1
|
Liu X, Luo Y, Lin T, Xie Z, Qi X. Gold nanoclusters-based fluorescence resonance energy transfer for rapid and sensitive detection of Pb 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124302. [PMID: 38640623 DOI: 10.1016/j.saa.2024.124302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Lead pollution has remained a significant global concern for several decades due to its detrimental effects on the brain, heart, kidneys, lungs, and immune system across all age groups. Addressing the demand for detecting trace amounts of lead in food samples, we have developed a novel biosensor based on fluorescence resonance energy transfer (FRET) from fluorescein R6G to gold nanoclusters (AuNCs-CCY). By utilizing polypeptides as a template, we successfully synthesized AuNCs-CCY with an excitation spectrum that overlaps with the emission spectrum of R6G. Exploiting the fact that Pb2+ induces the aggregation of gold nanoclusters, leading to the separation of R6G from AuNCs-CCY and subsequent fluorescence recovery, we achieved the quantitative detection of Pb2+. Within the concentration range of 0.002-0.20 μM, a linear relationship was observed between the fluorescence enhancement value (F-F0) and Pb2+ concentration, characterized by the linear equation y = 2398.69x + 87.87 (R2 = 0.996). The limit of detection (LOD) for Pb2+ was determined to be 0.00079 μM (3σ/K). The recovery rate ranged from 96 % to 104 %, with a relative standard deviation (RSD) below 10 %. These findings demonstrate the potential application value of our biosensor, which offers a promising approach to address the urgent need for sensitive detection of heavy metal ions, specifically Pb2+, in food samples.
Collapse
Affiliation(s)
- Xuemei Liu
- Faculty of Environment and Life, Beijing University of Technology, No. 100, Pingleyuan, Chaoyang District, Beijing 100124, China.
| | - Yunjing Luo
- Faculty of Environment and Life, Beijing University of Technology, No. 100, Pingleyuan, Chaoyang District, Beijing 100124, China.
| | - Taifeng Lin
- Faculty of Environment and Life, Beijing University of Technology, No. 100, Pingleyuan, Chaoyang District, Beijing 100124, China.
| | - Ziqi Xie
- Faculty of Materials and Manufacture, Beijing University of Technology, No. 100, Pingleyuan, Chaoyang District, Beijing 100124, China.
| | - Xiaohua Qi
- Chinese Academy of Inspection and Quarantine, Beijing 100123, China.
| |
Collapse
|
2
|
Kanth S, Malgar Puttaiahgowda Y, Kulal A. Synthesis, characterization, and antimicrobial activities of a starch-based polymer. Carbohydr Res 2023; 532:108900. [PMID: 37459722 DOI: 10.1016/j.carres.2023.108900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/28/2023]
Abstract
Due to the rise of nosocomial infections and the increasing threat of antibiotic resistance, new techniques are required to combat bacteria and fungi. Functional antimicrobial biodegradable materials developed from low-cost renewable resources like polysaccharides would enable greater applications in this regard. Our group has developed and characterized a new antimicrobial polymer using commercially available N-ethyl piperazine and starch via simple one-pot method. The prepared antimicrobial polymer was characterized by FTIR and NMR. In addition, the thermal properties of the synthesized antimicrobial polymer were examined through TGA and DSC. The antimicrobial potential of the prepared material was investigated using the bacteria, Staphylococcus aureus, Escherichia coli, and Mycobacterium smegmatis and a fungi Candida albicans. The result indicates that, as the amount of polymer increases, the antimicrobial activity also increases. SA-E-NPz exhibited a zone of inhibition in the range of 8-13 mm, and the MIC was found to be < 0.625 mg against all four microbes. The antimicrobial activity of polymer coated on fabric was also studied. Furthermore, the cytotoxicity studied against human fibroblast cell lines showed that the prepared polymer is non-toxic to the cells. The study concluded that the synthesized polymer shows good antimicrobial activity, is non-toxic to human fibroblast cells, and thus can be used for wound dressing or textile applications.
