1
|
Nawaz S, Kulyar MFEA, Mo Q, Yao W, Iqbal M, Li J. Homeostatic Regulation of Pro-Angiogenic and Anti-Angiogenic Proteins via Hedgehog, Notch Grid, and Ephrin Signaling in Tibial Dyschondroplasia. Animals (Basel) 2023; 13:3750. [PMID: 38136788 PMCID: PMC10740744 DOI: 10.3390/ani13243750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Precise coupling of two fundamental mechanisms, chondrogenesis and osteogenesis via angiogenesis, plays a crucial role during rapid proliferation of growth plates, and alteration in their balance might lead to pathogenic conditions. Tibial dyschondroplasia (TD) is characterized by an avascular, non-mineralized, jade-white "cartilaginous wedge" with impaired endochondral ossification and chondrocyte proliferation at the proximal end of a tibial bone in rapidly growing poultry birds. Developing vascular structures are dynamic with cartilage growth and are regulated through homeostatic balance among pro and anti-angiogenic proteins and cytokines. Pro-angiogenic factors involves a wide spectrum of multifactorial mitogens, such as vascular endothelial growth factors (VEGF), platelet-derived growth factors (PDGF), basic fibroblast growth factor (bFGF), placental growth factors, transforming growth factor-β (TGF-β), and TNF-α. Considering their regulatory role via the sonic hedgehog, notch-gridlock, and ephrin-B2/EphB4 pathways and inhibition through anti-angiogenic proteins like angiostatin, endostatin, decoy receptors, vasoinhibin, thrombospondin, PEX, and troponin, their possible role in persisting inflammatory conditions like TD was studied in the current literature review. Balanced apoptosis and angiogenesis are vital for physiological bone growth. Any homeostatic imbalance among apoptotic, angiogenetic, pro-angiogenic, or anti-angiogenic proteins ultimately leads to pathological bone conditions like TD and osteoarthritis. The current review might substantiate solid grounds for developing innovative therapeutics for diseases governed by the disproportion of angiogenesis and anti-angiogenesis proteins.
Collapse
Affiliation(s)
- Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| | - Muhammad Fakhar-e-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| |
Collapse
|
2
|
Chen X, Kong Q, Zhao X, Zhao C, Hao P, Irshad I, Lei H, Kulyar MFEA, Bhutta ZA, Ashfaq H, Sha Q, Li K, Wu Y. Sodium acetate/sodium butyrate alleviates lipopolysaccharide-induced diarrhea in mice via regulating the gut microbiota, inflammatory cytokines, antioxidant levels, and NLRP3/Caspase-1 signaling. Front Microbiol 2022; 13:1036042. [PMID: 36386709 PMCID: PMC9664939 DOI: 10.3389/fmicb.2022.1036042] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
Diarrhea is a word-widely severe disease coupled with gastrointestinal dysfunction, especially in cattle causing huge economic losses. However, the effects of currently implemented measures are still not enough to prevent diarrhea. Previously we found that dropped short-chain fatty acids in diarrhea yaks, and butyrate is commonly known to be related to the epithelial barrier function and intestinal inflammation. However, it is still unknown whether sodium acetate/sodium butyrate could alleviate diarrhea in animals. The present study is carried out to explore the potential effects of sodium acetate/sodium butyrate on lipopolysaccharide-induced diarrhea in mice. Fifty ICR mice were randomly divided into control (C), LPS-induced (L), and sodium acetate/sodium butyrate (D, B, A)-treated groups. Serum and intestine samples were collected to examine inflammatory cytokines, antioxidant levels, relative gene expressions via real-time PCR assay, and gut microbiota changes through high-throughput sequencing. Results indicated that LPS decreased the villus height (p < 0.0001), increased the crypt depth (p < 0.05), and lowered the villus height to crypt depth ratio (p < 0.0001), while sodium acetate/sodium butyrate supplementation caused a significant increase in the villus height (p < 0.001), decrease in the crypt depth (p < 0.01), and increase in the villus height to crypt depth ratio (p < 0.001), especially. In mice treated with LPS, it was found that the serum level of IL-1β, TNF-α (p < 0.001), and MDA (p < 0.01) was significantly higher; however, sodium acetate/sodium butyrate supplementation significantly reduced IL-1β (p < 0.001), TNF-α (p < 0.01), and MDA (p < 0.01), respectively. A total of 19 genera were detected among mouse groups; LPS challenge decreased the abundance of Lactobacillus, unidentified