1
|
Barzkar M, Ghiasvand A, Safdarian M. A simple and cost-effective synthesis route using itaconic acid to prepare a magnetic ion-imprinted polymer for preconcentration of Pb (II) from aqueous media. Talanta 2023; 259:124501. [PMID: 37031540 DOI: 10.1016/j.talanta.2023.124501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/02/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
A new Pb (II) magnetic ion-imprinted polymer (Pb-MIIP) was successfully investigated for the selective extraction of Pb (II) from an aqueous solution. MIIP nanostructures were developed using itaconic acid-coated iron oxide nanoparticles (Fe3O4@ITA) as a novel magnetic core, ITA as a functional monomer and chelating agent, ethylene glycol dimethacrylate (EGDMA) as a cross-linker, and 2,2-azobisisobutyronitrile (AIBN) as an initiator. The triple application of ITA in the synthesis and reduction of the number of compounds in the preparation of the MIIP, in addition to being economical, reduces the possibility of side reactions. The synthesized products were followed and confirmed in each step by instrumental and microscopic methods. The limit of detection of the Pb (II)-MIIP method was 0.21 μg L-1. Under the optimal conditions, the recovery (R%) was >90% with a relative standard deviation (RSD%) of <4.9%. The synthesized MIIP was reusable and successfully used to extract Pb (II) from tap water samples.
Collapse
Affiliation(s)
- Minoo Barzkar
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Ghiasvand
- Department of Chemistry, Faculty of Science, Lorestan University, Khoramabad, Iran; Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Mehdi Safdarian
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Zhao Z, Jiang H, Yu N, Qin Y, Luo Z, Geng W, Zhu J. Synthesis, characterization, and performance comparison of boron using adsorbents based on N-methyl-D-glucosamine. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
3
|
Wu F, Li H, Pan Y, Sun Y, Pan J. Bioinspired construction of magnetic nano stirring rods with radially aligned dual mesopores and intrinsic rapid adsorption of palladium. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129917. [PMID: 36099737 DOI: 10.1016/j.jhazmat.2022.129917] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/08/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Quick and precise recovery of palladium (Pd) from electronic waste remains a serious task, owing to the strong acid and complexity of chemical compounds in leachate. Here, bioinspired construction of magnetic nano stirring rod with radially aligned dual mesopores and abundant 8-aminoquinoline (MNSR-DM-AQ) is proposed for selective and rapid extraction of Pd(II) from highly acidic sample solutions. Benefit from the unique dual mesoporous (12.4 nm and 3.6 nm) and the stirring motion under an external magnetic field, MNSR-DM-AQ possesses enhanced adsorption capacity and kinetics, achieving 11.62 mg g-1 (97.2 % of the maximum adsorption capacity) in 15 min. Distribution coefficient (KD = 299.0 mL g-1), separation factor (α above 25.54) and concentration factor (CF = 230.2 mL g-1) reveal the excellent selectivity of MNSR-DM-AQ towards Pd(II) when comparing with the coexisting ions (Ca(II), Co(II), Cu(II), Fe(II), Mg(II), Ni(II), Pb(II), Zn(II)). The adsorption mechanisms of MNSR-DM-AQ are ion exchange and chelation due to a strong affinity between Pd(II) and N. Meanwhile, 96.82 % of the captured Pd(II) can be easily eluted within 15 min, and the adsorption capacity remains stable after five adsorption-desorption cycles. It is worthwhile to mention that MNSR-DM-AQ exhibits a high adsorption capacity of 8.39 mg g-1 from leachate of abandoned high-voltage patch capacitor, which is greatly desired in Pd(II) extraction from electronic waste.
