1
|
Gezer A, Üstündağ H, Kılıç Baygutalp N, Erbaş E, Özkaraca M. The Protective Effect of Gallic Acid Against Bisphenol A-Induced Ovarian Toxicity and Endocrine Disruption in Female Rats. J Med Food 2024; 27:651-660. [PMID: 38975681 DOI: 10.1089/jmf.2024.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Purpose: This study aimed to investigate the protective effects of gallic acid (GA) against ovarian damage induced by bisphenol A (BPA) exposure in female rats. We evaluated whether GA can mitigate the adverse effects of BPA on ovarian structure, inflammatory markers, oxidative stress, apoptosis, and reproductive hormone levels. Methods: Thirty-two female rats were categorized into four groups: control, GA, BPA, and GA+BPA. Histopathological evaluations of ovarian tissue were performed using hematoxylin-eosin staining. The immunohistochemical analysis was conducted for inflammatory, oxidative DNA damage, and apoptotic markers (Tumor necrosis factor alpha [TNFα], cyclooxygenase-2 [COX2], interleukin-1 beta [IL-1β], 8-hydroxydeoxyguanosine [8-OHdG], and caspase 3). Oxidative stress was assessed by measuring malondialdehyde and superoxide dismutase levels. Furthermore, follicle-stimulating hormone (FSH), luteinizing hormone (LH), estrogen, and progesterone levels were quantified using enzyme-linked immunosorbent assay. Results: Histopathological outcomes revealed that BPA significantly induced follicular degeneration, which was effectively mitigated by GA treatment (P < 0.05). Immunohistochemical analysis highlighted the exacerbation of inflammatory responses and oxidative DNA damage and apoptosis (TNFα, COX-2, IL-1β, 8-OHdG, and caspase 3) in BPA-exposed tissues, which were reduced in the presence of GA (P < 0.05). The assessment of oxidative stress demonstrated that GA could significantly decrease lipid peroxidation and partially restore antioxidant defense mechanisms disrupted by BPA (P < 0.05). Hormonal profiling indicated that BPA exposure altered the levels of FSH, LH, estrogen, and progesterone, with GA treatment showing a capacity to modulate these changes, especially in progesterone levels (P < 0.05). Conclusions: The findings suggest that GA exhibits protective properties against BPA-induced ovarian damage through its antioxidative and anti-inflammatory activities, alongside its ability to modulate hormonal imbalances. This research underscores the therapeutic potential of GA in safeguarding reproductive health against environmental toxicants.
Collapse
Affiliation(s)
- Arzu Gezer
- Vocational School of Health Services, Atatürk University, Erzurum, Türkiye
- Pharmaceutical Research and Development, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Türkiye
| | - Hilal Üstündağ
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | | | - Elif Erbaş
- Department of Histology and Embryology, Faculty of Veterinary, Atatürk University, Erzurum, Türkiye
| | - Mustafa Özkaraca
- Department of Pathology, Faculty of Veterinary, Cumhuriyet University, Sivas, Türkiye
| |
Collapse
|
2
|
Yeşil Sarsmaz H, Gürgen SG, Cansu A, Türkmen S, Gündüz A. The relationship between oxidative stress and apoptosis of histopathological changes in the ovary made by mad honey containing grayanotoxin. Food Chem Toxicol 2024; 187:114634. [PMID: 38582344 DOI: 10.1016/j.fct.2024.114634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
The purpose of this study is to determine the effects of grayanotoxin in mad honey on ovarian tissue folliculogenesis in terms of cell death and nitric oxide expression. Three groups of 18 female Sprague-Dawley rats were formed. The first group received mad honey (80 mg/kg), the second group received normal honey (80 mg/kg), and the third group was the control. The first and second groups received normal and mad honey by oral gavage for 30 days before being sacrificed under anesthesia. Caspase 3 immunostaining showed a moderate to strong response, particularly in the mad honey group. In the mad honey group, immunostaining for caspase 8 and caspase 9 revealed a moderate immunoreaction in the granulosa cells of the Graaf follicles. The majority of Graaf follicles exhibited TUNEL positive in the mad honey group. The iNOS immunoreaction revealed a high level of expression in the mad honey group. In all three groups, eNOS immunostaining showed weak reactivity. According to the findings of apoptotic and nitric oxide marker expression, it was determined that mad honey may result in an increase in follicular atresia in ovarian follicles when compared to normal honey and control groups.