F16, unidentified_S24-7, Adlercreutzia, Ruminococcus, unclassified Pseudomonadales, [Ruminococcus], Acetobacter, cc 1, Rhodococcus, unclassified Comamonadaceae, Faecalibacterium, and Cupriavidus, while increased Shigella, Rhodococcus, unclassified Comamonadaceae, and unclassified Pseudomonadales in group L. Interestingly, sodium acetate/sodium butyrate supplementation increased Lactobacillus, unidentified F16, Adlercreutzia, Ruminococcus, [Ruminococcus], unidentified F16, cc 115, Acetobacter, Faecalibacterium, and Cupriavidus, while decreased Shigella, unclassified Enterobacteriaceae, unclassified Pseudomonadales, Rhodococcus, and unclassified Comamonadaceae. LPS treatment upregulated the expressions of ZO-1 (p < 0.01) and NLRP3 (p < 0.0001) genes in mice; however, sodium acetate/sodium butyrate solution supplementation downregulated the expressions of ZO-1 (p < 0.05) and NLRP3 (p < 0.05) genes in treated mice. Also, the LPS challenge clearly downregulated the expression of Occludin (p < 0.001), Claudin (p < 0.0001), and Caspase-1 (p < 0.0001) genes, while sodium acetate/sodium butyrate solution supplementation upregulated those gene expressions in treated groups. The present study revealed that sodium acetate/sodium butyrate supplementation alleviated LPS-induced diarrhea in mice via enriching beneficial bacterium and decreasing pathogens, which could regulate oxidative damages and inflammatory responses via NLRP3/Caspase-1 signaling. The current results may give insights into the prevention and treatment of diarrhea.
Collapse
Affiliation(s)
- Xiushuang Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qinghui Kong
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
| | - Xiaoxiao Zhao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chenxi Zhao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Pin Hao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Irfan Irshad
- Institute of Continuing Education and Extension, University of Veterinary Animal Sciences, Lahore, Pakistan
| | - Hongjun Lei
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Fakhar-e-Alam Kulyar
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zeeshan Ahmad Bhutta
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - Hassan Ashfaq
- Institute of Continuing Education and Extension, University of Veterinary Animal Sciences, Lahore, Pakistan
| | - Qiang Sha
- Jiangsu Key Laboratory of Pesticide Science, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Kun Li,
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Yi Wu,
| |
Collapse
|
3
|
Zhang C, Xu T, Lin L, Shaukat A, Tong X, Yue K, Cao Q, Zhang C, Liu F, Huang S. Morinda officinalis Polysaccharides Ameliorates Bone Growth by Attenuating Oxidative Stress and Regulating the Gut Microbiota in Thiram-Induced Tibial Dyschondroplasia Chickens. Metabolites 2022; 12:958. [PMID: 36295860 PMCID: PMC9609565 DOI: 10.3390/metabo12100958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Tibial dyschondroplasia (TD) occurs in chickens and other fast-growing birds, affecting their cartilage growth and leading to reduced meat quality in broilers. Morinda officinalis polysaccharide (MOP) is one of the chief active components of Morinda officinalis, which promotes bone formation, inhibiting bone loss and having anti-oxidant and anti-inflammatory properties. A total of 120 AA chickens were randomly divided into the CON group (basal diet), TD group (100 mg/kg thiram + basal diet), and MOP group (100 mg/kg thiram + basal diet + water with 500 mg/kg MOP). The experiment lasted 21 days. The results showed that MOP could alleviates broiler lameness caused by TD, restore the morphological structure of tibial growth plate (TGP), increase tibial weight (p < 0.05), balance the disorder of calcium and phosphorus metabolism, and promote bone formation by increasing the expression of BMP-2, Smad4, and Runx2 genes In addition, MOP supplementation stimulated the secretion of plasma antioxidant enzymes (T-SOD and GSH-Px) by regulating the expression of SOD and GPX-1 genes, thereby enhancing the antioxidant capacity of TD broilers. Interestingly, we observed MOP can also improve gut microbiota by increasing the beneficial bacteria count and decreasing the harmful bacteria count. These findings indicated that MOP can regulate bone formation through the BMP/Smads signaling pathway, attenuating oxidative stress and regulating the gut microbiota of TD broilers, so as to achieve the effect of treating TD. This suggests that MOP might be a potential novel drug in the treatment of TD in chickens.
