining city. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:270. [PMID: 38954122 DOI: 10.1007/s10653-024-02046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/21/2024] [Indexed: 07/04/2024]
Abstract
Radioactive nuclides cesium (Cs) and strontium (Sr) possess long half-lives, with 135Cs at approximately 2.3 million years and 87Sr at about 49 billion years. Their persistent accumulation can result in long-lasting radioactive contamination of soil ecosystems. This study employed geo-accumulation index (Igeo), pollution load index (PLI), potential ecological risk index (PEPI), health risk assessment model (HRA), and Monte Carlo simulation to evaluate the pollution and health risks of Cs and Sr in the surface soil of different functional areas in a typical mining city in China. Positive matrix factorization (PMF) model was used to elucidate the potential sources of Cs and Sr and the respective contribution rates of natural and anthropogenic sources. The findings indicate that soils in the mining area exhibited significantly higher levels of Cs and Sr pollution compared to smelting factory area, agricultural area, and urban residential area. Strontium did not pose a potential ecological risk in any studied functional area. The non-carcinogenic health risk of Sr to the human body in the study area was relatively low. Because of the lack of parameters for Cs, the potential ecological and human health risks of Cs was not calculated. The primary source of Cs in the soil was identified as the parent material from which the soil developed, while Sr mainly originated from associated contamination caused by mining activities. This research provides data for the control of Cs and Sr pollution in the surface soil of mining city.
Collapse
Affiliation(s)
- Jia-Li Li
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
- Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, 644000, China
| | - Chun-Dan Gan
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
- Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, 644000, China
| | - Xin-Yue Du
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
- Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, 644000, China
| | - Xue-Ying Yuan
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Wen-Lin Zhong
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
- Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, 644000, China
| | - Meng-Qi Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Rui Liu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
- Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, 644000, China
| | - Xiao-Yu Li
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
- Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, 644000, China
| | - Hao Wang
- Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, 644000, China
- College of Forestry, Northeast Forestry University, Haerbin, 150000, China
| | - Yu-Liang Liao
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Zheng Wang
- College of Civil Engineering, Northwest Minzu University, Lanzhou, 730000, China
| | - Mu-Cheng Xu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
- Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, 644000, China.
| |
Collapse
|
4
|
Mingyue L, Xuejun S, Shengnan L, Jie W, Zijian L, Qianggong Z. Hydrochemistry dynamics in a glacierized headwater catchment of Lhasa River, Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170810. [PMID: 38336076 DOI: 10.1016/j.scitotenv.2024.170810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Mountain glaciers are essential for supplying water resources that sustain downstream communities and livelihoods, yet the hydrogeochemical dynamics at glacier terminals and the impact of glacier retreat on downstream water chemistry are not fully understood. This study addresses this by conducting comprehensive observations and analysis of water chemistry at refined spatial and temporal resolutions in the Lhasa River Valley Glacier No. 1 (LRVG-1) catchment, a vital source of drinking and irrigation water for the local population on the Tibetan Plateau. Our findings reveal a weakly alkaline water environment within this glacierized basin, with HCO3- and Ca2+ as the dominant anions and cations, respectively, resulting in a hydrochemical pattern classified as HCO3--Ca2+ type. Solute concentrations increase along the glacier meltwater pathway, influenced by water-rock interaction, dilution, and diverse sources. The cations are predominantly from carbonate weathering, constituting 72.86 % of the total cations, followed by sulfide oxidation (11.08 %), glacier meltwater inputs (8.13 %), and silicate weathering (7.93 %). The contribution of cations from glacier meltwater diminishes as they travel along the glacier meltwater flow pathway. Our study indicates the localized yet significant impact of glacier meltwater on hydrochemistry, particularly in the vicinity of the glacier terminus. We recommend considering glacial meltwater and the entire glacier watershed as a continuum, essential for understanding the cumulative effects of glacier melt and human activities on water quality. This perspective is crucial for predicting future river chemistry trajectories in high-mountain basins and informing policy-making for water quality conservation across the Tibetan Plateau.