Collapse
Affiliation(s)
- Hayrunnisa Yeşil Sarsmaz
- Department of Histology and Embryology, Manisa Celal Bayar University Faculty of Health Sciences, Manisa, Turkey.
| | - Seren Gülşen Gürgen
- Department of Histology and Embryology, Manisa Celal Bayar University Vocational School of Health Services, Manisa, Turkey
| | - Ali Cansu
- Department of Pediatric Neurology, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| | - Süha Türkmen
- Department of Emergency Medicine, Qatar University, Doha, Qatar
| | - Abdülkadir Gündüz
- Department of Emergency Medicine, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
3
|
González-Gómez M, Reyes R, Damas-Hernández MDC, Plasencia-Cruz X, González-Marrero I, Alonso R, Bello AR. NTS, NTSR1 and ERs in the Pituitary-Gonadal Axis of Cycling and Postnatal Female Rats after BPA Treatment. Int J Mol Sci 2023; 24:ijms24087418. [PMID: 37108581 PMCID: PMC10138486 DOI: 10.3390/ijms24087418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
The neuropeptide neurotensin (NTS) is involved in regulating the reproductive axis and is expressed at each level of this axis (hypothalamus-pituitary-gonads). This dependence on estrogen levels has been widely demonstrated in the hypothalamus and pituitary. We focused on confirming the relationship of NTS with estrogens and the gonadal axis, using a particularly important environmental estrogenic molecule, bisphenol-A (BPA). Based on the experimental models or in vitro cell studies, it has been shown that BPA can negatively affect reproductive function. We studied for the first time the action of an exogenous estrogenic substance on the expression of NTS and estrogen receptors in the pituitary-gonadal axis during prolonged in vivo exposure. The exposure to BPA at 0.5 and 2 mg/kg body weight per day during gestation and lactation was monitored through indirect immunohistochemical procedures applied to the pituitary and ovary sections. Our results demonstrate that BPA induces alterations in the reproductive axis of the offspring, mainly after the first postnatal week. The rat pups exposed to BPA exhibited accelerated sexual maturation to puberty. There was no effect on the number of rats born per litter, although the fewer primordial follicles suggest a shorter fertile life.
Collapse
Affiliation(s)
- Miriam González-Gómez
- Departamento de Ciencias Médicas Básicas, Área de Anatomía Humana, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain
- Instituto de Tecnologías Biomédicas (ITB), 38200 La Laguna, Spain
- Instituto Universitario de Neurociencia (IUNE), Universidad de La Laguna, 38200 La Laguna, Spain
| | - Ricardo Reyes
- Instituto de Tecnologías Biomédicas (ITB), 38200 La Laguna, Spain
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Área de Biología Celular, Facultad de Ciencias, Sección de Biología, Universidad de La Laguna, 38200 La Laguna, Spain
- Instituto de Enfermedades Tropicales y Salud Pública de Canarias (IUETSP), 38296 La Laguna, Spain
| | | | - Xiomara Plasencia-Cruz
- Departamento de Ciencias Médicas Básicas, Área de Anatomía Humana, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain
| | - Ibrahim González-Marrero
- Departamento de Ciencias Médicas Básicas, Área de Anatomía Humana, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain
- Instituto Universitario de Neurociencia (IUNE), Universidad de La Laguna, 38200 La Laguna, Spain
| | - Rafael Alonso
- Instituto de Tecnologías Biomédicas (ITB), 38200 La Laguna, Spain
- Departamento de Ciencias Médicas Básicas, Área de Fisiología, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain
| | - Aixa R Bello
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Área de Biología Celular, Facultad de Ciencias, Sección de Biología, Universidad de La Laguna, 38200 La Laguna, Spain
- Instituto de Enfermedades Tropicales y Salud Pública de Canarias (IUETSP), 38296 La Laguna, Spain
| |
Collapse
|
4
|
Ruiz TFR, Grigio V, Ferrato LJ, de Souza LG, Colleta SJ, Amaro GM, Góes RM, Vilamaior PSL, Leonel ECR, Taboga SR. Impairment of steroidogenesis and follicle development after bisphenol A exposure during pregnancy and lactation in the ovaries of Mongolian gerbils aged females. Mol Cell Endocrinol 2023; 566-567:111892. [PMID: 36813021 DOI: 10.1016/j.mce.2023.111892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/08/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
The ovaries regulate fertility and hormonal control in females, and aging is a crucial factor in this process, when ovarian function is drastically impacted. Exogenous endocrine disruptors may accelerate this process, acting as the main agents in decreased female fertility and hormonal imbalance, since they impact different features related to reproduction. In the present study, we demonstrate the implications of exposure of adult mothers to the endocrine disruptor bisphenol A (BPA) during pregnancy and lactation on their ovarian function during the transition to later in life (aging). The follicle population of BPA exposed ovaries showed impairment in the development of follicles to the mature stages, with growing follicles being halted in the early stages. Atretic and early-atretic follicles were also enhanced. Expression of estrogen and androgen receptors in the follicle population demonstrated impairment in signaling function: ERβ was highly expressed in follicles from BPA exposed females, which also showed a higher incidence of early atresia of developed follicles. ERβ1 wild-type isoform was also enhanced in BPA-exposed ovaries, compared to its variant isoforms. In addition, steroidogenesis was targeted by BPA exposure: aromatase and 17-β-HSD were reduced, whereas 5-α reductase was enhanced. This modulation was reflected in serum levels of estradiol and testosterone, which decreased in BPA-exposed females. Imbalances in steroidogenesis impair the development of follicles and play an important role in follicular atresia. Our study demonstrated that BPA exposure in two windows of susceptibility - gestation and lactation - had implications during aging, enhancing perimenopausal and infertile features.