Collapse
Affiliation(s)
- Chaodong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Tingting Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Luxi Lin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Aftab Shaukat
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Xishuai Tong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Ke Yue
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Qinqin Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Cai Zhang
- Laboratory of Environment and Livestock Products, Henan University of Science and Technology, Luoyang 471023, China
| | - Fang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Shucheng Huang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
4
|
Xia WH, Tang L, Wang ZY, Wang L. Effects of Inorganic and Organic Manganese Supplementation on Growth Performance, Tibia Development, and Oxidative Stress in Broiler Chickens. Biol Trace Elem Res 2022; 200:4453-4464. [PMID: 34851493 DOI: 10.1007/s12011-021-03041-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
Manganese (Mn) is an essential trace element for broiler chickens; its deficiency causes tibial dyschondroplasia (TD) characterized by lameness and growth retardation. Inorganic and organic manganese sources are used in global poultry production, but there is a lack of systematic investigations to compare the bioavailability among them. In this study, 120 1-day-old Arbor Acres (AA) broilers were randomly divided into four groups (n = 30), i.e., control group (Mn sulfate, 60 mg/kg), Mn-D group (Mn deficiency, 22 mg/kg), Mn-Gly group (Mn glycinate, 60 mg/kg), and Mn-Pro group (Mn proteinate, 60 mg/kg). During the 42-day experiment, growth performance, tibial bone parameters, pathological index changes, serum biochemical changes, and oxidative stress indicators were evaluated. These results not only suggested that Mn plays a crucial role in the normal development of tibia and the maintenance of redox homeostasis in broilers, but also proved that organic Mn supplementation, especially Mn proteinate, improved the tibia development and the absorption efficiency, as well as overall oxidative stress status of broilers, suggesting that it had greater bioavailability than inorganic Mn. Thus, application of organic Mn source may be an effective way to reduce economic losses and resolve animal welfare concerns due to TD in commercial poultry farming.
Collapse
Affiliation(s)
- Wei-Hao Xia
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, 271018, China
| | - Liang Tang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, 271018, China
| | - Zhen-Yong Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, China.
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, 271018, China.
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, 271018, China.
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, China.
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, 271018, China.
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City, 271018, China.
| |
Collapse
|
5
|
Kulyar MFEA, Yao W, Mo Q, Ding Y, Zhang Y, Gao J, Li K, Pan H, Nawaz S, Shahzad M, Mehmood K, Iqbal M, Akhtar M, Bhutta ZA, Waqas M, Li J, Qi D. Regulatory Role of Apoptotic and Inflammasome Related Proteins and Their Possible Functional Aspect in Thiram Associated Tibial Dyschondroplasia of Poultry. Animals (Basel) 2022; 12:ani12162028. [PMID: 36009620 PMCID: PMC9404426 DOI: 10.3390/ani12162028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Tibial dyschondroplasia debilities apoptotic and inflammasomal conditions that can further destroy chondrocytes. Inflammasomes are specialized protein complexes that process pro-inflammatory cytokines, e.g., interleukin-1β (IL-1β) and IL-18. Moreover, there is mounting evidence that many of the signaling molecules that govern programmed cell death also affect inflammasome activation in a cell-intrinsic way. During the last decade, apoptotic functions have been described for signaling molecules involving inflammatory responses and cell death pathways. Considering these exceptional developments in the knowledge of processes, this review gives a glimpse of the significance of these two pathways and their connected proteins in tibial dyschondroplasia. The current review deeply elaborates on the elevated level of signaling mediators of mitochondrial-mediated apoptosis and the inflammasome. Although investigating these pathways’ mechanisms has made significant progress, this review identifies areas where more study is especially required. It might lead to developing innovative therapeutics for tibial dyschondroplasia and other associated bone disorders, e.g., osteoporosis and osteoarthritis, where apoptosis and inflammasome are the significant pathways.
Collapse
Affiliation(s)
- Muhammad Fakhar-e-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanmei Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jindong Gao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Kewei Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huachun Pan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Shahzad
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Mudassar Iqbal
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Akhtar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zeeshan Ahmad Bhutta
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Muhammad Waqas
- Faculty of Veterinary & Animal Sciences, University of Poonch Rawalakot, Rawalakot 12350, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China
- Correspondence: (J.L.); (D.Q.)
