1
|
Xiao H, Xiao HW, Xu Y, Zheng NJ, Xiao HY. Combustion-driven inorganic nitrogen in PM 2.5 from a city in central China has the potential to enhance the nitrogen load of North China. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136620. [PMID: 39603129 DOI: 10.1016/j.jhazmat.2024.136620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Inorganic nitrogen (NH4+ and NO3-) is a significant component of PM2.5, influencing not only regional ecological systems but also on other regions through the migration of air masses. However, few studies have simultaneously investigated the sources of NH4+ and NO3-, and their potential transport pathways remain poorly understood. Here, daily PM2.5 samples were collected in Jiaozuo, a key city in the air pollution transmission channel to the north China, from 1 September to 5 December, 2017. Major water-soluble inorganic ions and the isotope compositions of NH4+ and NO3- in PM2.5 were analyzed. The results indicated substantial amounts of inorganic nitrogen in PM2.5, particularly at high PM2.5 concentrations. The Bayesian isotope mixing model (MixSIAR) results revealed that combustion sources contributed 79.5 % to NO3- and 51.6 % to NH4+. Moreover, the medium to high potential source regions for combustion-related NH3 is basically consistent with combustion-related NOx. Therefore, stringent regulation of combustion emissions has the potential to mitigate inorganic nitrogen pollution in PM2.5 in Jiaozuo. The results of the forward trajectory cluster and PSCF (potential source contribution function) analysis revealed that a significant amount of combustion-driven inorganic nitrogen in PM2.5 from Jiaozuo will transport to downwind area, particularly north China. Combustion-driven inorganic nitrogen levels carried by these air masses exceeded half the average value for cities in North China during the same period. Our study highlights that combustion emissions dominate the inorganic nitrogen sources in PM2.5 and that substantial amounts of combustion-driven inorganic nitrogen can be transported from Jiaozuo to North China, potentially enhancing the nitrogen load in those areas.
Collapse
Affiliation(s)
- Hao Xiao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong-Wei Xiao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Neng-Jian Zheng
- School of Geographical Sciences, China West Normal University, Nanchong 637009, China; Sichuan Provincial Engineering Laboratory of Monitoring and Control for Soil Erosion in Dry Valleys, China West Normal University, Nanchong 637009, China.
| | - Hua-Yun Xiao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, China.
| |
Collapse
|
2
|
Xiao H, Ji C, Ding S, Li X. Strategic control of combustion-induced ammonia emissions: A key initiative for substantial PM 2.5 reduction in Tianjin, North China Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172328. [PMID: 38614324 DOI: 10.1016/j.scitotenv.2024.172328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/11/2024] [Accepted: 04/06/2024] [Indexed: 04/15/2024]
Abstract
Information on the temporal and spatial variations in the sources of ammonium salts (NH4+), a crucial alkaline component in PM2.5, is limited. Here, we simultaneously collected PM2.5 and gaseous ammonia (NH3) samples in both summer and winter from two sites in Tianjin: an urban site (Tianjin University, TJU) and a suburban site (Binhai New-region, BH). NH3 concentrations, the contents of major water-soluble inorganic ions in PM2.5, and the compositions of ammonium‑nitrogen isotopes (δ15N-NH4+) were measured. As a result, (NH4)2SO4 and NH4NO3 were the predominant forms of NH4+ in PM2.5 during summer and winter, respectively. However, the NH4NO3 concentrations were notably greater at TJU (6.2 ± 7.3 μg m-3) than at BH (3.8 ± 4.7 μg m-3) in summer, with no regional differences observed in winter. Both sites displayed almost half the contribution of c-NH3 (combustion-related NH3) to NH4+, differing from the finding of previous isotope-based studies. This discrepancy could be attributed to the combined effects of NHx isotope fractionation and seasonal δ15N value variations in NH3 sources. The contribution fractions of v-NH3 (volatile NH3) and c-NH3 exhibited similar patterns at both sites seasonally, probably caused by coal combustion for heating in winter and temperature fluctuations. However, the contribution fraction of c-NH3 was lower at BH than at TJU in summer but greater in winter than at TJU. In summer, NH4NO3 was unstable and limited its delivery to TJU from BH, and the high contribution of c-NH3 to NH4+ at TJU could be attributed to local vehicle emissions. In winter, the stable particulate NH4NO3 that formed from the c-NH3 in the upwind area could be transported to the downwind area, increasing the NH4+ concentration at BH. Our study provides valuable insights for devising emission mitigation strategies to alleviate the increasing burden of NH3 in the local atmosphere.