Collapse
Affiliation(s)
- Li Mingyue
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sun Xuejun
- School of Environmental and Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Li Shengnan
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wang Jie
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Zijian
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhang Qianggong
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Lhasa Earth System Multi-Dimension Observatory Network (LEMON), Lhasa 850000, China.
| |
Collapse
|
5
|
Wang Y, Cheng H. Soil heavy metal(loid) pollution and health risk assessment of farmlands developed on two different terrains on the Tibetan Plateau, China. CHEMOSPHERE 2023:139148. [PMID: 37290519 DOI: 10.1016/j.chemosphere.2023.139148] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
The quality of farmland soils on the Tibetan Plateau is important because of the region's ecological vulnerability and their close link with local food security. Investigation on the pollution status of heavy metal (loid)s (HMs) in the farmlands of Lhasa and Nyingchi on the Tibetan Plateau, China revealed that Cu, As, Cd, Tl, and Pb were apparently enriched, with the soil parent materials being the primary sources of the soil HMs. Overall, the farmlands in Lhasa had higher contents of HMs compared to those in the farmlands of Nyingchi, which could be attributed to the fact that the former were mainly developed on river terraces while the latter were mainly developed on the alluvial fans in mountainous areas. As displayed the most apparent enrichment, with the average concentrations in the vegetable field soils and grain field soils of Lhasa being 2.5 and 2.2 times higher compared to those of Nyingchi. The soils of vegetable fields were more heavily polluted than those of grain fields, probably due to the more intensive input of agrochemicals, particularly the use of commercial organic fertilizers. The overall ecological risk of the HMs in the Tibetan farmlands was low, while Cd posed medium ecological risk. Results of health risk assessment show that ingestion of the vegetable field soils could pose elevated health risk, with children facing greater risk than adults. Among all the HMs targeted, Cd had relatively high bioavailability of up to 36.2% and 24.9% in the vegetable field soils of Lhasa and Nyingchi, respectively. Cd also showed the most significant ecological and human health risk. Thus, attention should be paid to minimize further anthropogenic input of Cd to the farmland soils on the Tibetan Plateau.
Collapse
Affiliation(s)
- Yafeng Wang
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Peng S, Xiao X, Zou H, Yang Z, Ahmad UM, Zhao Y, Chen H, Li G, Liu G, Duan X, Mao G, Yang P. Levels, origins and probabilistic health risk appraisal for trace elements in drinking water from Lhasa, Tibet. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3405-3421. [PMID: 36329376 DOI: 10.1007/s10653-022-01424-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/24/2022] [Indexed: 06/01/2023]
Abstract
Due to the lack of monitoring systems and water purification facilities, residents in western China may face the risk of drinking water pollution. Therefore, 673 samples were collected from Lhasa's agricultural and pastoral areas to reveal the status quo of drinking water. We used inductively coupled plasma-mass spectrometry to determine trace elements concentrations for water quality appraisal, source apportionment, and health risk assessment. The results indicate that concentrations of V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Ba, and Pb are below the guidelines, while As concentrations in a few samples exceed the standard. All samples were classified into "excellent water" for drinking purpose based on Entropy-weighted water quality index. Thereafter by principal component analysis, three potential sources of trace elements were extracted, including natural, anthropogenic, and mining activities. It is worth noting that geotherm and mining exploitation does not threaten drinking water safety. Finally, health risks were assessed using Monte Carlo technique. We found that the 95th percentiles of hazard index are 1.80, 0.80, and 0.79 for children, teenagers, and adults, indicating a non-carcinogenic risk for children, but no risks for the latter two age groups. In contrast, the probabilities of unacceptable cautionary risk are 7.15, 2.95 and 0.69% through exposure to Cr, Ni, As, and Cd for adults, children, and teenagers. Sensitivity analyses reveal As concentration and ingestion rate are most influential factors to health risk. Hence, local governments should pay more attention to monitoring and removal of As in the drinking water.