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (J.L.); (D.Q.)
| |
Collapse
|
6
|
Jahejo AR, Bukhari SAR, Rajput N, Kalhoro NH, Leghari IH, Raza SHA, Li Z, Liu WZ, Tian WX. Transcriptome-based biomarker gene screening and evaluation of the extracellular fatty acid-binding protein (Ex-FABP) on immune and angiogenesis-related genes in chicken erythrocytes of tibial dyschondroplasia. BMC Genomics 2022; 23:323. [PMID: 35459093 PMCID: PMC9034513 DOI: 10.1186/s12864-022-08494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tibial dyschondroplasia (TD) is a bone disorder in which dead chondrocytes accumulate as a result of apoptosis and non-vascularization in the tibial bone of broiler chickens. The pathogenicity of TD is under extensive research but is yet not fully understood. Several studies have linked it to apoptosis and non-vascularization in the tibial growth plate (GP). We conceived the idea to find the differentially expressed genes (DEGs) in chicken erythrocytes which vary in expression over time using a likelihood-ratio test (LRT). Thiram was used to induce TD in chickens, and then injected Ex-FABP protein at 0, 20, and 50 μg.kg-1 to evaluate its therapeutic effect on 30 screened immunity and angiogenesis-related genes using quantitative PCR (qPCR). The histopathology was also performed in TD chickens to explore the shape, circularity, arrangements of chondrocytes and blood vessels. RESULTS Clinical lameness was observed in TD chickens, which decreased with the injection of Ex-FABP. Histopathological findings support Ex-FABP as a therapeutic agent for the morphology and vascularization of affected chondrocytes in TD chickens. qPCR results of 10 immunity (TLR2, TLR3, TLR4, TLR5, TLR7, TLR15, IL-7, MyD88, MHCII, and TRAF6) and 20 angiogenesis-related genes (ITGAV, ITGA2, ITGB2, ITGB3, ITGA5, IL1R1, TBXA2R, RPL17, F13A1, CLU, RAC2, RAP1B, GIT1, FYN, IQGAP2, PTCH1, NCOR2, VAV-like, PTPN11, MAML3) regulated when Ex-FABP is injected to TD chickens. CONCLUSION Immunity and angiogenesis-related genes can be responsible for apoptosis of chondrocytes and vascularization in tibial GP. Injection of Ex-FABP protein to thiram induced TD chickens decrease the chondrocytes damage and improves vascularization.
Collapse
Affiliation(s)
- Ali Raza Jahejo
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China.,College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
| | | | - Nasir Rajput
- Department of Poultry Husbandry, Sindh Agriculture University, Tandojam, Pakistan
| | | | | | | | - Zhen Li
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Wen-Zhong Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China.
| | - Wen-Xia Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China.
| |
Collapse
|
7
|
Wang B, Wang S, Ding M, Lu H, Wu H, Li Y. Quercetin Regulates Calcium and Phosphorus Metabolism Through the Wnt Signaling Pathway in Broilers. Front Vet Sci 2022; 8:786519. [PMID: 35155643 PMCID: PMC8828646 DOI: 10.3389/fvets.2021.786519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/22/2021] [Indexed: 12/22/2022] Open
Abstract
This study intended to explore the effect and mechanism of different doses of dietary quercetin on calcium and phosphorus metabolism to provide an experimental basis for preventing leg disease in broilers. A total of 480 1-day-old healthy Arbor Acre broilers were randomly allotted into four groups (0, 0.02, 0.04, 0.06%) for 42 days. Compared with control, 0.06% quercetin significantly increased the unit weight and the relative weight of tibia in broilers (P < 0.05). Meanwhile, phosphorus content and bone mineral density (BMD) were significantly increased by 0.06% dietary quercetin supplementation in tibia (P < 0.05). Ash of tibia was significantly increased by 0.04 and 0.06% quercetin in broilers (P < 0.05). In addition, 0.06% quercetin significantly increased the content of serum calcium-binding protein (CB), estradiol (E2), osteocalcin (OC), alkaline phosphatase (ALP), and calcitonin (CT) (P < 0.05); 0.04% quercetin significantly increased 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) (P < 0.05) content in serum of broilers. The content of serum parathyroid (PTH) was significantly decreased by 0.02 and 0.06% quercetin (P < 0.05) in broilers. Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the Wnt signaling pathway was a key signaling pathway of calcium and phosphorus metabolism in broilers which was significantly regulated by quercetin. The differentially expressed genes (DEGs) from transcriptome sequencing were validated with real-time quantitative PCR (RT-qPCR). In conclusion, 0.06% dietary quercetin supplementation improved calcium and phosphorus metabolism by regulating the Wnt signaling pathway in broilers.