Collapse
Affiliation(s)
- Thalles F R Ruiz
- Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Vitor Grigio
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Luara J Ferrato
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Lorena G de Souza
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Simone J Colleta
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Gustavo M Amaro
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Rejane M Góes
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Patrícia S L Vilamaior
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Ellen C R Leonel
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences (ICB III), Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Sebastião R Taboga
- Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil; Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
5
|
Nayak D, Adiga D, Khan NG, Rai PS, Dsouza HS, Chakrabarty S, Gassman NR, Kabekkodu SP. Impact of Bisphenol A on Structure and Function of Mitochondria: A Critical Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 260:10. [DOI: 10.1007/s44169-022-00011-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 10/26/2022] [Indexed: 04/02/2024]
Abstract
AbstractBisphenol A (BPA) is an industrial chemical used extensively to manufacture polycarbonate plastics and epoxy resins. Because of its estrogen-mimicking properties, BPA acts as an endocrine-disrupting chemical. It has gained attention due to its high chances of daily and constant human exposure, bioaccumulation, and the ability to cause cellular toxicities and diseases at extremely low doses. Several elegant studies have shown that BPA can exert cellular toxicities by interfering with the structure and function of mitochondria, leading to mitochondrial dysfunction. Exposure to BPA results in oxidative stress and alterations in mitochondrial DNA (mtDNA), mitochondrial biogenesis, bioenergetics, mitochondrial membrane potential (MMP) decline, mitophagy, and apoptosis. Accumulation of reactive oxygen species (ROS) in conjunction with oxidative damage may be responsible for causing BPA-mediated cellular toxicity. Thus, several reports have suggested using antioxidant treatment to mitigate the toxicological effects of BPA. The present literature review emphasizes the adverse effects of BPA on mitochondria, with a comprehensive note on the molecular aspects of the structural and functional alterations in mitochondria in response to BPA exposure. The review also confers the possible approaches to alleviate BPA-mediated oxidative damage and the existing knowledge gaps in this emerging area of research.
Collapse
|
6
|
Elbakry MMM, Mansour SZ, Helal H, Ahmed ESA. Nattokinase attenuates bisphenol A or gamma irradiation-mediated hepatic and neural toxicity by activation of Nrf2 and suppression of inflammatory mediators in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75086-75100. [PMID: 35648353 PMCID: PMC9550699 DOI: 10.1007/s11356-022-21126-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/23/2022] [Indexed: 05/05/2023]
Abstract
Nattokinase (NK), a protease enzyme produced by Bacillus subtilis, has various biological effects such as lipid-lowering activity, antihypertensive, antiplatelet/anticoagulant, and neuroprotective effects. Exposure to environmental toxicants such as bisphenol A (BPA) or γ-radiation (IR) causes multi-organ toxicity through several mechanisms such as impairment of oxidative status, signaling pathways, and hepatic and neuronal functions as well as disruption of the inflammatory responses. Therefore, this study is designed to evaluate the ameliorative effect of NK against BPA- or IR-induced liver and brain damage in rats. Serum ammonia level and liver function tests were measured in addition to brain oxidative stress markers, amyloid-beta, tau protein, and neuroinflammatory mediators. Moreover, relative quantification of brain nuclear factor-erythroid 2-related factor-2 (Nrf2)/heme oxygenase-1 (HO-1) genes, as well as apoptotic markers in brain tissue, was carried out in addition to histopathological examination. The results showed that NK improved liver functions, impaired oxidative status, the cholinergic deficits, and minified the misfolded proteins aggregates. Furthermore, NK alleviated the neuroinflammation via modulating NF-κB/Nrf2/HO-1 pathway and glial cell activation in addition to their antiapoptotic effect. Collectively, the current results revealed the protective effect of NK against hepatic and neurotoxicity derived from BPA or IR.