Collapse
Affiliation(s)
- Shreya Kanth
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Yashoda Malgar Puttaiahgowda
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India.
| | - Ananda Kulal
- Biological Sciences Division, Poornaprajna Institute of Scientific Research, Devanahalli, Bangalore, 562 110, Karnataka, India
| |
Collapse
|
3
|
Zhao Z, Jiang H, Yu N, Qin Y, Luo Z, Geng W, Zhu J. Synthesis, characterization, and performance comparison of boron using adsorbents based on N-methyl-D-glucosamine. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
4
|
Mahmoudian M, Sarrafi AHM, Konoz E, Niazi A. Application of DLLME‐SFO as a Green Analytical Tool for Determination of Trace Amounts of Cadmium and Lead in Vegetables and Fruits using FAAS: Optimization Using Box‐Behnken Design**. ChemistrySelect 2022. [DOI: 10.1002/slct.202102488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Masoumeh Mahmoudian
- Research Laboratory of Analytical Chemistry Department of Chemistry Faculty of Science Islamic Azad University Central Tehran Branch Tehran Iran
| | - Amir Hossein Mohsen Sarrafi
- Research Laboratory of Analytical Chemistry Department of Chemistry Faculty of Science Islamic Azad University Central Tehran Branch Tehran Iran
| | - Elaheh Konoz
- Research Laboratory of Analytical Chemistry Department of Chemistry Faculty of Science Islamic Azad University Central Tehran Branch Tehran Iran
| | - Ali Niazi
- Research Laboratory of Analytical Chemistry Department of Chemistry Faculty of Science Islamic Azad University Central Tehran Branch Tehran Iran
| |
Collapse
|
5
|
A sensitive electrochemiluminescence aptasensor for Pb2+ detection in soil based on dual signal amplification strategy of aggregation-induced emission and resonance energy transfer. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Al’Abri AM, Sharhan O, Halim SNA, Bakar NKA, Sherino B, Kamboh MA, Nodeh HR, Mohamad S. Effect of framework metal ions of analogous magnetic porous coordination polymers on adsorption of cationic and anionic dyes from aqueous solution. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02100-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Preparation of Magnetic Surface Ion-Imprinted Polymer Based on Functionalized Fe3O4 for Fast and Selective Adsorption of Cobalt Ions from Water. WATER 2022. [DOI: 10.3390/w14020261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A novel cobalt ion-imprinted polymer (Co(II)-MIIP) based on magnetic Fe3O4 nanoparticles was prepared by using Co(II) as the template ion, and bis(2-methacryloxyethyl) phosphate and glycylglycine as dual functional monomers. The fabricated material was analyzed by Fourier transform infrared spectroscopy, thermogravimetric analysis, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, Brunauer–Emmett–Teller, X-ray diffraction, and vibrating sample magnetometer. The adsorption experiments with Co(II)-MIIP, found that the maximum adsorption capacity could reach 33.4 mg·g−1, while that of the non-imprinted polymer (Co(II)-NIP) was found to reach 15.7 mg·g−1. The adsorption equilibriums of Co(II)-MIIP and Co(II)-NIP was established within 20 min and 30 min, respectively. The adsorption process could be suitably described by the Langmuir isotherm model and the pseudo-second-order kinetics model. In binary mixtures of Co(II)/Fe(II), Co(II)/Cu(II), Co(II)/Mg(II), Co(II)/Zn(II), and Co(II)/Ni(II), the relative selectivity coefficients of Co(II)-MIIP toward Co(II)-NIP were 5.25, 4.05, 6.06, 11.81, and 4.48, respectively. The regeneration experiments indicated that through six adsorption–desorption cycles, the adsorption capacity of Co(II)-MIIP remained nearly 90%.
Collapse
|
8
|
Wu L, Luo Z, Jiang H, Zhao Z, Geng W. Selective and rapid removal of Mo(VI) from water using functionalized Fe 3O 4-based Mo(VI) ion-imprinted polymer. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:435-448. [PMID: 33504706 DOI: 10.2166/wst.2020.594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fe3O4 nanoparticles-based magnetic Mo(VI) surface ion-imprinted polymer (Mo(VI)-MIIP) was elaborated employing 4-vinyl pyridine as a functional monomer. The adsorbent preparation was confirmed by Fourier-transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray diffraction, vibrating sample magnetometer, thermogravimetric analysis, and surface area analysis. Batch adsorption experiments showed that the maximum adsorption capacity of Mo(VI)-MIIP was 296.40 mg g-1 at pH 3, while that of the magnetic non-imprinted polymer (MNIP) was only 147.10 mg g-1. The adsorption isotherm model was well fitted by the Langmuir isotherm model. The adsorption experiments revealed that Mo(VI)-MIIP reached adsorption equilibrium within 30 min, and the kinetics data fitting showed that the pseudo-second-order kinetics model suitably described the adsorption process. Mo(VI)-MIIP exhibited an excellent adsorption selectivity to Mo(VI) in binary mixtures of Mo(VI)/Cr(VI), Mo(VI)/Cu(II), Mo(VI)/H2PO44-, Mo(VI)/Zn(II), and Mo(VI)/I-, with relative selectivity coefficients toward MNIP of 13.71, 30.27, 20.01, 23.53, and 15.89, respectively. After six consecutive adsorption-desorption cycles, the adsorption capacity of Mo(VI)-MIIP decreased by 9.5% (from 228.4 mg g-1 to 206.7 mg g-1 at initial Mo(VI) concentration of 250 mg L-1), demonstrating its reusability.