Collapse
Affiliation(s)
- Hao Xiao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Chuanwen Ji
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Shiyuan Ding
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xiaodong Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
3
|
Li Z, Xiao H, Walters WW, Hastings MG, Min J, Song L, Lu W, Wu L, Yan W, Liu S, Fang Y. Nitrogen isotopic characteristics of aerosol ammonium in a Chinese megacity indicate the reduction from vehicle emissions during the lockdown period. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171265. [PMID: 38417516 DOI: 10.1016/j.scitotenv.2024.171265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/01/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
The role of agricultural versus vehicle emissions in urban atmospheric ammonia (NH3) remains unclear. The lockdown due to the outbreak of COVID-19 provided an opportunity to assess the role of source emissions on urban NH3. Concentrations and δ15N of aerosol ammonium (NH4+) were measured before (autumn in 2017) and during the lockdown (summer, autumn, and winter in 2020), and source contributions were quantified using SIAR. Despite the insignificant decrease in NH4+ concentrations, significantly lower δ15N-NH4+ was found in 2020 (0.6 ± 1.0‰ in PM2.5 and 1.4 ± 2.1‰ in PM10) than in 2017 (15.2 ± 6.7‰ in PM2.5), which indicates the NH3 from vehicle emissions has decreased by∼50% during the lockdown while other source emissions are less affected. Moreover, a reversed seasonal pattern of δ15N-NH4+ during the lockdown in Changsha has been revealed compared to previous urban studies, which can be explained by the dominant effect of non-fossil fuel emissions due to the reductions of vehicle emissions during the lockdown period. Our results highlight the effects of lockdown on aerosol δ15N-NH4+ and the importance of vehicle emissions to urban atmospheric NH3, providing conclusive evidence that reducing vehicle NH3 emissions could be an effective strategy to reduce PM2.5 in Chinese megacities.
Collapse
Affiliation(s)
- Zhengjie Li
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in Southern China, College of Biological Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Hongwei Xiao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wendell W Walters
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Meredith G Hastings
- Institute at Brown for Environment and Society, Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI 02912, USA
| | - Juan Min
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in Southern China, College of Biological Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Linlin Song
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Liaoning Province 110016, China
| | - Weizhi Lu
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in Southern China, College of Biological Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Libin Wu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Wende Yan
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in Southern China, College of Biological Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Shuguang Liu
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in Southern China, College of Biological Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| | - Yunting Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Liaoning Province 110016, China; Qingyuan Forest CERN, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China.
| |
Collapse
|
4
|
Yan F, Chen W, Wang X, Jia S, Mao J, Cao J, Chang M. Significant Increase in Ammonia Emissions in China: Considering Nonagricultural Sectors Based on Isotopic Source Apportionment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2423-2433. [PMID: 38270134 DOI: 10.1021/acs.est.3c07222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Isotopic source apportionment results revealed that nonagricultural sectors are significant sources of ammonia (NH3) emissions, particularly in urban areas. Unfortunately, nonagricultural sources have been substantially underrepresented in the current anthropogenic NH3 emission inventories (EIs). Here, we propose a novel approach to develop a gridded EI of nonagricultural NH3 in China for 2016 using a combination of isotopic source apportionment results and the emission ratios of carbon monoxide (CO) and NH3. We estimated that isotope-corrected nonagricultural NH3 emissions were 4370 Gg in China in 2016, accounting for an increase in the total NH3 emissions from 7 to 31%. As a result, compared to the original NH3 EI, the annual emissions of total NH3 increased by 35%. Thus, in comparison to the simulation driven by the original NH3 EI, the WRF-Chem model driven by the isotope-corrected NH3 EI has reduced the model biases in the surface concentrations and dry deposition flux of reduced nitrogen (NHx = gaseous NH3 + particulate NH4+) by 23 and 31%, respectively. This study may have wide-ranging implications for formulating targeted strategies for nonagricultural NH3 emissions controls, making it facilitate the achievement of simultaneously alleviating nitrogen deposition and atmospheric pollution in the future.