Collapse
Affiliation(s)
- Mustafa M M Elbakry
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Somaya Z Mansour
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Cairo, 11787, Egypt
| | - Hamed Helal
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Esraa S A Ahmed
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Cairo, 11787, Egypt.
| |
Collapse
|
7
|
Jiao JH, Gao L, Yong WL, Kou ZY, Ren ZQ, Cai R, Chu GY, Pang WJ. Resveratrol improves estrus disorder induced by bisphenol A through attenuating oxidative stress, autophagy, and apoptosis. J Biochem Mol Toxicol 2022; 36:e23120. [PMID: 35670589 DOI: 10.1002/jbt.23120] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/26/2022] [Accepted: 05/28/2022] [Indexed: 11/08/2022]
Abstract
Bisphenol A (BPA), as a widely used plasticizer, is easily absorbed by animals and humans. It has certain toxic effects on various tissues, including liver, heart, kidney, testis, and ovary. The toxic effects of BPA on animal reproduction have aroused widespread concern, but its regulatory mechanism and antidote in female animals estrus cycle remain unclear. In this study, the results displayed that BPA destroyed the normal estrus cycle of mice through decreasing the levels of progesterone and estradiol. Furthermore, BPA significantly increased the levels of oxidative stress, autophagy, and apoptosis in ovaries and granulosa cells. Interestingly, we found that the natural antioxidant resveratrol rescued estrus disorder and impaired estradiol secretion, reduced the abnormal reactive oxygen species accumulation, autophagy, and apoptosis in BPA exposed ovarian tissues. Moreover, transmission electron microscopy showed that resveratrol reduced BPA-induced autophagic vesicles formation and flow cytometry showed that resveratrol inhibited the increase of apoptotic cells induced by BPA on granulosa cells. Therefore, the supplement of resveratrol could restore BPA-induced estrus disorder by protecting ovarian granulosa cells. Overall, resveratrol is a potential drug to alleviate BPA-induced estrous cycle disorders and ovarian damage.
Collapse
Affiliation(s)
- Jun-Heng Jiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, China
| | - Lei Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, China
| | - Wen-Long Yong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, China
| | - Zhong-Yun Kou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, China
| | - Zhi-Qiang Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, China
| | - Rui Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, China
| | - Gui-Yan Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, China
| | - Wei-Jun Pang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, China
| |
Collapse
|
8
|
The Influence of Environmental Factors on Ovarian Function, Follicular Genesis, and Oocyte Quality. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1300:41-62. [PMID: 33523429 DOI: 10.1007/978-981-33-4187-6_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) exist ubiquitously in the environment. Epidemiological data suggest that the increasing prevalence of infertility may be related to the numerous chemicals. Exposure to EDCs may have significant adverse impacts on the reproductive system including fertility, ovarian reserve, and sex steroid hormone levels. This chapter covers the common exposure ways, the origins of EDCs, and their effects on ovarian function, follicular genesis, and oocyte quality. Furthermore, we will review the origin and the physiology of ovarian development, as well as explore the mechanisms in which EDCs act on the ovary from human and animal data. And then, we will focus on the bisphenol A (BPA), which has been shown to reduce fertility and ovarian reserve, as well as disrupt steroidogenesis in animal and human models. Finally, we will discuss the future direction of prevention and solution methods.
Collapse
|
9
|
Bahelka I, Stupka R, Čítek J, Šprysl M. The impact of bisphenols on reproductive system and on offspring in pigs - A review 2011-2020. CHEMOSPHERE 2021; 263:128203. [PMID: 33297166 DOI: 10.1016/j.chemosphere.2020.128203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 06/12/2023]
Abstract
This study summarizes the knowledge about effects of bisphenol A (BPA) and its analogues on reproduction of pigs and some parameters of their offspring during period 2011-2020. Bisphenols are known as one of the most harmful environmental toxicants with endocrine-disrupting properties. One study in the reference period related to male reproductive system. Treatment with an antagonist of G-protein coupled estrogen receptor (GPER) - G15, and bisphenol A and its analogues, tetrabromobisphenol A (TBBPA) and tetrachromobisphenol A (TCBPA) diversely disrupted protein molecules controlling the biogenesis and function of microRNA in Leydig cells. Nine studies examined the effect of BPA, bisphenol S (BPS) or fluorene-9-bisphenol (BHPF) on female reproductive system. From the possible protective effect's point of view seems to be perspective the administration of melatonin in BPA-exposed oocytes. Finally, two studies were found to evaluate the maternal exposure to BPA on offspring's meat quality, muscle metabolism and oxidative stress. Administration of methyl donor improved antioxidant enzymes activity and reduced oxidative stress in piglets.