Collapse
Affiliation(s)
- Fan Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Hao Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu 241002, Anhui, China.
| | - Yang Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yonghui Sun
- Jiangsu Agrochem Laboratory Co., Ltd, Changzhou 213022, Jiangsu, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu 241002, Anhui, China.
| |
Collapse
|
4
|
Selective adsorption of palladium ions from wastewater by ion-imprinted MIL-101(Cr) derived from waste polyethylene terephthalate: Isotherms and Kinetics. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Insights into ion-imprinted materials for the recovery of metal ions: Preparation, evaluation and application. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
6
|
Recovery of Palladium and Gold from PGM Ore and Concentrates Using ZnAl-Layered Double Hydroxide@zeolitic Imidazolate Framework-8 Nanocomposite. SEPARATIONS 2022. [DOI: 10.3390/separations9100274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Gold (Au) and palladium (Pd) are platinum group metals (PGMs) that are considered critical in society because they are required in several industrial applications. Their shortage has caused the urgent need for their recovery from secondary resources. Therefore, there is a need to develop functional materials with high adsorption capacity and selectivity for recovery of PGMs from various secondary sources. In this study, a Zn-Al-layered double hydroxide@zeolitic imidazolate framework-8 (Zn–Al–LDH@ZIF–8) nanocomposite was used as an adsorbent for the recovery of Au and Pd from ore concentrates. The Zn–Al–LDH@ZIF–8 nanocomposite was characterised using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, zeta potential, and X-ray diffraction (XRD) spectroscopy. The recovery of Au(III) and Pd(II) was achieved using ultrasound-assisted dispersive µ-solid-phase extraction (UA-D-µ-SPE) and their quantification was attained using an inductively coupled plasma mass spectrometer (ICP-MS). The results showed that the surface of the adsorbent remained positively charged in a wide pH range, which endowed the nanocomposite with high adsorption affinity towards Au(III) and Pd(II). Under optimised conditions, the equilibrium studies revealed that the adsorption of Au(III) and Pd(II) ions followed the Langmuir isotherm model with maximum sorption capacities of 163 mg g−1 and 177 mg g−1 for Au(III) and Pd(II), respectively. The nanocomposite possessed relatively good regeneration, reusability, and stability characteristics, with its performance decreasing by only 10% after five adsorption–desorption cycles.
Collapse
|
7
|
Gao Y, Zhou RY, Yao L, Wang Y, Yue Q, Yu L, Yu JX, Yin W. Selective capture of Pd(II) from aqueous media by ion-imprinted dendritic mesoporous silica nanoparticles and re-utilization of the spent adsorbent for Suzuki reaction in water. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129249. [PMID: 35739768 DOI: 10.1016/j.jhazmat.2022.129249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/07/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
The development of highly efficient adsorptive material for the selective capture of Pd(II), and re-utilization of spent Pd(II)-loaded adsorbent as an efficient catalyst for organic synthesis are of great significance, but challenging. Particularly, the heterogeneous palladium-catalyzed Suzuki reaction in aqueous media is much more challenging than that of homogeneous. Herein, several novel Pd(II) ion-imprinted polymers (PIIPs) based on dendritic fibrous silica particles are constructed by surface ion imprinting technology (SIIT), using Schiff base and pyridine groups functionalized organosilicon as functional monomer. The PIIP-3 prepared by 3 g of functional monomer exhibits the best adsorption performance, and shows ultrafast (10 min) and selective capture of Pd(II) with high uptake capacity (382.5 mg/g). Moreover, the waste Pd(II) loaded PIIP-3 (PIIP-3-Pd) can serve as a catalyst towards the Suzuki reaction in water, affording 94.2 % yield of the desired product. Interestingly, the PIIP-3-Pd can be reused 12 times without an appreciable decrease in catalytic activity, which is probably due to the imprinted cavity and specific recognition site of PIIP-3 can match and recapture Pd active species in a complex catalytic environment. Thus, this work demonstrates huge potentials of SIIT to enhance the selectivity of adsorption process and increase the lifetime of catalysts.