Collapse
Affiliation(s)
- Fenghua Yan
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Weihua Chen
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Xuemei Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Shiguo Jia
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou 510275, China
| | - Jingying Mao
- Scientific Research Academy of Guangxi Environmental Protection, Nanning 530022, China
| | - Jiachen Cao
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Ming Chang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| |
Collapse
|
5
|
Bhattarai N, Wang S, Xu Q, Dong Z, Chang X, Jiang Y, Zheng H. Nitrogen isotopes suggest agricultural and non-agricultural sources contribute equally to NH 3 and NH 4+ in urban Beijing during December 2018. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121455. [PMID: 36934964 DOI: 10.1016/j.envpol.2023.121455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Agricultural and non-agricultural sources emission contribute to atmospheric ammonia (NH3) and particulate ammonium (NH4+). However, our understanding on the sources of NH3 and NH4+ in PM2.5 (particles smaller than 2.5 μm) during the winter period in the urban atmosphere is limited. Here, we measured the concentrations and stable nitrogen isotopic composition (δ15N) of NH3 and NH4+ in parallel during December 2018 in urban Beijing to assess the non-agricultural and agricultural sources contributions to NH3 and NH4+ in ambient air based on the Chemical Transport Model (CTM), a Bayesian isotope mixing model (SIMMR), and the δ15N signatures that we developed. Our study found weekly NH4+ and NH3 concentrations were on average 2.5 ± 1.4 μg m-3 and 3.8 ± 1.7 μg m-3, respectively during December 2018. Weekly concentration weighted δ15N(NH4+) values ranged from 4.5‰ to 13.7‰ with an average value of 8.2 ± 3.9‰ during December 2018. After accounting for nitrogen isotopic fractionation from NH3 gas to NH4+ conversion, initial δ15N(NH3) values ranged from -22.5‰ to -12.8‰ with an average value of -17.4 ± 3.5‰. Further, weekly measured δ15N(NH3) values ranged from -22.2‰ to -10.2‰ (after correction) with an average value of -15.6 ± 5.3‰ during December 2018. Results from two different isotope-based method showed non-agricultural sources contributed 31.2%-63.1%, with an average value of 47.5 ± 14.6%, to NH4+ and 32.3%-71.2%, with an average of 53.4 ± 16.1%, to ambient NH3 during December 2018 in Beijing. Results from CMAQ-ISAM suggest non-agricultural sources contributed on average 66.2 ± 1.9% to ambient NH4+ and 66.4 ± 1.9% to ambient NH3 during December 2018. Results from this study suggest that agricultural and non-agricultural sources nearly equally contributed to NH3 and NH4+ in urban Beijing during December 2018 with an uncertainty range of 13%-19% between isotope-based methods and CTM method.
Collapse
Affiliation(s)
- Noshan Bhattarai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, 100084, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, 100084, China.