Collapse
Affiliation(s)
- Ivan Bahelka
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic.
| | - Roman Stupka
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic
| | - Jaroslav Čítek
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic
| | - Michal Šprysl
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic
| |
Collapse
|
10
|
Zhang X, Zhao Y, Cheng C, Li L, Xiao M, Zhang G, Lu X. Combined effects of di (2-ethylhexyl) phthalate and bisphenol A on thyroid hormone homeostasis in adolescent female rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:40882-40892. [PMID: 32681327 DOI: 10.1007/s11356-020-09949-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Phthalates and bisphenols are two typical classes of endocrine-disrupting chemicals (EDCs) which cause endocrine disorder in humans and animals. Phthalates and bisphenols are suggested to be associated with thyroid dysfunction. However, the effects of combined exposure and the detailed mechanisms are yet poorly understood. We investigated the combined effects of di (2-ethylhexyl) phthalate (DEHP) and bisphenol A (BPA) on thyroid function during puberty. Female Sprague Dawley rats were gavaged from postnatal 28 to 70 days with a single or combined exposure of DEHP (0, 150, and 750 mg/kg/day) and BPA (0, 20, and 100 mg/kg/day) according to a 3 × 3 factorial design. The thyroid weights reduced after combined exposure to the highest dose of DEHP and BPA, which noted their adverse effects on thyroid. Additionally, DEHP could increase the number of follicular epithelial cells in thyroid. Both DEHP and in combination with BPA could disturb the levels of thyroid hormones in serum, such as TT3 and TT4. Meanwhile, the possible mechanism was also discussed in the present study. DEHP treatment induced a significant increase of phosphorylation of cAMP-response element binding protein (Creb) via estrogen receptor α (Esr1), while the upregulation was nullified by the concomitant presence of BPA. In conclusion, the complex action of DEHP/BPA mixture may disturb the thyroid hormone homeostasis, which ultimately would affect the development of thyroid during puberty.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Yuejiao Zhao
- Cancer Hospital of China Medical University/Liaoning Cancer Hospital & Institute, Shenyang, People's Republic of China
| | - Cheng Cheng
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Liuli Li
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Mingyang Xiao
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Guopei Zhang
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
11
|
Sahu C, Charaya A, Singla S, Dwivedi DK, Jena G. Zinc deficient diet increases the toxicity of bisphenol A in rat testis. J Biochem Mol Toxicol 2020; 34:e22549. [PMID: 32609952 DOI: 10.1002/jbt.22549] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/08/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022]
Abstract
Zinc (Zn) plays an important role in maintaining the process of spermatogenesis and reproductive health. Bisphenol A (BPA), an endocrine disrupting chemical is known to be a reproductive toxicant in different animal models. The present study was designed to study the effect of two of the utmost determinative factors (Zn deficient condition and influence of toxicant BPA) on germ cell growth and overall male reproductive health in the testis, epididymis, and sperm using (a) biochemical, (b) antioxidant, (c) cellular damage, (d) apoptosis, and (e) protein expression measurements. Rats were divided into Control (normal feed and water), BPA (100 mg/kg/d), zinc deficient diet (ZDD; fed with ZDD), and BPA + ZDD for 8 weeks. Body and organ weights, sperm motility and counts, and sperm head morphology were evaluated. The histology of testes, epididymides, and prostate was investigated. Testicular deoxyribonucleic acid (DNA) damage was evaluated by Halo and Comet assay, apoptosis of sperm and testes were quantified by TUNEL assay. Serum protein electrophoretic patterns and testicular protein expressions such as Nrf-2, catalase, PCNA, and Keap1 were analyzed by Western blot analysis. The results showed that BPA significantly increased the testicular, epididymal, and prostrate toxicity in dietary Zn deficient condition due to testicular hypozincemia, hypogonadism, increased cellular and DNA damage, apoptosis, as well as perturbations in protein expression.