Collapse
Affiliation(s)
- Shuan Peng
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xiao Xiao
- Department of Infrastructure Engineering, The University of Melbourne, Grattan Street, Parkville, VIC, 3010, Australia
| | - Hongyang Zou
- College of Management and Economics, Tianjin University, Tianjin, 300072, China.
| | - Zheng Yang
- Academy of Regional and Global Governance, Beijing Foreign Studies University, Beijing, 100089, China
| | - Umme Marium Ahmad
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yushun Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
- Tianjin Municipal Engineering Design and Research Institute, Tianjin, 300041, China
| | - Hulin Chen
- Department of Chemistry and Environmental Sciences, Tibet University, Lhasa, 850000, China
| | - Gao Li
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC, 8001, Australia
| | - Gang Liu
- College of Management and Economics, Tianjin University, Tianjin, 300072, China
| | - Xingxing Duan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Guozhu Mao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Pingjian Yang
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
7
|
Lu Q, Zhao R, Li Q, Ma Y, Chen J, Yu Q, Zhao D, An S. Elemental composition and microbial community differences between wastewater treatment plant effluent and local natural surface water: A Zhengzhou city study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116398. [PMID: 36244289 DOI: 10.1016/j.jenvman.2022.116398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Wastewater treatment plant (WWTP) effluent is discharged into rivers as supplemental water, which may result in ecological risk. This study compares the element composition and microbial community of WWTP effluent and natural surface water (NSW) and reveals the potential ecological risk of WWTP effluent discharge. Twenty recently upgraded WWTPs and three relatively large reservoirs in Zhengzhou city, China, were selected. The contents of N, P, S, K, Ca, Mg, B, Si, Na, Fe, Mn, Co, Ni and Sn were significantly higher in WWTP effluent than in NSW, while those of Mo, V, Pb and Cd were significantly lower. There was no significant difference between WWTP effluent and NSW in terms of the element imbalance index (IMI) (representing the extent of imbalance of element proportions) relative to the class IV surface water quality standard (the control standard for most Chinese rivers). The macronutrient IMI relative to the Hoagland formula was significantly lower in WWTP effluent than in NSW, and WWTP effluent discharge could significantly lower this index in NSW; this may be an important cause of primary productivity explosion. The microbial diversity was significantly higher in WWTP effluent than in NSW. The predicted relative abundances of mobile genetic elements and oxidative-stress-tolerant phenotypes were significantly higher in WWTP effluent than in NSW, whereas the abundance of gram-negative phenotypes was significantly lower, and that of potential pathogenic phenotypes was slightly lower. The effluent from upgraded WWTPs exhibited a low risk of pathogen diffusion but a high risk of antibiotic resistance gene diffusion. The element composition and microbial community should be considered when evaluating the ecological risk of WWTP effluent discharge.
Collapse
Affiliation(s)
- Qianqian Lu
- Department of Biological Science and Technology, Nanjing University, Nanjing, 210093, PR China
| | - Ran Zhao
- Department of Biological Science and Technology, Nanjing University, Nanjing, 210093, PR China
| | - Qiming Li
- Department of Biological Science and Technology, Nanjing University, Nanjing, 210093, PR China
| | - Yu Ma
- Department of Biological Science and Technology, Nanjing University, Nanjing, 210093, PR China
| | - Jing Chen
- Department of Biological Science and Technology, Nanjing University, Nanjing, 210093, PR China
| | - Qi Yu
- Department of Biological Science and Technology, Nanjing University, Nanjing, 210093, PR China
| | - Dehua Zhao
- Department of Biological Science and Technology, Nanjing University, Nanjing, 210093, PR China.
