1
|
Panga MJ, Zhao Y. Male Reproductive Toxicity of Antifouling Chemicals: Insights into Oxidative Stress-Induced Infertility and Molecular Mechanisms of Zinc Pyrithione (ZPT). Antioxidants (Basel) 2024; 13:173. [PMID: 38397771 PMCID: PMC10886347 DOI: 10.3390/antiox13020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Zinc pyrithione (ZPT), a widely utilized industrial chemical, is recognized for its versatile properties, including antimicrobial, antibacterial, antifungal, and antifouling activities. Despite its widespread use, recent research has shed light on its toxicity, particularly towards the male reproductive system. While investigations into ZPT's impact on male reproduction have been conducted, most of the attention has been directed towards marine organisms. Notably, ZPT has been identified as a catalyst for oxidative stress, contributing to various indicators of male infertility, such as a reduced sperm count, impaired sperm motility, diminished testosterone levels, apoptosis, and degenerative changes in the testicular tissue. Furthermore, discussions surrounding ZPT's effects on DNA and cellular structures have emerged. Despite the abundance of information regarding reproductive toxicity, the molecular mechanisms underlying ZPT's detrimental effects on the male reproductive system remain poorly understood. This review focuses specifically on ZPT, delving into its reported toxicity on male reproduction, while also addressing the broader context by discussing other antifouling chemicals, and emphasizing the need for further exploration into its molecular mechanisms.
Collapse
Affiliation(s)
| | - Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
2
|
Metelkova L, Zhakovskaya Z, Kukhareva G, Voskoboinikov G, Zimina O. Organotin compounds (OTs) in surface sediments, bivalves and algae from the Russian coast of the Barents Sea (Kola Peninsula) and the Fram Strait (Svalbard Archipelago). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:34659-34669. [PMID: 35040051 DOI: 10.1007/s11356-021-18091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Organotin pollution in components of benthic ecosystems was investigated in 2019 in the Barents Sea (South shore, Kola Peninsula) and the Fram Strait (Icefjord, Svalbard Archipelago). Six species of organotin compounds (OTs), including monobutyltin, dibutyltin, tributyltin, tetrabutyltin, triphenyltin and tricyclohexyltin, were measured in the surface sediments, bivalve molluscs (Ciliatocardium ciliatum, Macoma calcarea, Chlamys islandica) and macrophyte algae (Saccharina latissima, Palmaria palmata, Ulvaria obscura, Fucus serratus, Fucus distichus). The results obtained showed moderate contamination of the studied samples with OTs. The total content of six tin compounds was in the ranges 35-139 ng g-1, 13-108 ng g-1 and 2.9-75 ng g-1 (dry weight) in the samples of sediments, bivalves and algae, respectively. In most cases, the concentrations of tributyltin in bottom sediments and mollusc tissues did not exceed the established international regulations. The degradation indices analysis of butyl tin derivatives indicated the active transformation of tributyltin and tetrabutyltin in bottom sediments and macrophyte algae and the accumulation of these compounds in the soft tissues of molluscs. The sediment and mollusc concentrations of OTs measured in this study were comparable to those reported for other areas of the Arctic region.
Collapse
Affiliation(s)
- Larisa Metelkova
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, 18, Korpusnaya str, St. Petersburg, 197110, Russia.
| | - Zoya Zhakovskaya
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, 18, Korpusnaya str, St. Petersburg, 197110, Russia
| | - Galina Kukhareva
- St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, 18, Korpusnaya str, St. Petersburg, 197110, Russia
| | - Grigorii Voskoboinikov
- Murmansk Marine Biological Institute, Russian Academy of Sciences (MMBI RAS), 17, Vladimirskaya str, Murmansk, 183010, Russia
| | - Olga Zimina
- Murmansk Marine Biological Institute, Russian Academy of Sciences (MMBI RAS), 17, Vladimirskaya str, Murmansk, 183010, Russia
| |
Collapse
|
3
|
Cao Z, Li P, Cao X, Wang X, Liu B, He S, Gao G, Lu R, Li ZH. Reproductive toxicity of environmental levels of triphenyltin to the marine rotifer, Brachionus plicatilis. Comp Biochem Physiol C Toxicol Pharmacol 2022; 254:109272. [PMID: 35038593 DOI: 10.1016/j.cbpc.2022.109272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/01/2021] [Accepted: 01/08/2022] [Indexed: 11/30/2022]
Abstract
Triphenyltin (TPT) is a representative organotin often used in marine antifouling coatings, herbicides, and pesticides. However, leaching of TPT into water may be toxic to aquatic life. In this study, environmental concentrations of TPT were used to explore reproductive toxicity of TPT to Brachionus plicatilis, a representative marine rotifer. Toxicity was examined at individual, biochemical, and molecular levels and via phenotypic traits. Rotifers exposed to 10 ng/L TPT group showed increased population size, improved reproductive rate, and a higher weekly growth rate. At 100 ng/L TPT group, the greatest degree of oxidative damage was seen. Exposure to 200 ng/L TPT group shorten generation time, delayed reproduction, and obscured the reproductive peak. Expression of the Vasa gene associated with reproduction was increased after exposure to 10 and 200 ng/L TPT group and decreased at 100 ng/L TPT group. High concentrations of TPT reduced rotifer body length and width and slowed swimming speed. Findings provide a better understanding of the adverse effects of changing TPT concentrations on marine rotifer, by the life cycle parameters, oxidative stress defense mechanisms, expression of a gene related to reproduction, and phenotypic traits. This paper firstly analyzed the reproductive toxicity of environmental levels of organotin compounds to zooplankton, which provided new data support for the comprehensive evaluation of its marine ecological toxicity.