| | - Qingcheng Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, 100084, China
| | - Zhaoxin Dong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, 100084, China
| | - Xing Chang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, 100084, China
| | - Yueqi Jiang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, 100084, China
| | - Haotian Zheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, 100084, China
| |
Collapse
|
6
|
Mgelwa AS, Song L, Fan M, Li Z, Zhang Y, Chang Y, Pan Y, Gurmesa GA, Liu D, Huang S, Qiu Q, Fang Y. Isotopic imprints of aerosol ammonium over the north China plain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120376. [PMID: 36228846 DOI: 10.1016/j.envpol.2022.120376] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 09/19/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Atmospheric PM2.5 poses a variety of health and environmental risks to urban environments. Ammonium is one of the main components of PM2.5, and its role in PM2.5 pollution will likely increase in the coming years as NH3 emissions are still unregulated and rising in many cities worldwide. However, partitioning urban NH4+ sources remains challenging. Although the 15N natural abundance (δ15N) analysis is a promising approach for this purpose, it has seldom been applied across multiple cities within a given region. This limits our understanding of the regional patterns and controls of NH4+ sources in urban environments. Here, we collected PM2.5 samples using an active sampling technique during winter at six cities in the North China Plain to characterize the concentrations, δ15N and sources of NH4+ in PM2.5. We found substantial variations in both the concentrations and δ15N of NH4+ among the sites. The mean NH4+ concentrations across the six cities ranged from 3.6 to 12.1 μg m-3 on polluted days and from 0.9 to 10.6 μg m-3 on non-polluted days. The δ15N ranged from 6.5‰ to 13.9‰ on polluted days and from 8.7‰ to 13.5‰ on non-polluted days. The δ15N decreased with increasing NH4+ concentrations at all six sites. We found that non-agricultural sources (vehicle exhaust, ammonia slip and urban wastes) contributed 72%-94% and 56%-86% of the NH4+ on polluted and non-polluted days, respectively, and that during polluted days, combustion-related emissions (vehicle exhaust and ammonia slip) were positively associated with the proportion of urban area, population density and number of vehicles, highlighting the importance of local sources of particulate pollution. This study suggests that the analysis of 15N in aerosol NH4+ is a promising approach for apportioning atmospheric NH3 sources over a large region, and this approach has potential for mapping rapidly and precisely the sources of NH3 emissions.
Collapse
Affiliation(s)
- Abubakari Said Mgelwa
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China; College of Natural Resources Management & Tourism, Mwalimu Julius K. Nyerere University of Agriculture & Technology, P.O. Box 976, Musoma, Tanzania
| | - Linlin Song
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meiyi Fan
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change (ILCEC), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhengjie Li
- College of Biological Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Yanlin Zhang
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change (ILCEC), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yunhua Chang
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change (ILCEC), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yuepeng Pan
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Geshere Abdisa Gurmesa
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning, 110016, China
| | - Dongwei Liu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning, 110016, China
| | - Shaonan Huang
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, College of Environment and Planning, Henan University, Kaifeng, 475004, China; Henan Key Laboratory of Air Pollution Prevention and Ecological Security (Henan University), Kaifeng, 475004, China
| | - Qingyan Qiu
- Forest Ecology & Stable Isotope Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yunting Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
7
|
Kawashima H, Yoshida O, Suto N. Long-Term Source Apportionment of Ammonium in PM 2.5 at a Suburban and a Rural Site Using Stable Nitrogen Isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 57:1268-1277. [PMID: 36475665 DOI: 10.1021/acs.est.2c06311] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Ammonia gas (NH3) is an important alkaline air pollutant and a precursor to particulate matter, and its source has been thought to be agricultural, but in recent years, nonagricultural sources have been suspected. In this study, stable nitrogen isotope ratios of ammonium (δ15N-NH4+) in fine particulate matter (PM2.5) were measured at a suburban site and a rural site in Japan. Then, the long-term sources of NH4+ were identified using the δ15N-NH3 and an isotopic mixing model. The results showed that the averaged contribution from nonagricultural sources was 67% at the suburban site and 78% at the rural site. We also reanalyzed NH3 data collected at the same location. The result showed that the averaged contribution of nonagricultural sources to NH3 was 39%. This result is reasonable because bottom-up estimates are close to the contribution, and the NH3 emissions are affected by warm season activities in the rural site. It was first found that the sources vary greatly, depending on the gas and particles. Back-trajectory results suggested that PM2.5 measured at the rural site was derived from the Asian continent. We inferred that the NH4+ had been formed on the continent and that these particles thus represent transboundary pollution.