Collapse
Affiliation(s)
- Lang Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 # Puzhu South Road, Nanjing 211816, China E-mail:
| | - Zhengwei Luo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 # Puzhu South Road, Nanjing 211816, China E-mail:
| | - Hui Jiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 # Puzhu South Road, Nanjing 211816, China E-mail:
| | - Zijian Zhao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 # Puzhu South Road, Nanjing 211816, China E-mail:
| | - Wenhua Geng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 # Puzhu South Road, Nanjing 211816, China E-mail:
| |
Collapse
|
9
|
Lin G, Wang C, Li X, Xi Y, Wang W, Zhang L, Chang J. Synthesis of coordination polymer by 2,2′-dithiodipropionic acid and selective removal of Hg(ii)/Pb(ii) in wastewater. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.08.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Kara H, Gungor E, Coban MB, Acar Y. Crystal structure and magnetic characterizationof μ6–oxo bridged Hexanuclear Fe(III) complex. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Al'Abri AM, Abdul Halim SN, Abu Bakar NK, Saharin SM, Sherino B, Rashidi Nodeh H, Mohamad S. Highly sensitive and selective determination of malathion in vegetable extracts by an electrochemical sensor based on Cu-metal organic framework. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:930-941. [PMID: 31407615 DOI: 10.1080/03601234.2019.1652072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
This article demonstrates the first application of a copper-based porous coordination polymer (BTCA-P-Cu-CP) as a carbon paste electrode (CPE) modifier for the detection of malathion. The electrochemical behavior of BTCA-P-Cu-CP/CPE was explored using cyclic voltammetry (CV) while chrono-amperometry methods were applied for the analytical evaluation of the sensor performance. Under optimized conditions, the developed sensor exhibited high reproducibility, stability, and wide dynamic range (0.6-24 nM) with the limits of detection and sensitivity equal to 0.17 nM and 5.7 µAnMcm-1, respectively, based on inhibition signal measurement. Furthermore, the presence of common coexisting interfering species showed a minor change in signals (<4.4%). The developed sensor has been applied in the determination of malathion in spiked vegetable extracts. It exhibited promising results in term of fast and sensitive determination of malathion in real samples at trace level with recoveries of 91.0 to 104.4%. (RSDs < 5%, n = 3). A comparison of the two studied techniques showed that the HPLC technique is unable to detect malathion when the concentration is lower than 1.8 µM while 0.006 µM is detected with appropriate RSDs 0.2-5.2% (n = 3) by amperometric method. Due to the high sensitivity and selectivity, this new electrochemical sensor will be useful for monitoring trace malathion in real samples.
Collapse
Affiliation(s)
- Aisha Mohammed Al'Abri
- Department of Chemistry, Faculty of Science, University Malaya, Kuala Lumpur, Malaysia
- Ministry of Education, Muscat, Sultanate of Oman
| | | | - Nor Kartini Abu Bakar
- Department of Chemistry, Faculty of Science, University Malaya, Kuala Lumpur, Malaysia
| | - Siti Munirah Saharin
- Department of Chemistry, Faculty of Science, University Malaya, Kuala Lumpur, Malaysia
| | - Bibi Sherino
- Department of Chemistry, Faculty of Science, University Malaya, Kuala Lumpur, Malaysia
- Department of Chemistry, Sardar Bahadur Khan Women University, Quetta, Pakistan
| | - Hamid Rashidi Nodeh
- Department of Chemistry, Faculty of Science, University of Tehran, Tehran, Iran
| | - Sharifah Mohamad
- Department of Chemistry, Faculty of Science, University Malaya, Kuala Lumpur, Malaysia
- Centre for Ionic Liquids (UMCiL), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|