Collapse
|
8
|
Lu Y, Xu H, Jiang Y, Li D, Hu Z, Yan C, Yin H, Li D, Zhao X, Zhang Y, Tian Y, Zhu Q, Wang Y. Effect of BMP6 on the proliferation and apoptosis of chicken chondrocytes induced by thiram. Res Vet Sci 2021; 142:101-109. [PMID: 34906792 DOI: 10.1016/j.rvsc.2021.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
The development of skeleton system is a complex biological process and be regulated by many transcription factors. Previous studies have shown that BMP6 is involved in skeleton development and other cells transforming to chondrocytes, but it is still not known whether do something to tibial dyschondroplasia (TD) broilers chondrocytes. In this study, RT-PCR revealed that the expression level of BMP6 in TD broiler chondrocytes at 7 days age was significantly decreased compared with normal group (P < 0.05). CCK-8 and EdU assay showed that the proliferation of cells transfected with interference BMP6 was significantly decreased compared with control siRNA, while cell proliferation was significantly increased after overexpression of BMP6. Meanwhile, the proportion of G0/G1 phase cells was significantly increased and the proportion of G2/M phase cells was significantly decreased after interference of BMP6 for 48 h in TD chicken chondrocytes (P < 0.05). In addition, flow cytometry analysis exhibited that interference BMP6 significantly increased apoptosis rate and necrotizing rate of cells. In conclusion, these results suggest that BMP6 plays a positive role in the growth and development of TD broiler chondrocytes. Our findings reveal a new target for TD prevention in broiler chickens.
Collapse
Affiliation(s)
- Yuxiang Lu
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China
| | - Hengyong Xu
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China
| | - Yuru Jiang
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China
| | - Dan Li
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China
| | - Zhi Hu
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China
| | - Chaoyang Yan
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China
| | - Huadong Yin
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China
| | - Diyan Li
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China
| | - Xiaoling Zhao
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China
| | - Yao Zhang
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China
| | - Yaofu Tian
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China
| | - Qing Zhu
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China.
| | - Yan Wang
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211# Huiming Street, Wenjiang district Chengdu, 611130, China.
| |
Collapse
|
9
|
Cao Y, Lv Q, Li Y. Astragaloside IV Improves Tibial Defect in Rats and Promotes Proliferation and Osteogenic Differentiation of hBMSCs through MiR-124-3p.1/STAT3 Axis. JOURNAL OF NATURAL PRODUCTS 2021; 84:287-297. [PMID: 33464097 DOI: 10.1021/acs.jnatprod.0c00975] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Astragaloside IV (AST-IV) facilitates the proliferation and migration of osteoblast-like cells. We sought to explore the effect and potential mechanism of AST-IV on regeneration of tibial defects. To reveal the effect of AST-IV on regeneration of tibial defects in rat, HE staining and microcomputed tomography (μCT) were performed on tibial bone. The binding relationship between miR-124-3p.1 and STAT3 was analyzed by TargetScan V7.2 and a dual-luciferase reporter assay. Human bone marrow mesenchymal stromal/stem cells (hBMSCs) were identified by morphological observation and flow-cytometric analysis. To reveal the effect and mechanism of AST-IV on phenotypes of hBMSCs, hBMSCs were treated with AST-IV, miR-124-3p.1 mimic, and pcDNA-STAT3, and cell viability, cell cycle, ALP activity, and calcium deposition of hBMSCs in vitro were determined by MTT, flow-cytometric analysis, ELISA, and Alizarin red staining, respectively. The expressions of osteoblast marker molecules (RUNX2, OCN, Smad4), miR-124-3p.1, and STAT3 were indicated by RT-qPCR and Western blot. AST-IV decreased miR-124-3p.1 expression, increased STAT3 expression in tibial bone defects, and promoted regeneration of tibial bone defects in a concentration-dependent manner. The hBMSCs appeared spindle-shaped and were positive for CD105, but negative for CD34. MiR-124-3p.1 negatively regulated STAT3 expression in hBMSCs under osteogenic conditions. AST-IV promoted viability, cell cycle, ALP activity, and osteogenic differentiation of hBMSCs along with increased expressions of osteoblast marker molecules, which was partially reversed by miR-124-3p.1 overexpression. However, the effect of miR-124-3p.1 overexpression on hBMSCs was also partially reversed by STAT3 overexpression. AST-IV improves tibial defects in rats and promotes proliferation and osteogenic differentiation of hBMSCs through the miR-124-3p.1/STAT3 axis.