Collapse
Affiliation(s)
- Hiroto Kawashima
- Department of Management Science and Engineering, Faculty of Systems Science & Technology, Akita Prefectural University, 84-4, Ebinokuchi, Tsuchiya, Yurihonjo, Akita015-0055, Japan
| | - Otoha Yoshida
- Department of Management Science and Engineering, Faculty of Systems Science & Technology, Akita Prefectural University, 84-4, Ebinokuchi, Tsuchiya, Yurihonjo, Akita015-0055, Japan
| | - Nana Suto
- Environment Research Division, Japan Automobile Research Institute, 2530 Karima, Tsukuba, Ibaraki305-0822, Japan
| |
Collapse
|
8
|
Chen Z, Pei C, Liu J, Zhang X, Ding P, Dang L, Zong Z, Jiang F, Wu L, Sun X, Zhou S, Zhang Y, Zhang Z, Zheng J, Tian C, Li J, Zhang G. Non-agricultural source dominates the ammonium aerosol in the largest city of South China based on the vertical δ 15N measurements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157750. [PMID: 35926604 DOI: 10.1016/j.scitotenv.2022.157750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Ammonia (NH3) is the most prevalent alkaline gas in the atmosphere and plays a critical role in air pollution and public health. However, scientific debate remains over whether agricultural emissions (e.g., livestock and fertilizer application) dominate NH3 in urban atmosphere in China, which is one of the largest NH3 emitters in the world. In this study, we first simultaneously collected the fine atmospheric particles (PM2.5) at two heights (ground and 488 m) using the atmospheric observatories in Canton Tower, Guangzhou city, China for the measurements of stable nitrogen isotope composition in ammonium (δ15N-NH4+). Our results showed that the average δ15N-NH4+ value at the ground and the 488 m observatory were 16.9 ‰ and 3.8 ‰, respectively, implying that NH4+ aerosols between the two heights probably have different sources. Moreover, we found that the δ15N-NH4+ value would sharply decrease to -16.7 ‰ when the air masses came from western Guangzhou, where the urbanization is limited compared to other surrounding areas. The Bayesian mixing model indicated that NH4+ aerosol at the ground observatory was mainly derived from non-agricultural activities (76 %, e.g., vehicular exhaust), with the rest from agricultural sources (24 %). As for the 488 m observatory, the contribution of non-agricultural sources was 53 %, which is lower than the ground observatory. This is expected as the lower air receives more impacts from the local urban emission. However, the current "bottom-up" emission inventory illustrates that only ~20 % NH3 in Guangzhou is associated with non-agricultural emissions, which is significantly lower than our δ15N-based results. Overall, our findings strongly imply that non-agricultural sources dominate the urban NH3 in Guangzhou or maybe in adjacent cities of the Pearl River Delta region as well, suggesting that the emission inventory of NH3 in this region probably is urgently needed to be revisited in future studies.
Collapse
Affiliation(s)
- Zixi Chen
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, China
| | - Chenglei Pei
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China; Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou, China; Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Junwen Liu
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, China.
| | - Xiangyun Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Ping Ding
- State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Lan Dang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Zheng Zong
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Fan Jiang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, China
| | - Lili Wu
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, China
| | - Xi Sun
- School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Guangzhou, China
| | - Shengzhen Zhou
- School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Guangzhou, China
| | - Yanlin Zhang
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, China
| | - Zhisheng Zhang
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, China
| | - Junyu Zheng
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, China
| | - Chongguo Tian
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, China
| |
Collapse
|
9
|
Ouma EA, Huszár H, Horváth L, Szabó G, Janáky C, Bozóki Z. Development of a Near-Infrared Photoacoustic System for Selective, Fast, and Fully Automatized Detection of Isotopically Labeled Ammonia. Anal Chem 2022; 94:14118-14125. [PMID: 36190777 PMCID: PMC9583071 DOI: 10.1021/acs.analchem.2c01191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Different environmental
and industrial technologies seek
for fast
and automatic ammonia detection systems, capable of the selective
measurement of the concentration of its isotopes at sub-ppm levels,
without any interference with the common contaminants. In this work,
we report the quasi-simultaneous measurement of 14NH3 and 15NH3 concentrations based on a
near-infrared diode laser-based photoacoustic system. Using a widely
tunable external cavity diode laser, four nearby wavelengths within
the range of 1531.3–1531.8 nm were optimal circumstances for
sensitive detection, while avoiding interference with water vapor.