| | - Shuqing An
- Department of Biological Science and Technology, Nanjing University, Nanjing, 210093, PR China
| |
Collapse
|
8
|
Zhang Y, Hu Q, Tao J. Impacts of climate change on hulless barley security in plateau region: A case study of Lhasa River basin in Tibet, China. Food Energy Secur 2022. [DOI: 10.1002/fes3.446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Yin Zhang
- School of Remote Sensing and Information Engineering Wuhan University Wuhan China
| | - Qingwu Hu
- School of Remote Sensing and Information Engineering Wuhan University Wuhan China
| | - Jianbin Tao
- China Key Laboratory for Geographical Process Analysis & Simulation of Hubei Province/School of Urban and Environmental Sciences Central China Normal University Wuhan China
| |
Collapse
|
9
|
Hu T, Shi M, Mao Y, Liu W, Li M, Yu Y, Yu H, Cheng C, Zhang Z, Zhang J, Xing X, Qi S. The characteristics of polycyclic aromatic hydrocarbons and heavy metals in water and sediment of dajiuhu subalpine wetland, shennongjia, central China, 2018-2020: Insights for sources, sediment-water exchange, and ecological risk. CHEMOSPHERE 2022; 309:136788. [PMID: 36220429 DOI: 10.1016/j.chemosphere.2022.136788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/25/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) are persistent environmental issues. Secondary emissions are produced as a result of climate change and human activity. To observe spatio-temporal variations of PAHs and HMs and to discuss the sources as well as the source or sink of PAHs for sediment and peat, twelve surface sediment and surface water sites were chosen along the direction of the flow to down hole in the Dajiuhu area, simultaneously, surface peat and water samples were collected in peatland. Samples were continuously taken for three years (Sep. 2018, Sep. 2019, and Sep. 2020, respectively). The results showed that PAHs and HMs are common in sediment and peat. PAHs concentration is generally higher in peat and water, while HMs concentration is relatively higher in water and relatively low in sediment and peat, and the ecological risk of sediment was low. HMs in sediment are mainly affected by rock weathering, while PAHs are mainly affected by atmospheric deposition, biomass and coal combustion and vehicle emission. HMs and PAHs can be used as an indicator of rock weathering and human activity in Dajiuhu area, respectively. A water-sediment fugacity analysis revealed that peat is a sink for PAHs, confirming that it has a high capacity for adsorbing organic contaminants, and that sediments are secondary sources of PAHs that can release them into water. Attention should be paid to the increased fugacity fraction (ff) value in peatland, indicating that peat might be converted from a sink to a source of PAHs.
Collapse
Affiliation(s)
- Tianpeng Hu
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Mingming Shi
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Yao Mao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Weijie Liu
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Miao Li
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Yue Yu
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Haikuo Yu
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Cheng Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhiqi Zhang
- Shennongjia National Park Administration, Shennongjia, 442400, China
| | - Jiaquan Zhang
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Xinli Xing
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China.
| | - Shihua Qi
- Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| |
Collapse
|
10
|
Huang X, Niu X, Zhang D, Li X, Li H, Wang Z, Lin Z, Fu M. Fate and mechanistic insights into nanoscale zerovalent iron (nZVI) activation of sludge derived biochar reacted with Cr(VI). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115771. [PMID: 35982569 DOI: 10.1016/j.jenvman.2022.115771] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/03/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
While nanoscale zero-valent iron modified biochar (nZVI-BC) have been widely investigated for the removal of heavy metals, the corrosion products of nZVI and their interaction with heavy metals have not been revealed yet. In this paper, nZVI-BC was synthesized and applied for the removal of Cr(VI). Batch experiments indicated that the adsorption of Cr(VI) fit Langmuir isotherm, with the maximum removal capacity at 172.4 mg/g at pH 2.0. SEM-EDS, BET, XRD, FT-IR, Raman and XPS investigation suggested that reduction of Cr(VI) to Cr(III) was the major removal mechanism. pH played an important role on the corrosion of nZVI-BC, at pH 4.5 and 2.0, FeOOH and Fe3O4 were detected as the major iron oxide, respectively. Therefore, FeOOH-BC and Fe3O4-BC were further prepared and their interaction with Cr were studied. Combining with DFT calculations, it revealed that Fe3O4 has higher adsorption capacity and was responsible for the effective removal of Cr(VI) through electrostatic attraction and reduction under acidic conditions. However, Fe3O4 will continue to convert to the more stable FeOOH, which is the key to for the subsequent stabilization of the reduced Cr(III). The results showed that the oxide corrosion products of nZVI-BC were subjected to the environment, which will eventually affect the fate and transport of the adsorbed heavy metal.