Collapse
Affiliation(s)
- Yujing Cao
- Emergency Trauma Center, Henan Province Hospital of TCM, Jinshui District, Zhengzhou, Henan 450002, China
| | - Qiuxia Lv
- Department of Anorectal, Henan Province Hospital of TCM, Jinshui District, Zhengzhou, Henan 450002, China
| | - Yang Li
- Emergency Trauma Center, Henan Province Hospital of TCM, Jinshui District, Zhengzhou, Henan 450002, China
| |
Collapse
|
10
|
Chen SM, Jahejo AR, Nabi F, Ahmed S, Zhao JF, Yu J, Zhang CL, Ning GB, Zhang D, Raza SHA, Tian WX. Janus kinase/signal transducer and activator of transcription signaling pathway-related genes STAT3, SOCS3 and their role in thiram induced tibial dyschondroplasia chickens. Res Vet Sci 2021; 136:25-31. [PMID: 33578291 DOI: 10.1016/j.rvsc.2021.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 11/19/2022]
Abstract
Pathogenicity of tibial dyschondroplasia (TD) in broiler chickens is not detected yet. Janus Kinase/Signal Transducer and Activator of Transcription (JAK-STAT) signaling pathway-related genes were investigated in thiram induced TD chickens. Real-time qPCR and immunohistochemical (IHC) technique were used to observe the expression changes of STAT3 and SOSC3 gene on days 1, 2, 4, 6 after feeding 100 mg·kg-1 thiram. Morphological, pathological, and histological results of this study suggested that chondrocyte cells were observed more damaged on day 6 than day 1, 2, and 4. Therefore, Lameness and damaged chondrocytes gradually increased from day 1 to 6. The mRNA expression level of STAT3 was observed insignificant (P > 0.05) in thiram induced TD chickens' group of day 1. However, on days 2, 4, and 6, the expression was significant (P < 0.05). SOCS3 increased in thiram group on days 1, 2 and 6, decreased on day 4 (P < 0.05). The p-STAT3 and SOCS3 protein's protein localization was evaluated in the control and thiram-induced TD broiler chickens through IHC, suggesting that SOSC3 protein was observed significantly higher on days 1, 2, and 6 and down-regulated on day 4. p-STAT3 protein on thiram induced group was observed significantly upregulated on days 4 and 6. In conclusion, the differential expression of STAT3 and SOCS3 showed that the JAK-STAT signaling pathway might play an important role in regulating an abnormal proliferation, differentiation, or apoptosis of chondrocytes in TD at an early stage.
Collapse
Affiliation(s)
- Shu-Ming Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Ali Raza Jahejo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Fazul Nabi
- Faculty of Veterinary and Animal Science, the Lasbela University of Agriculture Water and Marine Science, Pakistan
| | - Shakeel Ahmed
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja 5090000, Valdivia, Chile
| | - Jin-Feng Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Jin Yu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Chen-Liang Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Guan-Bao Ning
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Ding Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | | | - Wen-Xia Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China.