Subsequently, a more robust distributed feedback diode laser was employed
to tune the laser wavelength on the sub-second timescale by varying
its driving current rather than using much slower temperature tuning.
The detection limit of our system is 0.15 and 0.73 ppm for 14NH3 and 15NH3 (with an accuracy
below 0.1%), respectively, and the response time is 3.5 s.
Collapse
Affiliation(s)
- Emily Awuor Ouma
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, H-6720Szeged, Hungary
| | - Helga Huszár
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, H-6720Szeged, Hungary
| | - László Horváth
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, H-6720Szeged, Hungary
| | - Gábor Szabó
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, H-6720Szeged, Hungary
| | - Csaba Janáky
- Department of Physical Chemistry and Materials Science, University of Szeged, Dóm tér 9, H-6720Szeged, Hungary
| | - Zoltán Bozóki
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, H-6720Szeged, Hungary
| |
Collapse
|
10
|
Kawashima H, Yoshida O, Joy KS, Raju RA, Islam KN, Jeba F, Salam A. Sources identification of ammonium in PM 2.5 during monsoon season in Dhaka, Bangladesh. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156433. [PMID: 35660591 DOI: 10.1016/j.scitotenv.2022.156433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/21/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Ammonia (NH3) is taken up by fine particulate matter (PM2.5), and there are concerns about its impact on the environment and health. The source of NH3, which was thought to be of agricultural sources, has recently been suspected to be non-agricultural sources in urban areas. Here, we collected PM2.5 during the monsoon season in Dhaka, Bangladesh, the most polluted city in the world, and analyzed the δ15N-NH4+ in PM2.5. As the result, the δ15N-NH4+ ranged from 9.2 ‰ to 34.4 ‰ (average: 20.7 ± 4.8 ‰), the highest of any of the averaged values annual reported in previous researches. In order to perform source analysis, the NH3 concentrations were estimated using the thermodynamic model ISORROPIA-II. The estimated concentration of NH3 gas averaged 40.8 μg/m3 (3.0-154.6 μg/m3). The contributions calculated with the mixing model to the δ15N-NH4+ values in PM2.5 in Dhaka, Bangladesh averaged 25.3 ± 14 %, 22.8 ± 10 %, 26.5 ± 15 %, and 25.4 ± 10 % for waste, fertilizer, NH3 slip, and fossil fuel combustion, respectively. Non-agricultural sources (NH3 slip, and fossil fuel combustion) accounted for almost half (51.9 %) of the contributions. In addition, the several validation tests of the isotope mixing model were also performed. For validating the uncorrected and corrected source data for δ15N-NH3, the contribution of non-agricultural sources with uncorrected source data would have been very high (>80 %), much higher than the corrected source data.
Collapse
Affiliation(s)
- Hiroto Kawashima
- Department of Management Science and Engineering, Faculty of Systems Science & Technology, Akita Prefectural University, 015-0055 Akita, Japan.