Collapse
Affiliation(s)
- Chittaranjan Sahu
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Aarzoo Charaya
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Shivani Singla
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Durgesh K Dwivedi
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| |
Collapse
|
12
|
Meli R, Monnolo A, Annunziata C, Pirozzi C, Ferrante MC. Oxidative Stress and BPA Toxicity: An Antioxidant Approach for Male and Female Reproductive Dysfunction. Antioxidants (Basel) 2020; 9:E405. [PMID: 32397641 PMCID: PMC7278868 DOI: 10.3390/antiox9050405] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/16/2022] Open
Abstract
Bisphenol A (BPA) is a non-persistent anthropic and environmentally ubiquitous compound widely employed and detected in many consumer products and food items; thus, human exposure is prolonged. Over the last ten years, many studies have examined the underlying molecular mechanisms of BPA toxicity and revealed links among BPA-induced oxidative stress, male and female reproductive defects, and human disease. Because of its hormone-like feature, BPA shows tissue effects on specific hormone receptors in target cells, triggering noxious cellular responses associated with oxidative stress and inflammation. As a metabolic and endocrine disruptor, BPA impairs redox homeostasis via the increase of oxidative mediators and the reduction of antioxidant enzymes, causing mitochondrial dysfunction, alteration in cell signaling pathways, and induction of apoptosis. This review aims to examine the scenery of the current BPA literature on understanding how the induction of oxidative stress can be considered the "fil rouge" of BPA's toxic mechanisms of action with pleiotropic outcomes on reproduction. Here, we focus on the protective effects of five classes of antioxidants-vitamins and co-factors, natural products (herbals and phytochemicals), melatonin, selenium, and methyl donors (used alone or in combination)-that have been found useful to counteract BPA toxicity in male and female reproductive functions.
Collapse
Affiliation(s)
- Rosaria Meli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.M.); (C.A.)
| | - Anna Monnolo
- Department of Veterinary Medicine and Animal Productions, Federico II University of Naples, Via Delpino 1, 80137 Naples, Italy;
| | - Chiara Annunziata
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.M.); (C.A.)
| | - Claudio Pirozzi
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.M.); (C.A.)
| | - Maria Carmela Ferrante
- Department of Veterinary Medicine and Animal Productions, Federico II University of Naples, Via Delpino 1, 80137 Naples, Italy;
| |
Collapse
|
13
|
Zhang J, Qian L, Wang C, Teng M, Duan M, Zhou Y, Chen X, Bo R, Wang C, Li X. Dysregulation of endocrine disruption, apoptosis and the transgenerational toxicity induced by spirotetramat. CHEMOSPHERE 2020; 240:124900. [PMID: 31563099 DOI: 10.1016/j.chemosphere.2019.124900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Spirotetramat (SPT) is a new tetronic acid derivative insecticide used to control scales and aphids; the potential for endocrine disruptor effects in fish could not be finalized with the available data. In this study, zebrafish were selected to assess the endocrine-disrupting effects. Significant decrease of plasma estradiol (E2), testosterone (T) and 11-ketotestosterone (11-KT) were observed in both male and female following the spirotetramat exposure; the vitellogenin (VTG) level in females significantly decreased. The expression of the hypothalamic-pituitary-gonad (HPG) axis genes fshr, lhr and esr1 showed significant increase in the gonads, which expression in males is higher than in females. In addition, the activities of capspase-3 and caspase-9 significantly decreased in both males and females liver, while the capspase-3 and caspase-9 were increased in male testis, the mRNA expression levels of genes expression related to the apoptosis pathway were also significantly altered after the spirotetramat exposure. Additionally, we found the parental zebrafish exposed to spirotetramat induced the development delay of its offspring. Above all, the adverse effects induced by spirotetramat suggesting that spirotetramat is a potential exogenous hazardous agent.
Collapse
Affiliation(s)
- Jie Zhang
- College of Sciences, China Agricultural University, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, China
| | - Le Qian
- College of Sciences, China Agricultural University, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, China
| | - Chen Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Miaomiao Teng
- College of Sciences, China Agricultural University, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, China
| | - Manman Duan
- College of Sciences, China Agricultural University, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yimeng Zhou
- College of Sciences, China Agricultural University, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xiangguang Chen
- College of Sciences, China Agricultural University, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, China
| | - Rui Bo
- The Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100125, China
| | - Chengju Wang
- College of Sciences, China Agricultural University, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xuefeng Li
- College of Sciences, China Agricultural University, No. 2 Yuan mingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|