| |
Collapse
|
11
|
Jahejo AR, Tian WX. Cellular, molecular and genetical overview of avian tibial dyschondroplasia. Res Vet Sci 2020; 135:569-579. [PMID: 33066991 DOI: 10.1016/j.rvsc.2020.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/26/2020] [Accepted: 10/07/2020] [Indexed: 02/08/2023]
Abstract
Tibial dyschondroplasia (TD) is an intractable avian bone disease that causes severe poultry economic losses. The pathogenicity of TD is unknown. Therefore, TD disease has not been evacuated yet. Based on continuous research findings, we have gone through the molecular and cellular insight into the TD and proposed possible pathogenicity for future studies. Immunity and angiogenesis-related genes expressed in the erythrocytes of chicken, influenced the apoptosis of chicken chondrocytes to cause TD. TD could be defined as the irregular, unmineralized and un-vascularized mass of cartilage, which is caused by apoptosis, degeneration and insufficient blood supply at the site of the chicken growth plate. The failure of angiogenesis attributed improper nutrients supply to the chondrocytes; ultimately, bone development stopped, poor calcification of cartilage matrix, and apoptosis of chondrocytes occurred. Recent studies explore potential signaling pathways that regulated TD in broiler chickens, including parathyroid hormone-related peptide (PTHrP), transforming growth factor β (TGF- β)/bone morphogenic proteins (BMPs), and hypoxia-inducible factor (HIF). Several studies have reported many medicines to treat TD. However, recently, rGSTA3 protein (50 μg·kg-1) is considered the most proper TD treatment. The present review has summarized the molecular and cellular insight into the TD, which will help researchers in medicine development to evacuate TD completely.
Collapse
Affiliation(s)
- Ali Raza Jahejo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Wen Xia Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China.
| |
Collapse
|
12
|
Treatment of tibial dyschondroplasia with traditional Chinese medicines: "Lesson and future directions". Poult Sci 2020; 99:6422-6433. [PMID: 33248557 PMCID: PMC7704743 DOI: 10.1016/j.psj.2020.08.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/14/2020] [Accepted: 08/15/2020] [Indexed: 12/15/2022] Open
Abstract
Tibial dyschondroplasia (TD) is a metabolic tibiotarsal bone disease in rapidly growing birds throughout the world, which is characterized by gait disorders, reduced growth, and in an unrecoverable lameness in many cases. The short production cycle in chickens, long metabolism cycle in most of the drugs with the severe drug residue, and high treatment cost severely restrict the enthusiasm for the treatment of TD. Traditional Chinese medicine (TCM) has been used for the prevention, treatment, and cure of avian bone diseases. Previously, a couple of traditional Chinese medicines has been reported being useful in treating TD. This review will discuss the TCM used in TD and the alternative TCM to treat TD. Selecting a TCM approach and its pharmacologic effects on TD chickens mainly focused on the differentiation, proliferation, and apoptosis of chondrocytes, angiogenesis, matrix metabolism, oxidative damage, cytokines, and calcification of cartilage in tibia.
Collapse
|
13
|
Qamar H, Waqas M, Li A, Iqbal M, Mehmood K, Li J. Plastrum Testudinis Extract Mitigates Thiram Toxicity in Broilers via Regulating PI3K/AKT Signaling. Biomolecules 2019; 9:biom9120784. [PMID: 31779199 PMCID: PMC6995622 DOI: 10.3390/biom9120784] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/08/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022] Open
Abstract
Tibial dyschondroplasia (TD) negatively affects broilers all over the world, in which the accretion of the growth plate (GP) develops into tibial proximal metaphysis. Plastrum testudinis extract (PTE) is renowned as a powerful antioxidant, anti-inflammatory, and bone healing agent. The current study was conducted to evaluate the efficacy of PTE for the treatment of thiram-induced TD chickens. Broilers (day old; n = 300) were raised for 3 days with normal feed. On the 4th day, three groups (n = 100 each) were sorted, namely, the control (normal diet), TD, and PTE groups (normal diet+ thiram 50 mg/kg). On the 7th day, thiram was stopped in the TD and PTE group, and the PTE group received a normal diet and PTE (30 mg/kg/day). Plastrum testudinis extract significantly restored (p < 0.05) the liver antioxidant enzymes, inflammatory cytokines, serum biochemicals, GP width, and tibia weight as compared to the TD group. The PTE administration significantly increased (p < 0.05) growth performance, vascularization, AKT (serine/threonine-protein kinase), and PI3K expressions and the number of hepatocytes and chondrocytes with intact nuclei were enhanced. In conclusion, PTE has the potential to heal TD lesions and act as an antioxidant and anti-inflammatory drug in chickens exposed to thiram via the upregulation of AKT and PI3K expressions.
Collapse
Affiliation(s)
- Hammad Qamar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Q.); (M.W.); (M.I.); (K.M.)
| | - Muhammad Waqas
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Q.); (M.W.); (M.I.); (K.M.)