| | - Otoha Yoshida
- Department of Management Science and Engineering, Faculty of Systems Science & Technology, Akita Prefectural University, 015-0055 Akita, Japan
| | - Khaled Shaifullah Joy
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rasel Ahammed Raju
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka 1000, Bangladesh
| | - Kazi Naimul Islam
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka 1000, Bangladesh
| | - Farah Jeba
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka 1000, Bangladesh
| | - Abdus Salam
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
11
|
Bhattarai N, Wang S, Pan Y, Xu Q, Zhang Y, Chang Y, Fang Y. δ 15N-stable isotope analysis of NH x : An overview on analytical measurements, source sampling and its source apportionment. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2021; 15:126. [PMID: 33777477 PMCID: PMC7982311 DOI: 10.1007/s11783-021-1414-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 05/10/2023]
Abstract
Agricultural sources and non-agricultural emissions contribute to gaseous ammonia (NH3) that plays a vital role in severe haze formation. Qualitative and quantitative contributions of these sources to ambient PM2.5 (particulate matter with an aerodynamic equivalent diameter below 2.5 µm) concentrations remains uncertain. Stable nitrogen isotopic composition (δ15N) of NH3 and NH4 + (δ15N(NH3) and δ15N(NH4 +), respectively) can yield valuable information about its sources and associated processes. This review provides an overview of the recent progress in analytical techniques for δ15N(NH3) and δ15N(NH4 +) measurement, sampling of atmospheric NH3 and NH4 + in the ambient air and their sources signature (e.g., agricultural vs. fossil fuel), and isotope-based source apportionment of NH3 in urban atmosphere. This study highlights that collecting sample that are fully representative of emission sources remains a challenge in fingerprinting δ15N(NH3) values of NH3 emission sources. Furthermore, isotopic fractionation during NH3 gas-to-particle conversion under varying ambient field conditions (e.g., relative humidity, particle pH, temperature) remains unclear, which indicates more field and laboratory studies to validate theoretically predicted isotopic fractionation are required. Thus, this study concludes that lack of refined δ15N(NH3) fingerprints and full understanding of isotopic fractionation during aerosol formation in a laboratory and field conditions is a limitation for isotope-based source apportionment of NH3. More experimental work (in chamber studies) and theoretical estimations in combinations of field verification are necessary in characterizing isotopic fractionation under various environmental and atmospheric neutralization conditions, which would help to better interpret isotopic data and our understanding on NH x (NH3 + NH4 +) dynamics in the atmosphere. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material is available in the online version of this article at 10.1007/s11783-021-1414-6 and is accessible for authorized users. Supplementary material includes supplementary tables on summary of recent isotope-based source apportionment studies on ambient NH3 derived from δ15N(NH3) values (Table A1); and summary of recent isotope-based source apportionment studies on particulate NH4 + derived from δ15N(NH4 +) values (Table A2).
Collapse
Affiliation(s)
- Noshan Bhattarai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084 China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, 100084 China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084 China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, 100084 China
| | - Yuepeng Pan
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Qingcheng Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084 China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, 100084 China
| | - Yanlin Zhang
- Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing, 210044 China
| | - Yunhua Chang
- Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing, 210044 China
| | - Yunting Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016 China
| |
Collapse
|
12
|
Fu H, Luo Z, Hu S. A temporal-spatial analysis and future trends of ammonia emissions in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:138897. [PMID: 32408207 DOI: 10.1016/j.scitotenv.2020.138897] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Excessive anthropogenic activities have led to high-level ammonia loss and volatilization, which is regarded as a key factor in Chinese haze formation. In this study, a comprehensive analysis of ammonia emission estimations is accomplished at both temporal (1980-2016) and spatial (provincial) scales using a mass-balanced model, and emission projections through 2030 are also studied in different development scenarios. The results show that the ammonia emissions increased from 4.7 Tg N yr-1 in 1980 to 11 Tg N yr-1 in 2016, which is an approximately 2.4-fold increase. The cropland and livestock emissions are the largest contributors, as most reports show approximately 80% contributions; however, nonagriculture sources of fuel combustion, waste treatment and ammonia escape have grown rapidly in recent years, accounting for 14% in 2016. The spatial differences also reveal the complex heterogeneity in Chinese provinces. In addition, the emission intensities of major agriculture and non-agriculture sources are 0-80 kg N ha-1 yr-1 and over 100 kg N ha-1 yr-1, respectively, indicating a higher degree of ammonia concentration from non-agriculture emissions, which should attract wide concern. In terms of scenario analysis, emissions would reach 12.8 Tg N yr-1 in 2030 under the currently developed model and 7.3 Tg N yr-1 under a series of reduction policies; the spatial analysis also shows that the North China Plain has a 2.1 Tg N yr-1 reduction potential. The results of this study provide new insights into ammonia emission estimations and a better understanding of the environmental impacts of ammonia emitted from different sources.
Collapse
Affiliation(s)
- Hang Fu
- Center for Industrial Ecology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhibo Luo
- Center for Industrial Ecology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Baiyunshan Pharmaceutical Factory, Guangzhou Baiyunshan Pharmaceutical Holdings Co., Guangzhou 510515, China
| | - Shanying Hu
- Center for Industrial Ecology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|