Collapse
Affiliation(s)
- Yue Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, China
| | - Ru-Yi Zhou
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China; Hubei key Laboratory of Novel Reactor & Green Chemical Technology, National Engineering Research Center of Phosphorus Resource Exploitation, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China
| | - Lifeng Yao
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yi Wang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China; Hubei key Laboratory of Novel Reactor & Green Chemical Technology, National Engineering Research Center of Phosphorus Resource Exploitation, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, China
| | - Lan Yu
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Jun-Xia Yu
- Hubei key Laboratory of Novel Reactor & Green Chemical Technology, National Engineering Research Center of Phosphorus Resource Exploitation, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China.
| | - Weiyan Yin
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China.
| |
Collapse
|
8
|
Cen S, Yang L, Li R, Gong S, Tan J, Zeng L. An ion-imprinted imidazole-functionalized ordered mesoporous silica for selective removal of chromium(VI) from electroplating effluents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47516-47526. [PMID: 35182346 DOI: 10.1007/s11356-022-19209-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
In this work, ion imprinted technology incorporated with mesoporous silica materials (MCM-41) to obtain the novel specific adsorbent, ion imprinted mesoporous silica. Cr(VI) imprinted mesoporous silica (Cr(VI)IMS) was synthesized and used for adsorption studies and waste water application. A synthesized imidazolyl silane agent act as the functional monomer in the imprinted process to build up highly ordered functionalized imprinted materials. The chemical composition, porosity, and highly ordered morphology were characterized by Fourier transform infrared spectroscopy (FTIR), solid state nuclear magnetic resonance (NMR), Brunauer-Emmett-Teller (BET) method, X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM), respectively. The Brunauer-Emmett-Teller (BET) surface area was 1054.51 m2 g-1 in this study. The Cr(VI)IMS showed great adsorption capacity to hexavalent chromium ions in acidic solution up to 45.6 mg g-1. Cr(VI)IMS reached the adsorption equilibrium in a short time (10 min) at acid and weak acid conditions, while most of adsorbents need more than 30 min to achieve adsorption equilibrium. Cr(VI)IMS displayed much higher adsorption capacity to Cr(VI) ions than other negative ions. The relative selectivity coefficient was 2.56, higher than those of other anions (below 1.5). After eight adsorption-regeneration cycles, the adsorption efficiency of Cr(VI)IMS still reached 92.5%. The Cr(VI)IMS was found to exhibit equivalent property after multiple cycles of experiments, indicating good repeatability and reproducibility.
Collapse
Affiliation(s)
- Shuibin Cen
- School of Chemical Engineering and Technology, Guangdong Engineering Technical Research Center for Green Household Chemicals, Guangdong Industry Polytechnic, Guangzhou, 510300, China
| | - Lan Yang
- School of Chemical Engineering and Technology, Guangdong Engineering Technical Research Center for Green Household Chemicals, Guangdong Industry Polytechnic, Guangzhou, 510300, China
| | - Ruimin Li
- School of Chemical Engineering and Technology, Guangdong Engineering Technical Research Center for Green Household Chemicals, Guangdong Industry Polytechnic, Guangzhou, 510300, China
| | - Shengzhao Gong
- School of Chemical Engineering and Technology, Guangdong Engineering Technical Research Center for Green Household Chemicals, Guangdong Industry Polytechnic, Guangzhou, 510300, China
| | - Jiean Tan
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528225, China.