Collapse
Affiliation(s)
- Xuyin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Dongqing Zhang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China.
| | - Xiaoqin Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Haoshen Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Ziyuan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Zhang Lin
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
11
|
Jaiswal M, Gupta SK, Chabukdhara M, Nasr M, Nema AK, Hussain J, Malik T. Heavy metal contamination in the complete stretch of Yamuna river: A fuzzy logic approach for comprehensive health risk assessment. PLoS One 2022; 17:e0272562. [PMID: 35939450 PMCID: PMC9359575 DOI: 10.1371/journal.pone.0272562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/22/2022] [Indexed: 12/05/2022] Open
Abstract
River Yamuna is one of the most sacred major tributaries of river Ganga. This study aimed to assess the level of heavy metals in monsoon and non-monsoon season in river Yamuna in Uttar Pradesh, India and to assess the possible source of contamination and its associated health risk. Except for iron (Fe), the mean levels of all metals were within drinking water safe limits in both seasons. Except for chromium (Cr), lower values were observed for other metals in the monsoon season could be attributed dilution effect. Multivariate analysis indicated that both geogenic and anthropogenic sources contribute to heavy metals in river Yamuna in monsoon and non-monsoon seasons. The health risk in terms of hazard index (HI) and fuzzy-logic hazard index (FHI) demonstrated that both HI and FHI values among children exceeded the safe limit in most of the sites in non-monsoon seasons and in few in monsoon season. For adults, HI and FHI values were within safe limit.
Collapse
Affiliation(s)
- Maneesh Jaiswal
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Sanjay Kumar Gupta
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Mayuri Chabukdhara
- Department of Environmental Biology and Wildlife Sciences, Cotton University, Guwahati, Assam, India
| | - Mahmoud Nasr
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
- Faculty of Engineering, Sanitary Engineering Department, Alexandria University, Alexandria, Egypt
| | - Arvind Kumar Nema
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Jakir Hussain
- Upper River Yamuna Board, Department of Water Resources, River Development and Ganga Rejuvenation, New Delhi, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
12
|
Luo Y, Rao J, Jia Q. Heavy metal pollution and environmental risks in the water of Rongna River caused by natural AMD around Tiegelongnan copper deposit, Northern Tibet, China. PLoS One 2022; 17:e0266700. [PMID: 35390103 PMCID: PMC8989334 DOI: 10.1371/journal.pone.0266700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/24/2022] [Indexed: 11/19/2022] Open
Abstract
Acid mine drainage (AMD) is one of the biggest environmental challenges associated with in the mining process. Most of the current research on AMD focuses on developed deposits, whereas there is almost no research on naturally-produced AMD from undeveloped deposits. In this study, river water and AMD were collected to analyze the distribution characteristics of heavy metals and the phytoplankton community. In addition, the environmental risks of heavy metals were evaluated by single-factor pollution index, Nemerow pollution index and health risk assessment model. The results show that the pH of the Rongna River water ranged from 6.52 to 8.46, and the average concentrations of Mn and Ni were 867.37 and 28.44 μg/L, respectively, which exceed the corresponding Grade III Environmental Quality Standard of Surface Water. The results of the environmental health risk assessment show that the river section of the Rongna River was seriously polluted by the heavy metal Mn after AMD confluence, and the health risk assessment indicates that oral ingestion of Mn posed a potential non-carcinogenic risk to children and adults. A total of 35 phytoplankton species were found in the Rongna River. The phytoplankton biomass was negatively correlated with the concentration of major heavy metals, indicating that the heavy metal concentration exceeded the tolerance limit of phytoplankton, thereby affecting their normal growth. Finally, statistical analysis shows that Cu, Zn, Ni, Mn and Cd in the Rongna River were mainly derived from AMD.