- Faculty of Veterinary & Animal Sciences, University of the Poonch, Rawalakot, District Poonch 12350, Azad Jammu & Kashmir, Pakistan
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Q.); (M.W.); (M.I.); (K.M.)
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Q.); (M.W.); (M.I.); (K.M.)
- University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Khalid Mehmood
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Q.); (M.W.); (M.I.); (K.M.)
- University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Q.); (M.W.); (M.I.); (K.M.)
- College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet 860000, China
- Correspondence: ; Tel.: +86-027-87286251
| |
Collapse
|
14
|
Yang H, Zhang H, Tong X, Zhang J, Shen Y. Recovery of chicken growth plate by TanshinoneⅡA through wnt/β-catenin pathway in thiram-induced Tibial Dyschondroplasia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109575. [PMID: 31442808 DOI: 10.1016/j.ecoenv.2019.109575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Tibial Dyschondroplasia (TD), a metabolic disease of fast growing poultry birds that effects the growth of bone and cartilage, is characterized by anorexia, mental depression and lameness. Wnt/β-catenin pathway can mediate the occurrence of TD, and previous study showed the therapeutic effect of TanshinoneⅡA to TD Broilers. However there is no report about the effect of TanshinoneⅡA treating TD broiler chicken through wnt/β-catenin pathway. The objective of this study was to explore the potential mechanism of how Tanshinone II A treats TD. Hematoxylin and eosin staining was used to study histologic pathology of growth plates. Key gene expressions were tested by western blot and reverse transcription quantitative real-time PCR. Results compared with control groups, showed the TD broilers' growth plate performed significantly better by treating with TanshinoneⅡA. After chickens treated by TanshinoneⅡA, the gene and protein expression of WNT5α and BMP-2 were increased (P < 0.05), but the β-catenin were decreased (P < 0.05), which are all key genes expressed in wnt/β-catenin pathway. Therefore, TanshinoneⅡA can potentially treat TD by affecting the expression of genes in wnt/β-catenin pathway and it has availability to use as treatment for TD broilers.
Collapse
Affiliation(s)
- Hao Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hui Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiaole Tong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jialu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yaoqin Shen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
15
|
Waqas M, Wang Y, Li A, Qamar H, Yao W, Tong X, Zhang J, Iqbal M, Mehmood K, Li J. Osthole: A Coumarin Derivative Assuage Thiram-Induced Tibial Dyschondroplasia by Regulating BMP-2 and RUNX-2 Expressions in Chickens. Antioxidants (Basel) 2019; 8:antiox8090330. [PMID: 31443437 PMCID: PMC6770413 DOI: 10.3390/antiox8090330] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023] Open
Abstract
Avian tibial dyschondroplasia affects fast growing broiler chickens accounting for almost 30% of leg ailments in broilers. The present project was designed to assess the efficacy of osthole against avian tibial dyschondroplasia (TD). Two hundred and forty chickens were equally allocated into control, TD and osthole groups (n = 80). The TD and osthole group chickens were challenged with tetramethylthiuram disulfide (thiram) at 50 mg/kg of feed from 4–7 days, followed by osthole administration at 20 mg/kg orally to the osthole group only from 8–18 days. Thiram feeding resulted in lameness, increased mortality, and decreased production parameters, alkaline phosphatase (ALP), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), and glutathione peroxidase (GSH-PX) levels, along with significantly increased aspartate aminotransferase (AST), alanine aminotransferase (ALT), malondialdehyde (MDA) levels, and growth plate size. Moreover, the genes and protein expressions of BMP-2 and RUNX-2 were significantly down-regulated in TD affected chickens (p < 0.05). Osthole administration showed promising results by alleviating lameness; increased ALP, SOD, T-AOC, and GSH-Px levels; and decreased the AST, ALT, and MDA levels significantly. It restored the size of the growth plate and significantly up-regulated the BMP-2 and RUNX-2 expressions (p < 0.05). In conclusion, the oxidative stress and growth plate anomalies could be assuaged using osthole.
Collapse
Affiliation(s)
- Muhammad Waqas
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Faculty of Veterinary & Animal Sciences, University of the Poonch, Rawalakot, District Poonch 12350, Azad Jammu & Kashmir, Pakistan
| | - Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Hammad Qamar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaole Tong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jialu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Khalid Mehmood
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- College of Animal Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China.
| |
Collapse
|