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
9
|
Preparation of Magnetic Surface Ion-Imprinted Polymer Based on Functionalized Fe3O4 for Fast and Selective Adsorption of Cobalt Ions from Water. WATER 2022. [DOI: 10.3390/w14020261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A novel cobalt ion-imprinted polymer (Co(II)-MIIP) based on magnetic Fe3O4 nanoparticles was prepared by using Co(II) as the template ion, and bis(2-methacryloxyethyl) phosphate and glycylglycine as dual functional monomers. The fabricated material was analyzed by Fourier transform infrared spectroscopy, thermogravimetric analysis, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, Brunauer–Emmett–Teller, X-ray diffraction, and vibrating sample magnetometer. The adsorption experiments with Co(II)-MIIP, found that the maximum adsorption capacity could reach 33.4 mg·g−1, while that of the non-imprinted polymer (Co(II)-NIP) was found to reach 15.7 mg·g−1. The adsorption equilibriums of Co(II)-MIIP and Co(II)-NIP was established within 20 min and 30 min, respectively. The adsorption process could be suitably described by the Langmuir isotherm model and the pseudo-second-order kinetics model. In binary mixtures of Co(II)/Fe(II), Co(II)/Cu(II), Co(II)/Mg(II), Co(II)/Zn(II), and Co(II)/Ni(II), the relative selectivity coefficients of Co(II)-MIIP toward Co(II)-NIP were 5.25, 4.05, 6.06, 11.81, and 4.48, respectively. The regeneration experiments indicated that through six adsorption–desorption cycles, the adsorption capacity of Co(II)-MIIP remained nearly 90%.
Collapse
|
10
|
Zhang Y, Bian T, Jiang R, Zhang Y, Zheng X, Li Z. Bionic chitosan-carbon imprinted aerogel for high selective recovery of Gd(Ⅲ) from end-of-life rare earth productions. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124347. [PMID: 33144020 DOI: 10.1016/j.jhazmat.2020.124347] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
High selective recovery of Gd(Ⅲ) from end-of-life rare earth productions is essential for cleaner production. Chitosan(CS), a biomaterial, has shown excellent results in water treatment. The amino and hydroxyl groups on the surface of CS play a vital role in adsorbing metal ions. Polydopamine has good stability, strong water dispersibility, and excellent biocompatibility. As a bio-crosslinking agent, the amino and phenolic hydroxyl groups on its surface can be combined with metal ions to help the material absorb metal ions. This paper combines the active groups of biomimetic materials and the mechanical properties of new nanomaterials multi-walled carbon nanotubes and graphene oxide, and prepared a high-performance chitosan-based aerogel MWCNT-PDA-CS-GO through heat and mass transfer at low temperature and low pressure. The adsorption mechanism of MWCNT-PDA-CS-GO for Gd(Ⅲ) was analyzed through a series of characterization and adsorption experiments. At pH 7.0, the maximum adsorption capacity of aerogel for Gd(Ⅲ) reached 150.86 mg g-1. The relative selectivity of imprinted ions is 48.02 times higher than other ions. All the results indict MWCNT-PDA-CS-GO aerogel exhibits excellent selectivity and stability for effective recovery of Gd(Ⅲ).
Collapse
Affiliation(s)
- Yuzhe Zhang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, PR China
| | - Tingting Bian
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, PR China
| | - Rong Jiang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, PR China
| | - Yi Zhang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, PR China
| | - Xudong Zheng
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, PR China; Jiangsu Engineering Research Center of Petrochemical Safety and Environmental Protection, Changzhou 213164, PR China.
| | - Zhongyu Li
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, PR China; Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, PR China.