Collapse
Affiliation(s)
- Zhihan Cao
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Xuqian Cao
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Xu Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Shuwen He
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Guang Gao
- Weihai Ocean and Fishery Monitoring and Disaster Mitigation Center, Weihai, Shandong 264200, China
| | - Rong Lu
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
4
|
He S, Yu D, Li P, Zhang M, Xing S, Sun C, Li ZH. Triphenyltin exposure causes changes in health-associated gut microbiome and metabolites in marine medaka. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117751. [PMID: 34252717 DOI: 10.1016/j.envpol.2021.117751] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Triphenyltin (TPT), an organic compound with a wide range of applications, is often detected in water bodies and aquatic animals. However, the mechanism underlying the biological metabolic health problems caused by long-term exposure to environment concentrations of TPT remains unclear. The morphology and gene expression in the gut and liver were investigated; and 16SrRNA gene amplification sequencing and non-targeted LC-MS/MS metabonomics were investigated after marine medaka (Oryzias melastigma) was treated with 1, 10, and 100 ng/L TPT for 21 days. During prolonged exposure to TPT, the adaptation mechanism maximized the energy of absorption, increased the length of intestinal microvilli, reduced the number of rough endoplasmic reticulum in the liver, and caused loss of weight. TPT exposure significantly changed the intestinal microbiome of marine medaka, thereby resulting in a significant decrease in microbial diversity. Following exposure to 100 ng/L TPT, the metabolic profiles were significantly changed and the altered metabolites were mainly concentrated in the lipid metabolic pathway. Finally, based on comprehensive network analysis, the association between the significantly changed bacteria and metabolites contributed further to the prediction of the impact of TPT on the host. This study provides a novel insight into the underlying mechanisms of host metabolic diseases caused by TPT and emphasizes the importance of monitoring pollutants in the environment.
Collapse
Affiliation(s)
- Shuwen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Daode Yu
- Marine Biology Institute of Shandong Province, Qingdao, Shandong, 266104, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Min Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Shaoying Xing
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Cuici Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
5
|
He S, Li P, Li ZH. Review on endocrine disrupting toxicity of triphenyltin from the perspective of species evolution: Aquatic, amphibious and mammalian. CHEMOSPHERE 2021; 269:128711. [PMID: 33121818 DOI: 10.1016/j.chemosphere.2020.128711] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Triphenyltin (TPT) is widely used as a plastic stabilizer, insecticide and the most common fungicide in antifouling coatings. This paper reviewed the main literature evidences on the morphological and physiological changes of animal endocrine system induced by TPT, with emphasis on the research progress of TPT metabolism, neurological and reproductive regulation in animal endocrine system. Similar to tributyltin (TBT), the main effects of TPT on the potential health risks of 25 species of animals, from aquatic animals to mammals, are not only related to exposure dose and time, but also to age, sex and exposed tissue/cells. Moreover, current studies have shown that TPT can directly damage the endocrine glands, interfere with the regulation of neurohormones on endocrine function, and change hormone synthesis and/or the bioavailability (i.e., in the retinoid X receptor and peroxisome proliferator-activated receptor gamma RXR-PPARγ) in target cells. Importantly, TPT can cause biochemical and morphological changes of gonads and abnormal production of steroids, both of which are related to reproductive dysfunction, for example, the imposex of aquatic animals and the irregular estrous cycle of female mammals or spermatogenic disorders of male animals. Therefore, TPT should indeed be regarded as a major endocrine disruptor, which is essential for understanding the main toxic effects on different tissues and their pathogenic effects on endocrine, metabolism, neurological and reproductive dysfunction.
Collapse
Affiliation(s)
- Shuwen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
6
|
Metelkova LO, Zhakovskaya ZA, Kukhareva GI, Voskoboinikov GM, Matishov GG. Organotin Compounds (OTCs) in Saccharina latissima (Phaeophyceae) from the Barents Sea. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2021; 497:56-58. [PMID: 33948817 DOI: 10.1134/s0012496621020083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 11/23/2022]
Abstract
The degree of contamination of Saccharina latissima, the dominant species among macrophyte algae in the sublittoral zones of the Kola Bay and Eastern Murman of the Barents Sea, with organotin compounds (monobutyltin, dibutyltin, tributyltin, tetrabutyltin, triphenyltin, and tricyclohexyltin) has been assessed. The results show a moderate degree of contamination of the studied samples with organotin compounds. The total concentration of six tin compounds was 17-74 ng/g (dry weight) in algal samples. Analysis of the indices of degradation of butyl tin derivatives showed active processes of tributyltin and tetrabutyltin transformation in algae.
Collapse
Affiliation(s)
- L O Metelkova
- St. Petersburg Scientific Research Center for Ecological Safety, Russian Academy of Sciences, 197110, St. Petersburg, Russia
| | - Z A Zhakovskaya
- St. Petersburg Scientific Research Center for Ecological Safety, Russian Academy of Sciences, 197110, St. Petersburg, Russia
| | - G I Kukhareva
- St. Petersburg Scientific Research Center for Ecological Safety, Russian Academy of Sciences, 197110, St. Petersburg, Russia
| | - G M Voskoboinikov
- Murmansk Marine Biological Institute, Russian Academy of Sciences, 183010, Murmansk, Russia.
| | - G G Matishov
- Murmansk Marine Biological Institute, Russian Academy of Sciences, 183010, Murmansk, Russia
| |
Collapse
|