Collapse
Affiliation(s)
- Yuhu Luo
- Institute of Land Engineering & Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi’an, China
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi’an, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Natural Resources, Xi’an, China
- Shaanxi Provincial Land Consolidation Engineering Technology Research Center, Xi’an, China
| | - Jiaoping Rao
- China University of Geosciences (Beijing), Beijing, China
- Key Laboratory of Metallageny and Mineral Assessment, Ministry of Natural resources, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, China
| | - Qinxian Jia
- Key Laboratory of Saline Lake Resources and Environments, Ministry of Natural resources, Institute of Mineral resources, Chinese Academy of Geological Sciences, Beijing, China
| |
Collapse
|
13
|
Lei F, Ou J, Wang X, Zhu H. Radial basis collocation method with parameters optimized for estimating pollutant release history. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19847-19859. [PMID: 34727310 DOI: 10.1007/s11356-021-17144-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
The identification of pollutant source release history in rivers is important for emergency response of pollution accidents and formulating remediation strategies. Space-time radial basis collocation method (RBCM), as a meshless method with strong applicability, can directly estimate the release history from the concentration data measured at downstream observation sites. However, the uncertainty of specific parameters in space-time RBCM is the main factor affecting the accuracy of estimation. Therefore, a way to solve the parameters efficiently and accurately is essential. For this purpose, a new model which combines space-time RBCM and differential evolution algorithm (DEA) is established to identify the source release history. First of all, efficient parameter optimizer DEA is introduced to search the parameters that affect the estimation accuracy of space-time RBCM. Then, a new loss function considering the imbalance configuration of RBCM nodes is designed to ensure the rationality of the parameters obtained by DEA. The results of numerical cases and real field case show that the proposed method can accurately estimate the real release history with low time consumption. It is also demonstrated that DEA is more efficient than k-fold cross-validation in searching the optimal parameters for space-time RBCM, and the parameters obtained from the new loss function can make the estimated release history more precise.
Collapse
Affiliation(s)
- Fei Lei
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China.
| | - Jiahao Ou
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
| | - Xueli Wang
- Faculty of Science, Beijing University of Technology, Beijing, 100124, China
| | - Hengyu Zhu
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
14
|
Rani S, Ahmed MK, Xiongzhi X, Keliang C, Islam MS, Habibullah-Al-Mamun M. Occurrence, spatial distribution and ecological risk assessment of trace elements in surface sediments of rivers and coastal areas of the East Coast of Bangladesh, North-East Bay of Bengal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149782. [PMID: 34467902 DOI: 10.1016/j.scitotenv.2021.149782] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Coastal and estuarine ecosystems provide habitats for many organisms. Recently, the estuaries and coastal areas of the East Coast of Bangladesh have become heavily contaminated due to dumping of untreated wastewater into the rivers from a number of different industries. The current study analyzes potentially toxic elements contamination in surface sediments of the Karnaphuli, Sangu, Bakkhali and Naf Rivers, Kutubdia and Moheshkhali Channel, and St. Martin's Island, and assesses the consequent ecological risks. The pollution load index (PLI), geoaccumulation index (Igeo) and potential ecological risk (PER) indices show that the contaminated sediments have negative effects on the aquatic environments. The PLI values ranged between 0.45 and 1.67, which suggests the severity of trace-element contamination. The mean Igeo values showed the sediments range from uncontaminated to heavily contaminated state. The Enrichment Factor (EF) values suggested that the sediments were contaminated by anthropogenic sources, and PER values demonstrate that sites at Sangu, Naf and St Martin's Island are less contaminated compared to sites at Karnaphuli, Bakkhali, Kutubdia and Moheshkhali. Overall, results showed that Karnaphuli river is the most contaminated and St Martin's Island is the least based on the spatial distribution of PLI, Cd, PER and ∑TUs of trace metals in surface sediments. Comparing with the neighboring countries, the concentrations of Cd and Pb were found to be higher while Cr is lower in the East Coast of Bangladesh than the estuarine and coastal waters of the Bay of Bengal rim countries. The present study reveals that the lack of water quality guidelines in Bangladesh for the coastal, estuarine and marine water escalated the dumping of untreated wastewater. Immediate measures need to be taken to address the ecological risks so that an effective management program can be undertaken. A systematic approach for collecting pollutant data and use of isotopes to trace anthropogenic sources of contamination is recommended for pollutants like toxic metals, pesticides and other contaminants in sediment and aquatic products in the entire coastal waters of the Bay of Bengal.