| |
Collapse
|
11
|
Wu L, Luo Z, Jiang H, Zhao Z, Geng W. Selective and rapid removal of Mo(VI) from water using functionalized Fe 3O 4-based Mo(VI) ion-imprinted polymer. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:435-448. [PMID: 33504706 DOI: 10.2166/wst.2020.594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fe3O4 nanoparticles-based magnetic Mo(VI) surface ion-imprinted polymer (Mo(VI)-MIIP) was elaborated employing 4-vinyl pyridine as a functional monomer. The adsorbent preparation was confirmed by Fourier-transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray diffraction, vibrating sample magnetometer, thermogravimetric analysis, and surface area analysis. Batch adsorption experiments showed that the maximum adsorption capacity of Mo(VI)-MIIP was 296.40 mg g-1 at pH 3, while that of the magnetic non-imprinted polymer (MNIP) was only 147.10 mg g-1. The adsorption isotherm model was well fitted by the Langmuir isotherm model. The adsorption experiments revealed that Mo(VI)-MIIP reached adsorption equilibrium within 30 min, and the kinetics data fitting showed that the pseudo-second-order kinetics model suitably described the adsorption process. Mo(VI)-MIIP exhibited an excellent adsorption selectivity to Mo(VI) in binary mixtures of Mo(VI)/Cr(VI), Mo(VI)/Cu(II), Mo(VI)/H2PO44-, Mo(VI)/Zn(II), and Mo(VI)/I-, with relative selectivity coefficients toward MNIP of 13.71, 30.27, 20.01, 23.53, and 15.89, respectively. After six consecutive adsorption-desorption cycles, the adsorption capacity of Mo(VI)-MIIP decreased by 9.5% (from 228.4 mg g-1 to 206.7 mg g-1 at initial Mo(VI) concentration of 250 mg L-1), demonstrating its reusability.
Collapse
Affiliation(s)
- Lang Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 # Puzhu South Road, Nanjing 211816, China E-mail:
| | - Zhengwei Luo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 # Puzhu South Road, Nanjing 211816, China E-mail:
| | - Hui Jiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 # Puzhu South Road, Nanjing 211816, China E-mail:
| | - Zijian Zhao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 # Puzhu South Road, Nanjing 211816, China E-mail:
| | - Wenhua Geng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 # Puzhu South Road, Nanjing 211816, China E-mail:
| |
Collapse
|
12
|
Jakavula S, Biata NR, Dimpe KM, Pakade VE, Nomngongo PN. A Critical Review on the Synthesis and Application of Ion-Imprinted Polymers for Selective Preconcentration, Speciation, Removal and Determination of Trace and Essential Metals from Different Matrices. Crit Rev Anal Chem 2020; 52:314-326. [PMID: 32723191 DOI: 10.1080/10408347.2020.1798210] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The presence of toxic trace metals and high concentrations of essential elements in the environment presents a serious threat to living organism. Various methods have been used for the detection, preconcentration and remediation of these metals from biological, environmental and food matrices. Owing to the complexicity of samples, methods with high selectivity have been used for detection, preconcentration and remediation of these trace metals. These methods are achieved by the use of ion-imprinted polymers (IIPs) due to their impressive properties such as selectivity, high extraction efficiency, speciation capability and reusability. Because of the increase of toxic trace and essential metals in the environment, IIPs have attracted great use in analytical chemistry. This review, provide a brief background on IIPs and polymerization method that are used for their preparation. Recent applications of IIPs as adsorbents for preconcentration, removal, speciation and electrochemical detection of trace and essential metal is also discussed.
Collapse
Affiliation(s)
- Silindokuhle Jakavula
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa.,DSI/NRF SARChI Chair, Nanotechnology for Water, University of Johannesburg, Doornfontein, South Africa
| | - N Raphael Biata
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa.,DSI/NRF SARChI Chair, Nanotechnology for Water, University of Johannesburg, Doornfontein, South Africa.,DSI/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein, South Africa
| | - K Mogolodi Dimpe
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Vusumzi E Pakade
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Philiswa N Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa.,DSI/NRF SARChI Chair, Nanotechnology for Water, University of Johannesburg, Doornfontein, South Africa.,DSI/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
13
|
Tabatabaiee Bafrooee AA, Ahmad Panahi H, Moniri E, Miralinaghi M, Hasani AH. Removal of Hg 2+ by carboxyl-terminated hyperbranched poly(amidoamine) dendrimers grafted superparamagnetic nanoparticles as an efficient adsorbent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9547-9567. [PMID: 31919825 DOI: 10.1007/s11356-019-07377-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
In this research, carboxyl-terminated hyperbranched poly(amidoamine) dendrimers grafted superparamagnetic nanoparticles (CT-HPMNPs) with core-shell structure were synthesized by the chemical co-precipitation method, the core of superparamagnetic iron oxide nanoparticles and a shell of polyamidoamines (PAMAM) and carboxyl groups, as a novel adsorbent for removing Hg2+ from aqueous systems. The surface of the particles was modified by 3-(aminopropyl) triethoxysilane, and finally, PAMAM and carboxyl dendrimers were grown on the surface up to 5.5 generation. The synthesized polymer was characterized physically and morphologically using different techniques. Also, they were evaluated in terms of adsorption capacity to remove inorganic pollutants of Hg2+, selectivity, and reusability. The adsorption mechanism Hg2+ onto CT-HPMNPs was investigated by single-step and two-step isotherms that the adsorption capacity of Hg2+ obtained 72.3 and 32.88 mg g-1 respectively at pH 5, adsorbent dosage 2 g L-1, Hg2+ initial concentrations 20 mg L-1, contact time 60 min, and temperature of 298 K by CT-HPMNPs. Also, the kinetics of Hg2+ followed the pseudo-second-order model and adsorption isotherms of Hg2+ onto CT-HPMNPs were fitted well by Freundlich (as a single-step) and two-step adsorption models with a correlation coefficient of 0.9997 and 0.9999 respectively. The results showed a significant potential of Hg2+ ions removing from industrial wastewater and spiked water by CT-HPMNPs.
Collapse
Affiliation(s)
| | - Homayon Ahmad Panahi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, 1469669191, Iran.
| | - Elham Moniri
- Department of Chemistry, Varamin (Pishva) Branch, Islamic Azad University, Tehran, Iran
| | | | - Amir Hesam Hasani
- Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
14
|
Mao J, Lin S, Lu XJ, Wu XH, Zhou T, Yun YS. Ion-imprinted chitosan fiber for recovery of Pd(II): Obtaining high selectivity through selective adsorption and two-step desorption. ENVIRONMENTAL RESEARCH 2020; 182:108995. [PMID: 31851945 DOI: 10.1016/j.envres.2019.108995] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/21/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Selective separation of platinum group metals from acidic solutions is of great importance due to their cumulative supply risk and environmental concern. In this study, a Pd(II) ion-imprinted chitosan fiber (ICF) was prepared as the novel adsorbent, and a well-designed two-step desorption process was implemented for selectively recovering Pd(II) from acidic solution containing Pd(II) and interfering metals of Co(II), Ni(II), Cu(II) and Pt (IV). The ICF showed higher selectivity for Pd(II) adsorption, comparing the non-imprinted chitosan fiber (NICF) towards other metals adsorption. The first selective desorption was achieved by NaOH solution, since only Pt (IV) adsorbed on the ICF in a small amount could be eluted, without any acting on Pd(II) ions. The second desorption process was carried out using acidified thiourea solution for the exclusive Pd(II) ions desorption. Therefore, much higher selective recovery of Pd(II) was achieved through ICF with a good selective adsorption performance and a well-designed desorption process. Furthermore, the mechanisms of selective adsorption and desorption were investigated by X-ray photoelectron spectra (XPS) and X-ray diffraction (XRD) analyses. Finally, ICF-packed column system was conducted using synthetic multiple metals solution and a practical hydrometallurgy wastewater as influent, respectively, with a good adsorption capacity of 87.2 mg g-1 and 94.2 mg g-1, resulting quite high concentrated effluent consisted of 97.4% of Pd(II) and 99.5% of Pd(II), respectively. It was opened up a promising designed material and technique for selectively recovering Pd(II) in the further practical large-scale application.
Collapse
Affiliation(s)
- Juan Mao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Shuo Lin
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; School of Chemical Engineering, Chonbuk National University, Jeonbuk, 54896, Republic of Korea
| | - Xie Juan Lu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiao Hui Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tao Zhou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yeoung-Sang Yun
- School of Chemical Engineering, Chonbuk National University, Jeonbuk, 54896, Republic of Korea.
| |
Collapse
|