Collapse
Affiliation(s)
- Seema Rani
- Coastal and Ocean Management Institute (COMI), Xiamen University, Fujian Province, China; Third Institute of Oceanography (TIO), Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, China; International Centre for Ocean Governance (ICOG), Faculty of Earth & Environmental Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Kawser Ahmed
- International Centre for Ocean Governance (ICOG), Faculty of Earth & Environmental Sciences, University of Dhaka, Dhaka 1000, Bangladesh; Department of Oceanography, Faculty of Earth & Environmental Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Xue Xiongzhi
- Coastal and Ocean Management Institute (COMI), Xiamen University, Fujian Province, China.
| | - Chen Keliang
- Third Institute of Oceanography (TIO), Ministry of Natural Resources, 178 Daxue Road, Xiamen 361005, China.
| | - Md Saiful Islam
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Md Habibullah-Al-Mamun
- Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
15
|
Proshad R, Zhang D, Idris AM, Islam MS, Kormoker T, Sarker MNI, Khadka S, Sayeed A, Islam M. Comprehensive evaluation of chemical properties and toxic metals in the surface water of Louhajang River, Bangladesh. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49191-49205. [PMID: 33932212 DOI: 10.1007/s11356-021-14160-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/23/2021] [Indexed: 04/16/2023]
Abstract
Louhajang River, Bangladesh, which crosses Tangail as a densely industrialized and urbanized city, supplies water for different purposes. This study reports the levels of pH, electrical conductivity (EC), and some toxic heavy metals in 40 water samples collected during the summer and winter seasons from Louhajang River. The winter season reported higher levels of the examined parameters than the summer season with significant variation (p < 0.05) for all parameters, with the exception of Cd. The metal contents were assessed against local and international standards for drinking, irrigation, and aquatic life purposes where different trends were observed. The heavy metal evaluation index and the ecological risk index reported low to moderate risks. The spatial distribution of metal contents assigned hot spots in some sites along the riverbed. The health risk assessment for three population categories, i.e., adult male, adult female, and children, was examined. Cr and Cd recorded hazard index > 1 in all cases, indicating possible non-cancer risk. The total carcinogenic risk values during both seasons were > 1.0 × 10-6, indicating possible cancer risk. The adopted collection of different approaches (comparison against standard levels of toxicants, statistical analysis, spatial distribution, and health risk assessment) successfully demonstrates a whole picture of the environmental status of Louhajang River, Bangladesh.
Collapse
Affiliation(s)
- Ram Proshad
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Zhang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
| | - Abubakr Mustafa Idris
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Department of Chemistry, College of Science, King Khalid University, Abha, 9004, Saudi Arabia
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki 8602, Patuakhali, Bangladesh
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tapos Kormoker
- Department of Emergency Management, Patuakhali Science and Technology University, Dumki 8602, Patuakhali, Bangladesh
| | - Md Nazirul Islam Sarker
- School of Political Science and Public Administration, Neijiang Normal University, Neijiang, 641100, China
| | - Sujan Khadka
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Abu Sayeed
- Department of Post-Harvest Technology and Marketing, Patuakhali Science and Technology University, Dumki 8602, Patuakhali, Bangladesh
| | - Maksudul Islam
- Department of Environmental Science, Patuakhali Science and Technology University, Dumki 8602, Patuakhali, Bangladesh
| |
Collapse
|
16
|
Mao G, Zhang Y, Tong Y, Huang X, Mehr F. Ecological risk assessment of heavy metals to aquatic organisms in the Lhasa River, Tibet, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26091-26102. [PMID: 32358753 DOI: 10.1007/s11356-020-09021-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
The Lhasa River is the largest and most important tributary of the Yarlung Tsangpo River on the Tibetan Plateau, China. It is an important source of drinking water and irrigation for the inhabitants living in the watershed. Despite the increasing focus on water chemistry, the ecological risk assessment (ERA) caused by heavy metals to aquatic organisms in the Lhasa River has not been performed before. Based on the documented monitoring data for heavy metals, the species sensitivity distributions (SSDs) method was applied in this study. The potential ecological risks induced by eight major heavy metals (including arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), manganese (Mn), lead (Pb), and zinc (Zn)) in the Lhasa River to four typical categories of freshwater organisms, including insects, crustaceans, fish, and mollusks, were assessed in different water periods (e.g., high, normal, and low water-periods). Results suggested that the downstream part of the Lhasa River and the Meldromarchu and Tölungchu tributaries are the principal zones for the high aquatic ecological risks. For most of the monitoring sites, the ecological risks decreased in the following order: high-water period > normal-water period > low-water period. During the high-water period, Cu had the highest ecological risks for all selected species. For the insects, the ecological risks were quite low (< 1%) throughout the year. These results suggested that particular attention should be paid to the contamination of certain heavy metals (e.g., Cu and Cr) in the future water management in the Lhasa River.
Collapse
Affiliation(s)
- Guozhu Mao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yu Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| | - Xiang Huang
- Department of Chemistry and Environmental Sciences, Tibet University, Lhasa, 850000, Tibet, China
| | - Faryal Mehr
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
17
|
Liang B, Han G, Zeng J, Qu R, Liu M, Liu J. Spatial Variation and Source of Dissolved Heavy Metals in the Lancangjiang River, Southwest China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030732. [PMID: 31979256 PMCID: PMC7037378 DOI: 10.3390/ijerph17030732] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Abstract
Dissolved heavy metals are not only the essential micronutrients, but also the toxic elements for human bodies. To investigate the heavy metal sources and assess the water quality of the Lancangjiang River, dissolved Cr, Ni, Cu, Zn, Mo, and Pb were detected in this study. The results show that dissolved Ni and Mo, Cr and Pb, and Cu and Zn were similarly distributed within the drainage basin. The correlation analysis exhibited that dissolved Ni and Mo had correlation with water parameter, and dissolved Cu was weakly correlated with Ni, indicating that they might be affected by natural processes. The principal component analysis explained 68.342% of the total variance for three principal components, of which dissolved Ni, Mo, and Cu were controlled by natural inputs; dissolved Cu and Cr were affected by anthropogenic activities; and dissolved Zn was influenced by agricultural activities in the downstream. The water quality showed that the water in upstream was worse than in midstream and downstream, and the whole drainage basin had water of excellent quality. Water within the drainage basin poses no risks to human bodies via daily diets and dermal routes. Dissolved Zn, Cu, and Mo occupied the major proportion of heavy metals transporting into the Mekong River. The agricultural inputs of dissolved Zn might pose potential risks to the Mekong River.
Collapse
|